Contents Lecture 2

- Course lab theme and project: integer program solver
- You will implement this during labs 1 - 4
- The labs have other contents as well, such as
- the gdb debugger
- Google Sanitizer
- Valgrind
- operf, gprof, gcov
- Lab 5: POWER8 pipeline simulator
- Lab 6: optimizing compilers (gcc, clang, and ibm's and nvidia's)

Linear program: maximize a linear function in a region

- a region defined by lines including $x_{i} \geq 0$, i.e. linear constraints, and
- an objective function such as $\max z=x_{0}+2 x_{1}$

Solving a linear program

- Find $x_{i} \in \mathbb{R}$ which maximizes z
- Here x_{i} are called decision variables

Our example

- Objective function and linear constraints using \leq

$$
\begin{aligned}
\max & z=x_{0}+2 x_{1} \\
& \\
-0.5 x_{0} & +x_{1} \leq 4 \\
3 x_{0} & +x_{1} \leq 18
\end{aligned}
$$

- Also: implicitly $x_{i} \geq 0$
- We can use e.g. $x_{i} \geq 4$ or $x_{i}=5$ but they can be rewritten to use \leq

Linear programs

$$
\max \quad z=c_{0} x_{0}+c_{1} x_{1}+\ldots+c_{n-1} x_{n-1}
$$

$$
\begin{array}{cc}
a_{0,0} x_{0}+a_{0,1} x_{1}+\ldots+a_{0, n-1} & \leq b_{0} \\
a_{1,0} x_{0}+a_{1,1} x_{1}+\ldots+a_{1, n-1} & \leq b_{1} \\
\ldots & \\
a_{m-1,0} x_{0}+a_{m-1,1} x_{1}+\ldots+a_{m-1, n-1} & \leq b_{m-1} \\
x_{0}, x_{1}, \ldots, x_{n-1} & \geq 0
\end{array}
$$

- or simpler as

$$
\begin{aligned}
& \max \quad z=c x \\
& \begin{aligned}
\mathrm{Ax} & \leq \mathrm{b} \\
\mathrm{x} & \geq 0 .
\end{aligned}
\end{aligned}
$$

Solutions

- Each constraint defines a halfplane in n dimensions.
- The intersection of these halfplanes defines the feasible region, P , with feasible solutions $x \in P$.
- The feasible region is convex, and a point where halfplanes intersect is called a vertex.
- A linear program is either:
- infeasible when P is empty,
- unbounded when no finite solution exists, or
- feasible, in which case we search for an optimal solution $x^{*} \in P$ which maximizes z.
- There may exist more than one optimal solution.

Solutions

- Each constraint defines a halfplane in n dimensions.
- The intersection of these halfplanes defines the feasible region, P , with feasible solutions $x \in P$.
- The feasible region is convex, and a point where halfplanes intersect is called a vertex.
- A non-convex region cannot be an intersection of halfplanes.

Consequence of P being a convex region

- Assume p_{k} is on a line segment through p_{i} and p_{j}
- We can write a point as $p_{k}=\lambda \cdot p_{i}+(1-\lambda) \cdot p_{j}$, with $0 \leq \lambda \leq 1$
- So that p_{k} is in the region
- Here $\lambda=0.4$

Local and global optimal solutions

- We denote by $z(x)$ the value of the objective function z at point x.
- A solution x is a local optimum for $z(\mathrm{x})$ if there exists an $\epsilon>0$ such that $z(\mathrm{x}) \geq z(\mathrm{y})$ for all $\mathrm{y} \in \mathrm{P}$ with $\|x-y\| \leq \epsilon$.

Theorem

A local optimum of a linear program is also a global optimum.

Theorem

For a bounded feasible linear program with feasible region P, at least one vertex is an optimal solution.

- So we only need to check z in the vertices and not the inner part of the region.

A local optimum of a linear program is also a global optimum

Proof.

- $z(u)$ is a linear objective function
- Assume $z(u)>z(v)$ for all v at most ϵ from u
- Let w be any point in P, possibly far away from u and v
- $v=\lambda u+(1-\lambda) w$ with $0 \leq \lambda \leq 1$
- $z(u) \geq z(v)=z(\lambda u+(1-\lambda) w)=\lambda z(u)+(1-\lambda) z(w)$
- So $z(u)-\lambda z(u) \geq(1-\lambda) z(w)$
- And $z(u)(1-\lambda) \geq(1-\lambda) z(w)$
- $0 \leq \lambda \leq 1$, so $z(u) \geq z(w)$

At least one vertex is an optimal solution

Proof.

- Let the feasible region P have k vertices: $x^{0}, x^{1}, \ldots, x^{k-1}$
- Let z^{*} be the maximum value in any vertex: $z^{*}=\max \left\{\mathrm{cx}^{\mathrm{i}}, 0 \leq i<k\right\}$
- Every point w in P can be written as a linear combination of the vertices: $w=\sum_{i=0}^{k-1} \lambda_{i} \mathrm{x}^{j}$ with $\sum_{i=0}^{k-1} \lambda_{i}=1$
- Let w be any point in P
- $z(w)=\mathrm{cw}=\mathrm{c} \sum \lambda_{i} \mathrm{x}^{\mathrm{i}}=\sum \lambda_{i}\left(\mathrm{cx} \mathrm{x}^{\mathrm{i}}\right) \leq \sum \lambda_{i} z^{*}=z^{*} \sum \lambda_{i}=z^{*}$.

Slack form

\max

$$
C X
$$

$$
\left.\begin{array}{rll}
x_{n+0} & = & b_{0}-\sum_{j=0}^{n-1} a_{0, j} x_{j} \\
& =b_{1}-\sum_{j=0}^{n-1} a_{1, j} x_{j} \tag{1}\\
x_{n+1} & = & \\
& \cdots & \\
x_{n+m-1} & = & b_{m-1}-\sum_{j=0}^{n-1} a_{m-1, j} x_{j} \\
x_{i} & \geq & 0
\end{array} \quad 0 \leq i \leq n+m-1\right) ~ l
$$

- The variables on the left hand side are called basic variable and occur only once, i.e. neither in any sum on the right hand side, nor in the objective function.
- The other variables are called nonbasic variables.

Slack form of our example

- We start with

$$
\begin{gathered}
\max z=x_{0}+2 x_{1} \\
\\
-0.5 x_{0}+x_{1} \leq 4 \\
3 x_{0}+x_{1} \leq 18
\end{gathered}
$$

- and then introduce two new variables, one for each constraint, and write it on slack form:

$$
\begin{gathered}
\max z=x_{0}+2 x_{1}+y \\
x_{2}=4-\binom{-0.5 x_{0}+x_{1}}{x_{3}=} \\
\left.3 x_{0}+x_{1}\right) .
\end{gathered}
$$

- All $x_{i} \geq 0$ and y is initially zero
- We rewrite the problem until all coefficients in the objective function become negative, and set all nonbasic variables to zero

Entering and leaving basic variables

- Select a nonbasic variable with positive c_{i} coefficient
- We take nonbasic variable x_{0} as the so called entering basic variable

$$
\begin{array}{rl}
\max z & z=x_{0}+2 x_{1}+y \\
x_{2} & =4-\left(\begin{array}{c}
-0.5 x_{0}+x_{1}
\end{array}\right) \\
x_{3}=18-\left(\begin{array}{c}
3
\end{array}\right)
\end{array}
$$

- Since c_{0} is positive, we want to increase x_{0} as much as possible
- The basic variables can limit how much x_{0} may be increased (if there is no restriction, then the linear program is unbounded)
- x_{3} restricts increasing x_{0} to at most 6 .
- Therefore we select x_{3} as the so called leaving basic variable.

Rewritten linear program

- We rewrite the linear program by letting the entering and leaving basic variables switch roles.
- This is a tedious but simple algebraic manipulation
- Do this by hand at least once

$$
\begin{gathered}
\max z=-0.333 x_{3}+1.667 x_{1}+6 \\
x_{2}=7-\left(0.167 x_{3}+1.167 x_{1}\right) \\
x_{0}=6-\left(0.333 x_{3}+0.333 x_{1}\right)
\end{gathered}
$$

- Next we must select x_{1} as entering basic variable
- x_{2} is restricted by $7-1.167 x_{1} \geq 0$
- x_{0} is restricted by $6-0.333 x_{1} \geq 0$
- x_{2} is most restricted and becomes the leaving basic variable

Solution

- All c_{i} are negative so z cannot be increased with positive values of the nonbasic variables.
- By setting the nonbasic variables to zero, the maximum becomes 16 in $x=(4,6)$ which indeed is a vertex.

$$
\begin{aligned}
& \max z=-0.6 x_{3}-1.4 x_{2}+16 \\
& x_{1}=6-\binom{0.1 x_{3}+0.9 x_{2}}{x_{0}=4-\left(0.3 x_{3}-0.3 x_{2}\right.}
\end{aligned}
$$

- Summary: we start in a vertex and then go to a neighboring vertex until all coefficients are negative, which gives the optimal solution.
- It was an open problem but George Dantzig was late for a lecture at Berkeley and mistook it for a home assignment (he got a PhD for it).

A problem: $(0,0)$ not in P

- $x_{0}+x_{1}=2$ here means $x_{0}+x_{1} \geq 2$, i.e. $-x_{0}-x_{1} \leq-2$, i.e. $b_{2}=-2$

Finding a start vertex when there is a negative b_{i}

- Let our original linear program be P_{0}
- If some b_{i} is negative the point 0 is not in the feasible region
- We create a new problem P_{1} to find a start vertex for P_{0}
- Add a new nonbasic variable x_{n+m}
- Start with P_{0} and subtract x_{n+m} from each constraint:

$$
a_{i, 0} x_{0}+a_{i, 1} x_{1}+\ldots+a_{i, n-1}-x_{n+m} \leq b_{i}
$$

- Use the objective function $z_{1}=-x_{n+m}$
- We do a pivot on P_{1} with x_{m+n} as entering basic variable and x_{k} with most negative b_{k} as leaving basic variable
- This gives us $\mathrm{b} \geq 0$, so P_{1} can be solved using the simplex algorithm,
- If P_{1} has optimal value 0 then $x_{n+m}=0$ and by removing x_{m+n} from this solution, we have a start vertex for P_{0}

Integer programming

- Integer programming is similar to linear programming with the extra condition that $x_{i} \in \mathbb{N}$.
- Some problems including this have no efficient algorithms
- One bad "method" to solve problems is to enumerate all solutions
- This does not sound good though
- We will use the algorithm design paradigm branch-and-bound to solve integer programs (not all since integer programming is NP-complete)

Branch

- A relaxation makes a problem simpler (by solving another problem)
- For integer programming we solve the corresponding linear program, i.e. relaxing the integer requirement on the solution.
- Suppose we have an integer program and give it to the Simplex algorithm and $x_{k} \notin \mathbb{N}$
- Assume the Simplex algorithm assigns $x_{k}=u$
- We can then branch by creating two new linear programs:
- one with the additional constraint constraint $x_{k} \leq\lfloor u\rfloor$, and
- another with the additional constraint $x_{k} \geq\lceil u\rceil$.
- Each new problem is solved directly with the Simplex algorithm
- If it has an integer solution we can limit the search tree (bound)
- If it has a non-integer solution and it is better than best the integer solution we put it in the queue

Bound

- If the Simplex algorithm found an integer solution we do the following
- We check if this is the best integer solution found so far, and remember it in that case
- We remove from the queue all unexplored linear programs whose optimal value is less than the value of the integer solution we just found

Pseudo code and project

- The distributed pseudo code is in Appendix B in the book printed 2020 and the course Tresorit directory
- It is as simple possible
- It is your task to translate it to C and then to optimize it.
- The only requirement is that it should work for 20 problems (there are thousands problems).
- Not even commercial programs work perfectly
- At forsete.cs.lth.se you will be able to upload your C code
- Forsete is an automatic grader and will give you a score
- The score determines who win a coffee mug and does not affect your grade
- You are not allowed to use any code you have not written yourself, except functions from the C Standard library.

