
Seminar 3

Solution to seminar 3

Deadlock analysis, semaphores
Among the conditions for a deadlock to occur, it is circular hold-wait which we hope is 
not fulfilled. To check this, we draw the resource allocation graph which looks like:

a) The graph contains one cycle. There is therefore one way in which the system may
deadlock (but we do not know it actually will since that depends on timing, sheduling,
logics of the application, etc.).

b) In the graph we see that circular hold-wait requires two S threads and one T thread
(at least). In other words, deadlock cannot occur if there is only one thread S. In the
code we see that (assume T is interrupted in useACD) S can either be at useAB which
means that T is blocked but S can run because it does not need C, or S is at useBC
where it gets blocked by T which can run since A is not used by S.

c) If there are at least two threads of type S, one may be executing useAB and the other
may be executing useBC. If that happens when T is executing useACD, the system will
deadlock!

d) The simplest change to avoid deadlock is to let T allocate A first of all. Then both
threads allocate resources in the same order (A,B,..E) which prevents deadlock. How-
ever, a possible problem is then that useAB in S and useCD in T will never run con-
currently which may cause problems in the application. A better alternative probably
is to use the allocation order BCDEA which means that B is reserved before A in the
beginning of S. This solution does not impose restrictions on the concurrency of the
system.

Deadlock analysis, monitors
The idea behind this is to think of nested calls from monitor to monitor methods as hold-
wait situations - while the thread is executing a method in one monitor (hold), this method
calls another, synchronised, method in another monitor (wait).

65



Multi-Threaded Programming in Java

Using this idea, we get the following resource allocation graph (observe the double hold
for T1!):

The graph has obviously one clear circle already with only one instance per thread class
and hence puts the system in clear risk for deadlock.


