
EDAF50 – C++ Programming

12. Recap. About the project.

Sven Gestegård Robertz
Computer Science, LTH

2020



Outline

1 The project

2 Classes and inheritance
Scope
const for objects and members

3 Rules of thumb

4 Advice

12. Recap. About the project. 2/1



Project, News

I 2–4 people per group. List of students looking for project
partners on the course web page.

I Develop a news server (two versions) and a text-based client.
I Write a report, hand in the report and your programs no later

than Tuesday, April 21

The project 12. Recap. About the project. 3/41



A News Server and News Clients

The server keeps a database of newsgroups, containing articles.
The clients connect to the server. Sample conversation:
news > list
1. comp.lang.java
2. comp.lang.c++
news > list comp.lang.c++
1. What is C++? From: xxx
2. Why C++? From: yyy
news > read 2
Why C++? From: xxx
... text ...
news >

A client can also create and delete newsgroups, and create and
delete articles in newsgroups.

The project 12. Recap. About the project. 4/41



The Project: Write Server and Client

I You are to develop two versions of the server:
I one in-memory server that forgets the data about newsgroups

and articles between invocations (use the standard library
containers for this database), and

I one disk-based server that remembers the data between
invocations (use files for this database)

These versions should implement a common interface — the
rest of the system should be independent of, and agnostic to,
the database implementation. Avoid duplicated code.

I A single-threaded server is ok.
I You are to develop a client with a text-based interface. It shall

read commands from the keyboard and present the replies
from the server as text.

I Think about how to handle entry of multi-line articles.

The project 12. Recap. About the project. 5/41



System Overview

The classes Server and Connection are pre-written.

Database

YourServer

Server
Connection

AnotherClient

YourClient

Connection

Connection

Connection

The project 12. Recap. About the project. 6/41



Communication Protocol

A message is a sequence of bytes. Messages must follow a specified
protocol, which specifies the message format. The general form is:

MSG_TYPE_BYTE <data > END_BYTE

The protocol contains of commands and answers:
COMMAND_TYPE <data > COM_END
ANSWER_TYPE <data > ANS_END

The project 12. Recap. About the project. 7/41



Communication Protocol
Example: List Newsgroups

List newsgroups (message to server and reply from server):
COM_LIST_NG COM_END
ANS_LIST_NG 2 13 comp.lang.java 15 comp.lang.c++ ANS_END

2 is the number of newsgroups, 13 and 15 are the unique
identification numbers of the newsgroups comp.lang.java and
comp.lang.c++.
Numbers and strings are coded according to the protocol:
string_p: PAR_STRING N char1 char2 ... charN // N is an int , sent as
num_p: PAR_NUM N // 4 bytes , big endian

Hint: write a class to handle the communication on “low protocol
level” (encoding and decoding of numbers and strings).
Don’t repeat yourselves.

The project 12. Recap. About the project. 8/41



Class Connection

struct ConnectionClosedException {};

/* A Connection object represents a socket */
class Connection {
public:

Connection(const char* host , int port);

Connection ();

virtual ~Connection ();

bool isConnected () const;

void write(unsigned char ch) const;

unsigned char read() const;
};

The project 12. Recap. About the project. 9/41



Class Server

/* A server listens to a port and handles multiple connections */
class Server {
public:

explicit Server(int port);

virtual ~Server ();

bool isReady () const;

std:: shared_ptr <Connection > waitForActivity () const;

void registerConnection(const shared_ptr <Connection >& conn);

void deregisterConnection(const shared_ptr <Connection >& conn);
};

The project 12. Recap. About the project. 10/41



Server Usage

while (true) {
auto conn = server.waitForActivity ();
if (conn != nullptr) {

try {
/*
* Communicate with a client , conn ->read()
* and conn ->write(c)
*/

} catch (ConnectionClosedException &) {
server.deregisterConnection(conn);
cout << "Client closed connection" << endl;

}
} else {

conn = make_shared <Connection >();
server.registerConnection(conn);
cout << "New client connects" << endl;

}
}

The project 12. Recap. About the project. 11/41



Provided material

On the course web page, you will find
I Classes for creating connections, including an example

application.
I Test clients written in Java

I An interactive, graphical client
I An automated test client that runs a series of operations.

Please note that this is an aid during development and not a
complete acceptance test.

The project 12. Recap. About the project. 12/41



Report and submission

I Write the report, preferably in English, follow the instructions.
I Create a directory with your programs (only the source code –

don’t include any generated files) and a Makefile.
I Write a README file (text) with instructions on how to build

and test your system.
I Submission:

1 The report in PDF format.
2 The README file.
3 The program directory, tar-ed and gzip-ped . Don’t bury the

report inside the gzip file.
4 Submission instructions will be published on the course web,

under Project.

The project 12. Recap. About the project. 13/41



Inheritance and scope

I The scope of a derived class is nested inside the base class
I Names in the base class are visible in derived classes
I if not hidden by the same name in the derived class

I Use the scope operator :: to access hidden names
I Name lookup happens at compile-time

I static type of a pointer or reference determines which names
are visible (like in Java)

I Virtual functions must have the same parameter types in
derived classes.

Classes and inheritance : Scope 12. Recap. About the project. 14/41



Function overloading and inheritance

No function overloading between levels in a class hierarchy

struct Base{
virtual void f(int x) {cout << "Base::f(int): " << x << endl;}

};
struct Derived :Base{

void f(double d) {cout << "Derived ::f(double ): " << d << endl;}
};

void example () {
Base b;
b.f(2); Base::f(int): 2
b.f(2.5); Base::f(int): 2
Derived d;
d.f(2); Derived::f(double): 2
d.f(2.5); Derived::f(double): 2.5

Base& dr = d;
dr.f(2.5); Base::f(int): 2

}

Classes and inheritance : Scope 12. Recap. About the project. 15/41



Function overloading and inheritance

Make functions visible using using

struct Base{
virtual void f(int x) {cout << "Base::f(int): " << x << endl;}

};
struct Derived :Base{

using Base::f;
void f(double d) {cout << "Derived ::f(double ): " << d << endl;}

};

void example () {
Base b;
b.f(2); Base::f(int): 2
b.f(2.5); Base::f(int): 2

Derived d;
d.f(2); Base::f(int): 2
d.f(2.5); Derived::f(double): 2.5

}

Classes and inheritance : Scope 12. Recap. About the project. 16/41



Constructors
Default constructor

Default constructor
I A constructor that can be called without arguments

I May have parameters with default values

I Automatically defined if no constructor is defined
(in declaration: =default, cannot be called if =delete)

I If not defined, the type is not default constructible

Classes and inheritance : Scope 12. Recap. About the project. 17/41



Constructors
Copy constructor

I Is called when initializing an object
I Is not called on assignment
I Can be defined, otherwise a standard copy constructor is

generated (=default, =delete)

I default copy constructor
I Is automatically generated if not defined in the code

I exception: if there are members that cannot be copied
I shallow copy of each member

Classes and inheritance : Scope 12. Recap. About the project. 18/41



Classes
Default copy construction: shallow copy

void f(Vector v);

void test()
{

Vector vec (5);
f(vec); // call by value -> copy
// ... other uses of vec

}

elem
sz: 5vec:

sz: 5
elem

v:

I The parameter v is default copy constructed: the value of each
member variable is copied. I.e., the pointer value is copied.

I When f() returns, the destructor of v is executed:
(delete[] elem;)

I The array pointed to by both copies is deleted. Disaster!
Classes and inheritance : Scope 12. Recap. About the project. 19/41

X



“Rule of three”
Canonical construction idiom

If a class implements any of these:
1 Destructor
2 Copy constructor
3 Copy assignment operator

it (quite probably) should implement (or =delete) all three.

If one of the automatically generated does not fit,
the other ones probably won’t either.

Classes and inheritance : Scope 12. Recap. About the project. 20/41



“Rule of three five”
Canonical construction idiom, from C++11

If a class implements any of these:
1 Destructor
2 Copy constructor
3 Copy assignment operator
4 Move constructor
5 Move assignment operator

it (quite probably) should implement (or =delete) all five.

Classes and inheritance : Scope 12. Recap. About the project. 21/41



Constant objects

I const means “I promise not to change this”

I Objects (variables) can be declared const
I “I promise not to change the variable”

I References can be declared const
I “I promise not to change the referenced object”
I a const& can refer to a non-const object
I a const& can refer to a temporary object (rvalue expression)
I common for function parameters

I Member functions can be declared const
I “I promise that the function does not change the object”
I A const member function may not call non-const

member functions
I Functions can be overloaded on const

Classes and inheritance : const for objects and members 12. Recap. About the project. 22/41



Operator overloading

Operator overloading syntax:

return_type operator⊗ (parameters...)

for an operator ⊗ e.g. == or +

For classes, two possibilities:
I as a member function

I if the order of operands is suitable
E.g., ostream& operator<<(ostream&, const T&)
cannot be a member of T

I as a free function
I if the public interface is enough, or
I if the function is declared friend

Classes and inheritance : const for objects and members 12. Recap. About the project. 23/41



Constructors
Member initialization rules

class Bar {
public:

Bar() =default;
Bar(int v, bool b) :value{v},flag{b} {}

private:
int value {0};
bool flag {true};

};

I If a member has both default initializer and a member
initializer in the constructor, the constructor is used.

I Members are initialized in declaration order. (Compiler
warning if member initializers are in different order.)

I Bar() =default; is necessary to make the compiler generate a
default constructor (as another constructor is defined)
.

Classes and inheritance : const for objects and members 12. Recap. About the project. 24/41



Constructors
Special cases: zero or one parameter

class KomplextTal {
public:

KomplextTal ():re{0},im{0} {}
KomplextTal(const KomplextTal& k) :re{k.re},im{k.im} {}
KomplextTal(double x):re{x},im{0} {}
//...

private:
double re;
double im;

};

default constructor copy constructor converting constructor

Classes and inheritance : const for objects and members 12. Recap. About the project. 25/41



Constructors
Implicit conversion

struct Foo{
Foo(int i) :x{i} {cout << "Foo(" << i << ")\n";}
Foo(const Foo& f) :x(f.x) {cout << "Copying Foo(" << f.x << ")\n";}
Foo& operator =(const Foo& f) {cout << "Foo = Foo(" << f.x << ")\n";

x=f.x;
return *this;

}
int x;

};

void example ()
{

int i=10;

Foo f = i; Foo(10) (conversion + optimized away copy/move)

f = 20; Foo(20)
Foo = Foo(20) (would move if operator=(Foo&&) defined)

Foo g = f; Copying Foo(20)

Classes and inheritance : const for objects and members 12. Recap. About the project. 26/41



Conversion operators
Exempel: Counter

Conversion to int

struct Counter {
Counter(int c=0) :cnt{c} {};
Counter& inc() {++cnt; return *this;}
Counter inc() const {return Counter(cnt +1);}
int get() const {return cnt;}
operator int() const {return cnt;}

private:
int cnt {0};

};

Note: operator T().
I no return type in declaration (must obviously be T)
I can be declared explicit

Classes and inheritance : const for objects and members 12. Recap. About the project. 27/41



rules of thumb, “defaults”

I Iteration, range for (or standard algorithms)
I return value optimization
I call by value or reference?
I reference or pointer parameters? (without transfer of

ownership)
I default constructor and initialization
I resource management: RAII and rule of three (five)
I be careful with type casts. Use named casts

Rules of thumb 12. Recap. About the project. 28/41



use range for

for(const auto& e : collection) { // or auto e to get a copy
// ...

}

Use range for for iteration over an entire collection:
I safer and more obvious code
I no risk of accidentally assigning

I the iterator
I the loop variable

I no pointer arithmetic

Works on any type T that has
I member functions begin and end, or
I free functions begin(T) and end(T)

Rules of thumb 12. Recap. About the project. 29/41



return value optimization (RVO)

The compiler may optimize away copies of an object when
returning a value from a function.

I return by value often efficient, also for larger objects
I RVO allowed even if the copy constructor or the destructor

has side effects
I avoid such side effects to make code portable

Rules of thumb 12. Recap. About the project. 30/41



Rules of thumb for function parameters

parameters and return values, “reasonable defaults”
I return by value if not very expensive to copy
I pass by reference if not very cheap to copy

(Don’t force the compiler to make copies.)
I input parameters: const T&
I in/out or output parameters: T&

Rules of thumb 12. Recap. About the project. 31/41



parameters: reference or pointer?

I required parameter: pass reference
I optional parameter: pass pointer (can be nullptr)

void f(widget& w)
{

use(w); // required parameter
}

void g(widget* w)
{

if(w) use(w); // optional parameter
}

Rules of thumb 12. Recap. About the project. 32/41



Default constructor and initialization

I (automatically generated) default constructor (=default) does
not always initialize members
I global variables are initialized to 0 (or corresponding)
I local variables are not initialized

struct A { int x; };

int a; // a is initialized to 0
A b; // b.x is initialized to 0

int main() {
int c; // c is not initialized
int d = int(); // d is initialized to 0

A e; // e.x is not initialized
A f = A(); // f.x is initialized to 0
A g{}; // g.x is initialized to 0

}

I always initialize variables (with value or {})
I always implement default constructor (eller =delete)

Rules of thumb 12. Recap. About the project. 33/41



RAII: Resource aquisition is initialization

I Allocate resources for an object in the constructor
I Release resources in the destructor
I Simpler resource management, no naked new and delete

I Exception safety: destructors are run when an object goes out
of scope

I Resource-handle
I The object itself is small
I Pointer to larger data on the heap
I Example, our Vector class: pointer + size
I Utilize move semantics

I unique_ptr is a handle to a specific object. Use
if you need an owning pointer, e.g., for polymorph types.

I Prefer specific resource handles to smart pointers.

Rules of thumb 12. Recap. About the project. 34/41



Smart pointers: unique_ptr

Example

struct Foo {
int i;
Foo(int ii=0) :i{ii} { std::cout << "Foo(" << i <<")\n"; }
~Foo() { std::cout << "~Foo("<<i<<")\n"; }

};
void test_move_unique_ptr ()
{

std:: unique_ptr <Foo > p1(new Foo (1));
{

std:: unique_ptr <Foo > p2(new Foo (2));
std:: unique_ptr <Foo > p3(new Foo (3));
// p1 = p2; // error! cannot copy unique_ptr
std::cout << "Assigning pointer\n";
p1 = std::move(p2);
std::cout << "Leaving inner block ...\n";

}
std::cout << "Leaving program ...\n";

}

Foo(2) survives the inner block
as p1 takes over ownership.

Foo(1)
Foo(2)
Foo(3)
Assigning pointer
~Foo(1)
Leaving inner block ...
~Foo(3)
Leaving program ...
~Foo(2)

Rules of thumb 12. Recap. About the project. 35/41



Advice

Resouce management
I Resouce management: RAII and rule of three (five)
I Avoid “naked” new and delete

I Use constructors to establish invariants
I throw exception on failure

for polymorph classes
I Copying often leads to disaster.
I =delete

I Copy/Move-constructor
I Copy/Move-assignment

I If copying is needed, implement a virtual clone() function

Advice 12. Recap. About the project. 36/41



Advice

classes
I only create member functions for things that require access

to the representation
I as default, make constructors with one parameter explicit
I only make functions virtual if you want polymorphism

polymorph classes
I access through reference or pointer
I A base class must have a virtual destructor.
I use override for readability and to get help from the compiler

in finding mistakes
I use dynamic_cast to navigate a class hierarchy

Advice 12. Recap. About the project. 37/41



Advice

safer code
I initialize all variables
I use exceptions instead of returning error codes
I use named casts (if you must cast)
I only use union as an implementation technique inside a class
I avoid pointer arithmetics, except

I for trivial array traversal (e.g., ++p)
I for getting iterators into built-in arrays (e.g., a+4)
I in very specialized code (e.g., memory management)

Advice 12. Recap. About the project. 38/41



Advice

The standard library
I use the standard library when possible

I standard containers
I standard algorithms

I prefer std::string to C-style strings (char[])
I prefer containers (e.g., std::vector<T>) to built-in arrays (T[])
I prefer standard algorithms to hand-written loops.

Often both
I safer and
I more efficient

than custom code

Advice 12. Recap. About the project. 39/41



Advice

The standard containers
I use std::vector by default
I use std::forward_list for sequences that are usually empty
I be careful with iterator invalidation
I use at() instead of [] to get bounds checking
I use range for for simple traversal
I initialization: use () for constructor aruments

and {} for elements

Advice 12. Recap. About the project. 40/41



Write code that is correct and easily understandable

Good luck on the exam

Questions?

Advice 12. Recap. About the project. 41/41


	The project
	Classes and inheritance
	Scope
	const for objects and members

	Rules of thumb
	Advice

