
Contents Lecture 3

Arrays, matrices, and lists in C
Introduction to the ISO C standard, Chapter 7
Lexical elements, Chapter 8

Lecture 3 2023 1 / 35

Multidimensional arrays in C

The language has no concept of multidimensional arrays.
Instead you simply use arrays of arrays.

Lecture 3 2023 2 / 35

Arrays of arrays

double m[3][4];
double x[2][3][4][5];

So m is an array with three elements, where each element is an array of
four doubles.
x has two elements.

Lecture 3 2023 3 / 35

Multidimensional arrays with calloc

Suppose we want an m × n matrix from calloc. How do we do?
A one-dimensional array is declared as: double* a.
Here a is a pointer which points to the start of the calloc-ed memory.
A two-dimensional matrix, can be declared as double** m.
But how can we allocate memory for it???
First allocate an array which can hold m pointers to the rows,
and then allocate memory for each row.

Lecture 3 2023 4 / 35

More from previous slide

double** make_matrix(int m, int n)
{

double** a;
int i;

a = calloc(m, sizeof(double*));
for (i = 0; i < m; i += 1)

a[i] = calloc(n, sizeof(double));
return a;

}

Now we can write double** m = make_matrix(3, 4);

We can access the elements as m[i][j].

Lecture 3 2023 5 / 35

Alternatives

Instead of doing m + 1 calls to calloc, we can make one big:

double* a = calloc(m * n, sizeof(double));

Unfortunately, we cannot use it as a two-dimensional matrix. Assume
we want a[i][j]:

for (i = 0; i < m; i++)
for (j = 0; j < n; j++)

a[i * n + j] = ...

The row number is determined by i and each row has n elements.
We cannot write a[i][j] since the type of a[i] is a double and not
an array.

Lecture 3 2023 6 / 35

malloc/calloc/realloc/free

The data allocated by void* calloc(size_t count, size_t
size) is initialized to zeroes.
There is an alternative function void* malloc(size_t size)
which leaves the data uninitialised.
Using malloc but forgetting to initialize the data leads to painful bugs.
You will often notice that the data is already zeroed by malloc but
that is only by accident (by chance).
The function void* realloc(void* ptr, size_t size) tries to
extend (or shrink) the memory area pointed to by ptr, and if that is
not possible it allocated new memory and copies to old content. Why
can that be dangerous ?

Lecture 3 2023 7 / 35

Lists in C

There are of course various kinds of lists, eg:
Single linked,
Single linked, with header pointing to the end (instead of having data).
Null terminated double linked,
Circular double linked.

Lecture 3 2023 8 / 35

An example circular double linked list

typedef struct list_t list_t;

struct list_t {
list_t* succ;
list_t* pred;
void* data;

};

Without the typedef we must write struct list_t everywhere.
By circular is meant that the head’s predecessor points to the last
node and the successor of the last node points to the head.

Lecture 3 2023 9 / 35

Making a list node

list_t* new_list(void* data)
{

list_t* list;

list = malloc(sizeof(list_t));

list->succ = list; // (∗ l i s t) . succ = l i s t ;
list->pred = list; // (∗ l i s t) . pred = l i s t ;
list->data = data; // (∗ l i s t) . data = data ;

return list;
}

The arrow is a shorthand for (*list). and was added to C very early.

Lecture 3 2023 10 / 35

Freeing of a list

void free_list(list_t** head)
{

list_t* h = *head;
list_t* p;
list_t* q;
if (h == NULL)

return;
p = h->succ;
while (p != h) {

q = p->succ;
free(p);
p = q;

}
free(p);
*head = NULL;

}

Lecture 3 2023 11 / 35

Comments on free

int* a;
int* b;
a = malloc(sizeof(int));
b = a;
free(a);
*a = 12; // wrong .
a; // wrong .
b; // wrong .

After you have freed an object, any mention of that object is wrong,
and the behavior is undefined. Anything is permitted to happen
according to the C standard.

Lecture 3 2023 12 / 35

Iterating through a circular list

#include <stddef.h>

size_t length(list_t* head)
{

size_t count;
list_t* p;

if (head == NULL)
return 0;

count = 0;
p = head;
do {

count += 1;
p = p->succ;

} while (p != head);
return count;

}

Lecture 3 2023 13 / 35

Strings in C

Strings are adjacent characters terminated with a 0.
"C is fun" is a string and consists of 9 bytes.
Eg char v[10] can hold a string.
Eg char* s can point to a string — but it is no string.
If we also do s = malloc(10); it is still no string.
However, s points to memory which can hold a string.
If we now do s = "C is fun" we just leak the 10 bytes from malloc

Lecture 3 2023 14 / 35

Character arrays and string literals

char* s = "c is fun";
char a[10] = "c is fun"; // 10 elements
char b[] = "c is fun"; // 9 elements
char c[8] = "c is fun"; // 8 elements but dangerous

s points to a string literal so

*s = ’C’;

is invalid since the string literal is read-only
a to c are normal arrays so we can modify them
For a to c the strings are really just used to inform the compiler what
the arrays should be initialized to and are not needed in the program
The array c will contain no terminating zero byte

Lecture 3 2023 15 / 35

Copying a string

To make a copy of a string, we can use the following function.
The type size_t is an unsigned integer type, e.g. unsigned int or
unsigned long.
size_t is defined in stdio.h, stdlib.h and stddef.h

char* copy_string(char* s)
{

size_t length;
char* t;

length = strlen(s);
t = malloc(length + 1); // why + 1 ???
if (t != NULL)

strcpy(t, s); // l i b r a r y function
return t;

}

Lecture 3 2023 16 / 35

size_t strlen(const char* s);

const means this function promises not to modify what s points to.

size_t strlen(const char* s)
{

size_t length = 0;
while (*s != 0) { // have we reached the zero?

length += 1; // one more char found .
s += 1; // step to the next character .

}
return length;

}

Lecture 3 2023 17 / 35

An alternative size_t strlen(const char* s);

size_t strlen(const char* s)
{

const char* s0 = s;
while (*s != 0)

s += 1;
return s - s0;

}

Pointer difference is the number of elements between what the
pointers point to
Subtracting two pointers must be a signed integer type — not size_t
The type is called ptrdiff_t

With good compilers, these two versions result in the same machine
code though.

Lecture 3 2023 18 / 35

A simpler size_t strlen(const char* s);

size_t strlen(const char* s)
{

size_t i;

i = 0;
while (s[i] != 0)

i += 1;
return i;

}

This is simplest to read
With good compilers, these three versions result in the same machine
code though.
Bottom line: keep it simple until you know it is ”worth” trying to
optimize it by hand

Lecture 3 2023 19 / 35

The C Programming Language

Terminology for discussing the C Standard
Lexical elements
Declarations
Expressions
Statements
Preprocessing directives
The Standard C Library

Lecture 3 2023 20 / 35

The C Standard

The C compiler and the Standard Library provided with the compiler is
referred to as the Implementation.
The Standard consists of requirements at different levels on a program:
Constraints can be checked at compile-time. Eg forgotten declaration
of a variable or a syntax error.
If a Constraint is violated by a program, it must be diagnosed by the
compiler.
Semantics. The behavior of a language construct is normally described
in a Semantics section of the Standard.

Lecture 3 2023 21 / 35

Implementation-defined behavior

An implementation is free to make certain decisions about the
behavior which it must follow consistently and document.
This is called Implementation-defined behavior.
Examples include

The size and precision of various types.
How bit-fields are layed out in memory.
Whether right shift of an signed integer is arithmetic or logical.
Whether the register keyword has any effect on performance.

Portable programs should avoid using some of the language constructs
with implementation-defined behavior.

Lecture 3 2023 22 / 35

Unspecified behavior

Unspecified behavior lets the implementation decide on the behavior
and it does not have to document the behavior since it can vary
”randomly” eg due to optimization, and should be avoided if it can
affect observable behavior.
Examples include

The order of evaluation in + is unspecified.

int a = 12, b = 13;
int f(void) { printf("%d\n", a); return a; }
int g(void) { printf("%d\n", b); return b; }
int main() { f() + g(); return 0; }

The order of evaluation of arguments in function calls.
Whether two identical string literals share memory.
Whether setjmp is a macro or identifier with external linkage;
&setjmp is bad.

Lecture 3 2023 23 / 35

Undefined behavior

The worst situation is undefined behavior; (ugly form of bug).
The implementation is permitted to do anything including

Terminating compilation with an error message.
Continuing without understanding what happened.
Continuing possibly with a warning message.

Examples of undefined behavior include
A requirement which is not a Constraint is violated.
An invalid pointer is dereferenced.
A stack variable is used before it was given a value.
Divide by zero.
Array index out of range.

Lecture 3 2023 24 / 35

Lexical elements

Character sets

Keywords

Identifiers

Universal character names

Constants

String literals

Punctuators

Header names

Preprocessing numbers

Comments

Lecture 3 2023 25 / 35

Character sets

The Basic character set must be supported by all C compilers
Lower and upper case Latin alphabet
Decimal digits

! " # % & ’ () * + , - . / :
; < = > ? [\] ^ _ { | } ~

Extended character sets may optionally be supported and can include
Swedish, Japanese etc. Represented by multibyte characters.
Trigraph sequences: be careful in strings: ”trigraph? what??!”

??= # ??)] ??! | ??([
??’ ^

??> } ??/ \ ??< { ??- ~

Lecture 3 2023 26 / 35

Keywords

auto extern short while
break float signed _Alignas
case for sizeof _Alignof
char goto static _Atomic
const if struct _Bool
continue inline switch _Complex
default int typedef _Generic
do long union _Imaginary
double register unsigned _Noreturn
else restrict void _Static_assert
enum return volatile _Thread_local

New in C99: inline, restrict, _Bool, _Complex, and _Imaginary
New in C11: _Alignas, _Alignof, _Atomic, _Generic, _Noreturn,
_Static_assert, and _Thread_local

Lecture 3 2023 27 / 35

Identifiers

An identifier starts with a nondigit and then may contain digits
A nondigit is underscore, [A-Z], [a-z], a universal character name, or
an implementation-defined multibyte character
It is not portable to use Å, Ä, or Ö in identifiers (as in Java)
Identifiers with a leading underscore are reserved for the system: don’t
use them

// in a header f i l e : #define _num 1234567890
typedef struct _num {

struct _num* next;
int value;

} num;

Lecture 3 2023 28 / 35

Universal character names (UCNs)

Used to specify any Unicode character
Written as \Unnnnnnnn or \unnnn where n is a hex digit.
Can be used in identifiers, strings, and character constants

Lecture 3 2023 29 / 35

Constants 1(4)

Integer constants:
integer-suffix: combination of u, U, l, L, ll, LL
decimal-constant integer-suffix, eg 1ULL
octal-constant integer-prefix, eg 0123
hexadecimal-constant integer-prefix 0xabc123

Floating constants:
float constant, eg 123.456e12F
double constant, eg 123.456e12
long double constant, eg 123.456e12L
C99: hexadecimal floating constant, eg 0xap-3 = 10 × 2−3 = 1.25

Lecture 3 2023 30 / 35

Constants 2(4)

float x; float x;
int main() int main()
{ {

x += 0.1; x += 0.1F;
} }
main: lis 4,x@ha main: lis 4,x@ha

lis 5,.LC0@ha lis 5,.LC0@ha
lfs 5,x@l(4) lfs 2,x@l(4)
lfd 4,.LC0@l(5) lfs 3,.LC0@l(5)
fmr 3,5 fadds 1,2,3
fadd 2,3,4 stfs 1,x@l(4)
frsp 1,2 blr
stfs 1,x@l(4)
blr // No conversion to double !

Lecture 3 2023 31 / 35

Constants 3(4)

Character constants
Normal character constant:

’1’ ’A’

Simple escape character constant:

’\’’ ’\"’ ’\?’ ’\\’ ’\a’ ’\b’
’\f’ ’\n’ ’\r’ ’\t’ ’\v’

Octal character constant, one, two, or three digits:

’\1’ ’\12’ ’\123’

Hexadecimal character constant, any number of digits:

’\x1’ ’\x12’ ’\x123’ ’\x1234’ etc

But more than two will most likely cause an overflow
(implementation-defined)
Universal character name:

’\U12345678’ ’\u00ab’

Lecture 3 2023 32 / 35

Constants 4(4)

Wide character constants
Like normal character constant but with an L prefix:

#include <wchar.h> /∗ or <stddef .h> or <std l i b .h> ∗/

wchar_t w = L’A’;

The size of the type wchar_t is usually two or four bytes

Lecture 3 2023 33 / 35

String literals 1(2)

Adjacent string literals are automatically concatenated: ”hello, ”
”world” becomes ”hello, world”
Strings are ended with a zero character: 0 or ′\0′

The string consisting of bytes 255, ’8’, and 0 cannot be written as:

"\xff8"

but the following works

"\3778" "\xff" "8"

Lecture 3 2023 34 / 35

String literals 2(2)

A wide string is written as L”hello, world”
In ANSI C from 1989 (and still in most C compilers today), mixing
normal strings and wide string resulted in undefined behavior
In C99 the resulting string literal becomes wide.

Lecture 3 2023 35 / 35

