
Administration

Lecturer is Jonas.Skeppstedt@cs.lth.se with office E:2190
Course site is http://cs.lth.se/edag01
but the Discord server and Tresorit directory are more useful (see mail)
You will get an account on a POWER8 machine (3.5 GHz, 10 cores,
80 hardware threads)
You can work on other machines if you wish but performance
measurements are to be done on this.
You can access it with ssh -Y user@power.cs.lth.se

Lecture 1 2023 1 / 52



Contents of the course

F1 Introduction to C
F2 Labs and project: linear and integer programming
F3 More C
F4 Instruction set architectures: POWER
F5 Types, conversions, and linkage
F6 Superscalar processors: POWER8
F7 Declarations and expressions
F8 Cache memories
F9 Statements and the C preprocessor

F10 Performance analysis
F11 The C Standard library
F12 Optimizing compilers

Lecture 1 2023 2 / 52



EDAG01 Efficient C

Sedgewick and Flajolet in ”An Introduction to the Analysis of Algorithms”:

The quality of the implementation and properties of compilers, machine
architecture, and other major facets of the programming environment have

dramatic effects on performance.

Lecture 1 2023 3 / 52



EDAG01 Efficient C

You will learn the C language in detail and a methodology to
maximize algorithm performance on a modern computer

To write efficient code, you need competence in:
Mathematics, algorithms and data structures
The C programming language and UNIX C programming tools
Pipelined and superscalar processors
Cache memories
What optimizing compilers can do for you — and what you need to fix
yourself

Lecture 1 2023 4 / 52



Contents Lecture 1

The purpose of learning C
Some simple C programs

Lecture 1 2023 5 / 52



Some views of C

The other language for high-performance, FORTRAN, is mainly
focussed on numerical computing and not for writing code eg for
embedded systems, operating system kernels, or compilers.
Very often other languages such as Clojure, Python, Scala, Haskell,
Lisp, Prolog, Ada, Java, C++, Mathematica, or Matlab are preferable
because they have many convenient features which enable faster
program development.
When performance in terms of memory usage and/or speed is the
most important aspect, however, the programmer must have complete
control over what is happening and then the overhead of many
language features can lead to inferior performance.

Lecture 1 2023 6 / 52



Your lecturer’s relationship with C

C is great but not ideal for everything.
It is my favorite language since 1988. Just like Lisp and Prolog, it’s
nice because it’s beautiful, powerful, and is simple.
I have written the second ISO validated C99 compiler, after edg.com.
If I would manage a large software project with several million lines of
code, I would use C.
I will not try to convince you that C ”is best” because there is no such
thing as a best language.

Lecture 1 2023 7 / 52



Principles of the C Programming Language

Trust the programmer
Don’t prevent the programmer from doing what needs to be done
Keep the language small and simple
Provide only one way to do an operation
Make it fast, even if it is not guaranteed to be portable
Support international programming
Update since the C99 version: Don’t trust the programmer.

Lecture 1 2023 8 / 52



Writing a C program

#include <stdio.h>

int main(int argc, char** argv)
{

printf("hello, world\n");
return 0;

}

A Java methods is called a function in C.
A C program must have a main function.
A C function must be declared before it is used.

Lecture 1 2023 9 / 52



The C preprocessor

The command #include <stdio.h> reads a file with a declaration of
printf.
Commands in a C file which start with a hash, #, are performed by
the C preprocessor before the compiler starts.
You can run the preprocessor by typing cpp.
The preprocessor can include files and deal with macros, eg
INT_MAX is the largest number of type int.
Notice that cpp knows nothing about C syntax.

Lecture 1 2023 10 / 52



Installing the gcc and clang compilers on Windows 10

Install Windows subsystem for Linux
See Tresorit and the file links.txt for links to youtube videos (and in
the comments part of this video)
Click on the Ubuntu app and you will get a terminal window.
Become Ubuntu administrator by typing and press return (or enter)
sudo bash

Update some files by typing:
apt update

and then
apt upgrade

and install
apt install gcc clang

and to leave administrator mode type
exit

Lecture 1 2023 11 / 52



Installing the clang compiler on a Mac

Search for and open a terminal window on your Mac
Then type
xcode-select --install

Other compilers can be installed using the brew system but you don’t
need to use them

Lecture 1 2023 12 / 52



Compiling a C program

In this course we will use the GNU C compiler, called gcc.
To compile one or more C files to make an executable program type
gcc hello.c
The command gcc will first run cpp, then the C compiler, and then
two more programs called an assembler and a link-editor.
Later in the course you will learn about assembler and the operating
system course you can learn about link-editors.
For this course, gcc takes care of the link-editor and tells it to produce
an executable file.

Lecture 1 2023 13 / 52



Running a C program

By default the executable file (made by typing gcc hello.c) is called
a.out.
To execute it in Linux (or MacOS X, or another UNIX), type ./a.out.
You can tell gcc that you want a certain name: gcc hello.c -o hello.
Now you type ./hello.

Lecture 1 2023 14 / 52



Separate compilation

If you have many big source code files, it is a waste of time to
recompile all files every time.
You can tell gcc to compile a file and produce a so called object file
(has nothing to do with object-oriented programming).
gcc -c hello.c
gcc hello.o
The above two lines are identical to gcc hello.c but useful if you have
many files. The second line should then contain all .o files.

Lecture 1 2023 15 / 52



Example of I/O: scanf and printf

#include <stdio.h>
int main(int argc, char** argv)
{

int a;
float b;
double c;

scanf("%d %f %lf\n", &a, &b, &c);
printf("%lf\n", a + b + c);

}

%d for int, %f for float, and %lf for double.
The program will read three numbers from input and print the sum.

Lecture 1 2023 16 / 52



More about the previous example

In the call to the function scanf, we need & to tell the compiler that
the variables should be modified by the called function.
This does not exist in Java. You cannot ask another method to modify
a number passed as a parameter to the method.
Other useful format-specifiers include:

%x for a hexnumber (base 16),
%s for a string,
%c for a char,

Lecture 1 2023 17 / 52



Writing to files in C

#include <stdio.h>
int main(int argc, char** argv)
{

int a = 1;
float b = 2;
double c = 3;
FILE* fp;

fp = fopen("data.txt", "w"); // open the f i l e for writing .
fprintf(fp, "%d %f %lf\n", a, b, c);
fclose(fp);

}

This will create a new file on your hard disk.

Lecture 1 2023 18 / 52



Reading from files in C

#include <stdio.h>
int main(int argc, char** argv)
{

int a;
float b;
double c;
FILE* fp;

fp = fopen("data.txt", "r"); // open the f i l e for reading.
fscanf(fp, "%d %f %lf\n", &a, &b, &c);
fclose(fp);

}

Note again the & since fscanf will modify the variables.

Lecture 1 2023 19 / 52



Three ways to make arrays in C

#include <stdio.h>
#include <stdlib.h>

int size = 10;

int main(int argc, char** argv)
{

int a[10], n, i;
int* b;
int c[size]; // called a variable length array .

sscanf(argv[1], "%d", &n); // assumes program is run eg as $ ./a.out 10

b = calloc(n, sizeof(int)); // like Java’s b = new int [n] ;

for (i = 0; i < n; i += 1)
b[i] = i; // use b as i f i t was an array

free(b);
}

Lecture 1 2023 20 / 52



Explanation of the previous slide

The a and c arrays are allocated with other local variables.
Note that a and c are ”real” arrays.
On the other hand, b is like an array in Java for which you must
allocate memory yourself. Use new in Java and eg calloc in C.
Java automatically takes care of deallocating the memory of objects.
In C you must do it yourself using free.
The variable b is not an array — it is a pointer.

Lecture 1 2023 21 / 52



Variable length array in C99 and C11

int fun(int m, int n)
{

int a[n];
int b[m][n];

}

Before C99 the above was illegal due to m and n are not constants.
In C99 it is OK to write like that but only for local variables.
Most C compilers still only support C89 and thus it may be wise to
stick to that at least sometimes.
Variable lengths arrays are only optional in C11.

Lecture 1 2023 22 / 52



Class in Java vs Struct in C 1(4)

C has no classes.
C has structs which are Java classes with everything public and no
methods.

struct s { // th i s s i s a tag .
int a;
int b;

} s; // th i s s i s a var iab le i d e n t i f i e r .

Struct names have a so called tag which is a different namespace than
variables and functions: so the above declares a struct s which is a
type and a variable s.
If we write Link p in Java we declare p to be a reference but not the
object itself whereas s above is the real object, or data.

Lecture 1 2023 23 / 52



Class in Java vs Struct in C 2(4)

In Java we can declare a List class something like this:
class List {

List next; // Next is a reference to another object .
int a;
int b;

}

next above only holds the address of another object but next is not a
List object itself. The list does not contain a list.
Java let’s you use pointers conveniently without giving you too much
head ache.
C does not.

Lecture 1 2023 24 / 52



Class in Java vs Struct in C 3(4)

We cannot write the following in C:

struct list_t {
struct list_t next; // Compilation error ! !
int a;
int b;

};

It is impossible to allocate a list within the list!
We really want to declare next to simply hold the address of a list
object.
In C this is done as: struct list_t* next; which makes next a pointer.

Lecture 1 2023 25 / 52



Class in Java vs Struct in C 4(4)

The following is correct in C:

struct list_t {
struct list_t* next;
int a;
int b;

};

After going into pointers in more detail we will see how to avoid
typing struct list_t more than twice using typedef.

Lecture 1 2023 26 / 52



Memory

As you all know, your computer has something called memory.
It is sufficient to view it as a huge array: char memory[4294967296];
It is preferable in the beginning to view it as: int
memory[1073741824];
Forget about strings for the moment. Now our world consists only of
ints.
As you know, a compiler translates a computer program into some
kind of language which can be understood by a machine.
That has happened for the software in everybody’s mobile phone.

Lecture 1 2023 27 / 52



Instructions

You will see more details about it later, but the C program which
controls your phone is translated to commands which are numbers and
can be represented as ints.
These ints are also put in the memory.
We can for instance put the instructions at the beginning of the array.
The instructions will occupy a large number of array elements.
No problem — our array is huge.

Lecture 1 2023 28 / 52



Global variables in memory

int x = 12;

int main()
{

return x * 2;
}

We also put the variable x in the memory.
This program will have a few instructions for reading x from memory,
multiplying with two, and returning the result.
It is a good idea to put x after the instructions: next page

Lecture 1 2023 29 / 52



Memory layout

0 READ from 3 into R read the data in x from memory at address 3
1 MUL 2 R = R * 2
2 RETURN return R
3 12 x lives here

The array element where we have put a variable is called its address
The instructions above are not written as integers but rather as
commands to make them more readable.
An instruction is represented in memory as a number however.
It would be too complicated to demand that the hardware should read
text such as MUL — it is easier is to build hardware if there simply is
a number which means multiplication.

Lecture 1 2023 30 / 52



Function calls and local variables

When you call a function or method, all the local variables must be
stored somewhere.
It is a convention to put them at the end of the memory array.
The local variables of the main function are put at the very end of the
array.
When main calls a function, its local variables are put just before
main’s.
In general, when a new function starts running, it puts its local
variables at the last (highest index) unused memory array elements.
This works like a stack of plates: main is at the bottom and you put
newly called functions on the plate at the top.

Lecture 1 2023 31 / 52



The Stack

int main() int f(int a) int g(int a)
{ { {

int x = 12; int b = a+1; return a + 3;
return f(x); return g(b+2); }

} }

1073741817 15 a in g lives here.
1073741818 return address from g is here.
1073741819 13 b in f lives here.
1073741820 12 a in f lives here.
1073741821 return address from f is here.
1073741822 12 x in main lives here.
1073741823 return address from main is here.

When a function returns, it deallocates its memory space.
This is managed by the compiler which uses a register for holding the
current free memory index, called the stack pointer.

Lecture 1 2023 32 / 52



Pointers

int x = 12;
int *p;
int main()
{

p = &x;
*p = 13;
return x * 2;

}

A pointer is just a variable and it can hold the address of another
variable.
When p points to x, writing *p accesses x.

Lecture 1 2023 33 / 52



Memory layout

instruction/data Java comment
0 STORE 6 at 7 MEMORY[7] = 6 &x is put in element 7, ie p
1 READ from 7 into R R = MEMORY[7] read data in p: R=6
2 STORE 13 at R MEMORY[R] = 13 *p = 13
3 READ 6 into R R = MEMORY[6] fetch the value of x
4 MUL 2 R = R * 2 multiply x and R
5 RETURN return R
6 12 x lives here
7 0 p lives here

Lecture 1 2023 34 / 52



More about pointers

In Java, you have used pointers all the time, but they are called object
references.
Suppose you have Link p, then p is a pointer.
In Java, pointers can only point at objects.
The address of some object is, as you might know, the location in
memory where that object lives, ie just an integer number.
In Java, new returns the address of a newly created object.
In C, new does not exist and instead a normal function is used
(malloc or calloc).

Lecture 1 2023 35 / 52



More about pointers

In C, but not in Java, the programmer can ask for the address of
almost anything and thus get a pointer to that object (or function).
To change the value of a variable in a function, you need to pass the
address of the variable as a parameter to the function:

void f(int* a) void g()
{ {

*a = 12; int b;
}

f(&b);
}

Lecture 1 2023 36 / 52



More about pointers

If the type of the variable is a pointer, then you will need two stars:

void f(int** a) void g()
{ {

*a = NULL; int* b;
}

f(&b);
}

Lecture 1 2023 37 / 52



More about pointers

To return multiple values in Java, you create and return an extra
object.
Option 1 in C: use a plain struct which is allocated on the stack.
Option 2 in C: Pass additional arguments as pointers (preferable).

struct s f() void g(int* x, int* y, int* u)
{ {

struct s a;
a.x = 1; *x = 1;
a.y = 2; *y = 2;
a.u = 3; *u = 3;
return a; }

}

Lecture 1 2023 38 / 52



Arrays vs Pointers

Arrays and pointers are not equivalent!
An array declares storage for a number of elements, except when it is
a function parameter:

int fun(int a[], int b[12], int c[3][4]);
int fun(int *a, int *b, int (*c)[4]);
int main()
{

int x, y[12], z[4];
fun(&x, y, &z); // va l id .

}

The compiler changes the first [ ] to * for array parameters.
Array parameters are not arrays. They are pointers.
Doing so avoids copying large arrays in function calls.

Lecture 1 2023 39 / 52



C has row-major matrix memory layout

int c[3][4] = { { 1, 2, 3, 4}, { 5, 6 }, { 7 } };
int i, j;
for (i = 0; i < 3; i++)

for (j = 0; j < 4; j++)
x += c[i][j];

In a two-dimensional array, one row is layed out in memory at a time,
ie row-major.
Could also be called ”rightmost index varies fastest”.

Lecture 1 2023 40 / 52



Arrays as parameters

int fun(int c[3][4])
{

printf("%zu %zu\n", sizeof c, sizeof c[0]);
}

If the output is ”8 16”, what conclusions can we draw about the size of
a pointer and the size of an int?
Answer: an pointer is eight bytes and an int is four bytes.
The variable c in the function is simply a pointer: int (*c)[4].

Lecture 1 2023 41 / 52



Representation of array references

a[i] is represtented as *(a+i) internally in the compiler.

int main()
{

int a[10], *p, i = 3;

/∗ the fol lowing are equivalent : ∗/

i[a];
a[i];
p = a; p[i]; i[p];
p = a+i; 0[p]; p[0]; *p;

}

Lecture 1 2023 42 / 52



Memory allocation in C

1 Variables with static storage duration (globals, static).
2 Stack variables.
3 alloca(size_t size) takes memory from the stack.
4 malloc/calloc/realloc take memory from the heap.

Lecture 1 2023 43 / 52



Use tools to find memory errors

Memory errors:
Use pointer which does not point to anything
Index out of bounds
Forget to free — called a memory leak
Free twice

Two tools you will use in Lab 3
Valgrind
Google Sanitizer

Lecture 1 2023 44 / 52



Global variables and functions

Visible from others source files.
Automatically set to zero unless there is an initializer:
int x;
int y = 1;
int f() { return x * y; }
Often it is best to avoid global variables due to:

Compilers are not good at using them efficiently
They sometimes make it more difficult to understand the program

Lecture 1 2023 45 / 52



Static variables and functions

Similar to global variables and functions
static int x;
static int y = 1;
static int f() { return x * y;}

Only visible in the scope it is defined
Functions can only be defined at file scope — no nested functions!
Always use static instead of global unless the symbol is ”exported” to
other files
There is no syntax in C to export symbols — use a header file with
declarations

Lecture 1 2023 46 / 52



Stack variables

Easy for compilers to use efficiently
Don’t use huge arrays since the stack may be too small
You can use a struct as a parameter and return value — but not array
As we saw arrays are converted to pointers in the declaration
There is no syntax to return an array — only a pointer:
int a[10];
int* f() int* g()
{ {

return a; // ok int a[10];
} return a; // bad idea

}

The pointer returned from g becomes invalid immediately

Lecture 1 2023 47 / 52



Stack variable

No automatic initial value — just garbage
We can initialize a struct or array:
int main()
{

int a[10] = { 1, 2, 3 };

}

Zero is used for the ”missing” expressions

Lecture 1 2023 48 / 52



alloca

Takes memory from the stack
Automatically deallocated at function return
Problem 1: alloca is not standard.
Problem 2: if no memory is available, NULL is not returned (as for
malloc/calloc).
Somewhat bad reputation, but nevertheless used.
Much more efficient than malloc/calloc.

Lecture 1 2023 49 / 52



Heap memory

void* malloc(size_t s);

void* calloc(size_t n, size_t s);

void* realloc(void* p, size_t s);

void free(void* p);

Lecture 1 2023 50 / 52



Free-list

Using Java new or malloc/free takes time
Sometimes a free-list is useful
Instead of calling free, put it aside for future use
Instead of calling malloc, check if there already is something put aside
With ”put aside” is meant putting it in a list — but don’t allocate
memory for the list!
Use the object type itself somehow

Lecture 1 2023 51 / 52



sizeof

Use the sizeof operator when requesting memory.
The sizeof operator either takes a type or an expression as operand:
int* p; /* lots of code... */ p = calloc(n, sizeof(int));
int* q; /* lots of code... */ q = calloc(n, sizeof *q);

The latter is safer: what happens if somebody changes from int to
long and forgets the sizeof-operand?

Lecture 1 2023 52 / 52


