EDAF50 — C++ Programming

12. Recap. About the project.

Sven Gestegérd Robertz
Computer Science, LTH

2020




QOutline

@ The project
© Classes and inheritance

@ Scope
@ const for objects and members

© Rules of thumb

O Advice

12. Recap. About the project.




Project, News

» 2-4 people per group. List of students looking for project
partners on the course web page.

» Develop a news server (two versions) and a text-based client.

» Write a report, hand in the report and your programs no later
than Tuesday, April 21

12. Recap. About the project.



A News Server and News Clients

The server keeps a database of newsgroups, containing articles.
The clients connect to the server. Sample conversation:

news> list

1. comp.lang. java

2. comp.lang.c++

news> list comp.lang.c++
1. What is C++? From: xxx

2. Why C++? From: yyy
news> read 2
Why C++? From: xxx
text
news >

A client can also create and delete newsgroups, and create and
delete articles in newsgroups.

The project 12. Recap. About the project. 4/41



The Project: Write Server and Client

» You are to develop two versions of the server:

» one in-memory server that forgets the data about newsgroups
and articles between invocations (use the standard library
containers for this database), and

» one disk-based server that remembers the data between
invocations (use files for this database)

These versions should implement a common interface — the
rest of the system should be independent of, and agnostic to,
the database implementation. Avoid duplicated code.

» A single-threaded server is ok.

» You are to develop a client with a text-based interface. It shall
read commands from the keyboard and present the replies
from the server as text.

» Think about how to handle entry of multi-line articles.

12. Recap. About the project.



System Overview

The classes Server and Connection are pre-written.

AnotherClient

The project 12. Recap. About the project. 6/41



Communication Protocol

A message is a sequence of bytes. Messages must follow a specified
protocol, which specifies the message format. The general form is:
MSG_TYPE_BYTE <data> END_BYTE

The protocol contains of commands and answers:

COMMAND_TYPE <data> COM_END
ANSWER_TYPE <data> ANS_END

The project 12. Recap. About the project. 7/41



Communication Protocol

Example: List Newsgroups

List newsgroups (message to server and reply from server):
COM_LIST_NG COM_END
ANS_LIST_NG 2 13 comp.lang.java 15 comp.lang.c++ ANS_END
2 is the number of newsgroups, 13 and 15 are the unique
identification numbers of the newsgroups comp.lang.java and
comp.lang.c++.
Numbers and strings are coded according to the protocol:
string_p: PAR_STRING N charl char2 ... charN // N is an int, sent as
num_p: PAR_NUM N // 4 bytes, big endian
Hint: write a class to handle the communication on “low protocol
level” (encoding and decoding of numbers and strings).
Don't repeat yourselves.

The project 12. Recap. About the project. 8/41



Class Connection

struct ConnectionClosedException {};
/* A Connection object represents a socket x/
class Connection {
public:
Connection(const char* host, int port);
Connection();
virtual ~Connection();
bool isConnected() const;

void write(unsigned char ch) const;

unsigned char read() const;

The project 12. Recap. About the project. 9/41



Class Server

/* A server listens to a port and handles multiple connections x/
class Server {

public:

The project

explicit Server(int port);

virtual ~Server();

bool isReady() const;

std::shared_ptr<Connection> waitForActivity() const;

void registerConnection(const shared_ptr<Connection>& conn);

void deregisterConnection(const shared_ptr<Connection>& conn);

12. Recap. About the project. 10/41



Server Usage

while (true) {

auto conn = server.waitForActivity();
if (conn != nullptr) {
try {
/*

* Communicate with a client, conn->read()
* and conn->write(c)
*/

} catch (ConnectionClosedException&) {
server.deregisterConnection(conn);
cout << "Client closed connection” << endl;

3
} else {
conn = make_shared<Connection>();
server.registerConnection(conn);
cout << "New client connects” << endl;

The project 12. Recap. About the project. 11/41



Provided material

On the course web page, you will find
» Classes for creating connections, including an example
application.
» Test clients written in Java

» An interactive, graphical client
» An automated test client that runs a series of operations.
Please note that this is an aid during development and not a

complete acceptance test.

The project 12. Recap. About the project. 12/41



Report and submission

» Write the report, preferably in English, follow the instructions.

» Create a directory with your programs (only the source code —
don’t include any generated files) and a Makefile.

» Write a README file (text) with instructions on how to build
and test your system.
» Submission:
© The report in PDF format.
© The README file.
© The program directory, tar-ed and gzip-ped . Don't bury the
report inside the gzip file.
© Submission instructions will be published on the course web,
under Project.

12. Recap. About the project.



Inheritance and scope

» The scope of a derived class is nested inside the base class
» Names in the base class are visible in derived classes
» if not hidden by the same name in the derived class

» Use the scope operator :: to access hidden names

» Name lookup happens at compile-time
» static type of a pointer or reference determines which names
are visible (like in Java)
» Virtual functions must have the same parameter types in
derived classes.

Classes and inheritance : Scope 12. Recap. About the project. 14/41



Function overloading and inheritance

ion overloading between levels in a class hierar

struct Base({

virtual void f(int x) {cout << "Base::f(int): " << x << endl;}
33
struct Derived :Base{

void f(double d) {cout << "Derived::f(double): " << d << endl;}

3
void example() {
Base b;
b.f(2); Base::f(int): 2

b.f(2.5); Base::f(int): 2
Derived d;

d.f(2); Derived::f(double): 2
d.f(2.5); Derived::f(double): 2.5

Base& dr = d;
dr.f(2.5); Base::f(int): 2

Classes and inheritance : Scope 12. Recap. About the project.



Function overloading and inheritance

Make functions visible using using

struct Base({

virtual void f(int x) {cout << "Base::f(int): " << x << endl;}
b
struct Derived :Base{

using Base::f;

void f(double d) {cout << "Derived::f(double): " << d << endl;}
i
void example() {
Base b;
b.f(2); Base::f(int): 2

b.f(2.5); Base::f(int): 2

Derived d;
d.f(2); Base::f(int): 2
d.f(2.5); Derived::f(double): 2.5

Classes and inheritance : Scope 12. Recap. About the project.



Constructors

Default constructor

Default constructor

» A constructor that can be called without arguments
» May have parameters with default values

» Automatically defined if no constructor is defined
(in declaration: =default, cannot be called if =delete)

» If not defined, the type is not default constructible

12. Recap. About the project.



Constructors

Copy constructor

» s called when initializing an object

» s not called on assignment

» Can be defined, otherwise a standard copy constructor is
generated (=default, =delete)

» default copy constructor
» Is automatically generated if not defined in the code
» exception: if there are members that cannot be copied

» shallow copy of each member

Classes and inheritance : Scope 12. Recap. About the project. 18/41



Classes

Default copy construction: shallow copy

void f(Vector v);

void test()

{
Vector vec(5);
f(vec); // call by value -> copy
// ... other uses of vec
3
vec: [sz: 5

elemo—4———

v: [sz: b /

elem @

» The parameter v is default copy constructed: the value of each
member variable is copied. l.e., the pointer value is copied.

» When f() returns, the destructor of v is executed:
(delete[] elem;)

» The array pointed to by both copies is deleted. Disaster!

Classes and inheritance : Scope 12. Recap. About the project. 19/41



“Rule of three"

Canonical construction idiom

If a class implements any of these:
© Destructor
© Copy constructor
© Copy assignment operator

it (quite probably) should implement (or =delete) all three.

If one of the automatically generated does not fit,
the other ones probably won't either.

12. Recap. About the project.



“Rule of three five"

Canonical construction idiom, from C++11

If a class implements any of these:
@ Destructor
© Copy constructor
© Copy assignment operator
@ Move constructor
© Move assignment operator

it (quite probably) should implement (or =delete) all five.

12. Recap. About the project.



Constant objects

» const means | promise not to change this"

» Objects (variables) can be declared const
» “| promise not to change the variable”

» References can be declared const
» "l promise not to change the referenced object”
» a const& can refer to a non-const object
> a const& can refer to a temporary object (rvalue expression)
» common for function parameters

» Member functions can be declared const
» “| promise that the function does not change the object”
» A const member function may not call non-const
member functions
» Functions can be overloaded on const

Classes and inheritance : for objects and members 12. Recap. About the project.



Operator overloading

Operator overloading syntax:
return_type operator® (parameters...)

for an operator ® e.g. == or +

For classes, two possibilities:
» as a member function
» f the order of operands is suitable
E.g., ostream& operator<<(ostream&, const T&)
cannot be a member of T
» as a free function

» if the public interface is enough, or
» if the function is declared friend

Classes and inheritance t for objects and members 12. Recap. About the project.



Constructors

Member initialization rules

class Bar {
public:
Bar () =default;
Bar(int v, bool b) :value{v},flag{b} {3}
private:
int value {03};
bool flag {true};
BE

» If a member has both default initializer and a member
initializer in the constructor, the constructor is used.

» Members are initialized in declaration order. (Compiler
warning if member initializers are in different order.)

» Bar() =default; is necessary to make the compiler generate a
default constructor (as another constructor is defined)

Classes and inheritance : for objects and members 12. Recap. About the project.



Constructors

Special cases: zero or one parameter

class KomplextTal {
public:
KomplextTal ():re{@},im{0} {3}
KomplextTal (const KomplextTal& k) :re{k.rel},im{k.im} {3}
KomplextTal (double x):re{x},im{0} {3}
// ...
private:
double re;
double im;
3

default constructor copy constructor converting constructor

Classes and inheritance t for objects and members 12. Recap. About the project.



Constructors

Implicit conversion

struct Foo({
Foo(int i) :x{i} {cout << "Foo(” << i << ")\n";}
Foo(const Foo& f) :x(f.x) {cout << "Copying Foo(" << f.x << ")\n";}
Foo& operator=(const Foo& f) {cout << "Foo = Foo(" << f.x << ")\n";

x=f.x;
return xthis;
¥
int x;
3
void example ()
{
int i=10;
Foo f = 1i; Foo(10) (conversion + optimized away copy/move)
f = 20; Foo(20)
Foo = Foo(20) (would move if operator=(Foo&&) defined)
Foo g = f; Copying Foo(20)

Classes and inheritan for objects and members 12. Recap. About the project.



Conversion operators
Exempel: Counter

Conversion to int

struct Counter {
Counter (int c=0) :cnt{c} {3};
Counter& inc() {++cnt; return xthis;}
Counter inc() const {return Counter(cnt+1);3}
int get() const {return cnt;}
operator int() const {return cnt;}

private:
int cnt{0};

L

Note: operator T().
» no return type in declaration (must obviously be T)
» can be declared explicit

Classes and inheritance t for objects and members 12. Recap. About the project.



rules of thumb, “defaults”

vVvyyy

vy

Rules of thumb

Iteration, range for (or standard algorithms)
return value optimization
call by value or reference?

reference or pointer parameters? (without transfer of
ownership)

default constructor and initialization
resource management: RAIll and rule of three (five)

be careful with type casts. Use named casts

12. Recap. About the project.



use range for

for (const auto& e : collection) {

// or auto e to get a copy
/] ...

3
Use range for for iteration over an entire collection:

» safer and more obvious code

» no risk of accidentally assigning
» the iterator
» the loop variable

» no pointer arithmetic

Works on any type T that has
» member functions begin and end, or
» free functions begin(T) and end(T)

Rules of thumb

12. Recap. About the project. 20/41



return value optimization (RVO)

The compiler may optimize away copies of an object when
returning a value from a function.

» return by value often efficient, also for larger objects

» RVO allowed even if the copy constructor or the destructor
has side effects

» avoid such side effects to make code portable

Rules of thumb 12. Recap. About the project.



Rules of thumb for function parameters

parameters and return values, “reasonable defaults”

» return by value if not very expensive to copy
» pass by reference if not very cheap to copy
(Don't force the compiler to make copies.)

» input parameters: const T&
» in/out or output parameters: T&

Rules of thumb 12. Recap. About the project.



parameters: reference or pointer?

» required parameter: pass reference

» optional parameter: pass pointer (can be nullptr)

void f(widget& w)

{
use(w); //required parameter
3
void g(widget* w)
{
if(w) use(w); //optional parameter
}

Rules of thumb 12. Recap. About the project. 32/41



Default constructor and initialization

» (automatically generated) default constructor (=default) does
not always initialize members
» global variables are initialized to 0 (or corresponding)
» Jocal variables are not initialized

struct A { int x; };

int a; // a is initialized to @
A b; // b.x is initialized to 0

int main() {
int c; // ¢ is not initialized
int d = int(); // d is initialized to ©

A e; // e.x is not initialized
Af = AQ; // f.x is initialized to @
A g{}; // g.x is initialized to @

» always initialize variables (with value or {3})
» always implement default constructor (eller =delete)

Rules of thumb 12. Recap. About the project. 33/41



RAII: Resource aquisition is initialization

vvyyy

v

| 4

Rules of thumb

Allocate resources for an object in the constructor

Release resources in the destructor

Simpler resource management, no naked new and delete
Exception safety: destructors are run when an object goes out
of scope

Resource-handle
» The object itself is small
» Pointer to larger data on the heap
» Example, our Vector class: pointer + size
» Utilize move semantics
unique_ptr is a handle to a specific object. Use
if you need an owning pointer, e.g., for polymorph types.

Prefer specific resource handles to smart pointers.

12. Recap. About the project.



Smart pointers: unique_ptr

Example

struct Foo {
int i;
Foo(int ii=0) :i{ii} { std::cout << "Foo(" << i <<")\n"; 3}
~Foo() { std::cout << "~Foo("<<i<<")\n"; }

3
void test_move_unique_ptr ()
{
std::unique_ptr<Foo> pl1(new Foo(1));
{
std::unique_ptr<Foo> p2(new Foo(2));
std::unique_ptr<Foo> p3(new Foo(3));
// pl = p2; // error! cannot copy unique_ptr
std::cout << "Assigning pointer\n"; Foo (1)
pl = std::move(p2); Foo(2)
std::cout << "Leaving inner block...\n"; Foo (3)
} Assigning pointer
std::cout << "Leaving program...\n"; ~Foo (1)
3 Leaving inner block...
5 . ~Foo (3)
Foo(2) survives the inner block Leaving program. ..
as p1 takes over ownership. ~Foo(2)

Rules of thumb 12. Recap. About the project. 35/41



Advice

Resouce management

» Resouce management: RAIll and rule of three (five)

» Avoid “naked’ new and delete
» Use constructors to establish invariants
» throw exception on failure

for polymorph classes

» Copying often leads to disaster.
> =delete

» Copy/Move-constructor
» Copy/Move-assignment

» If copying is needed, implement a virtual clone() function

12. Recap. About the project.



classes

» only create member functions for things that require access
to the representation

» as default, make constructors with one parameter explicit

» only make functions virtual if you want polymorphism

polymorph classes

» access through reference or pointer
» A base class must have a virtual destructor.

» use override for readability and to get help from the compiler
in finding mistakes

» use dynamic_cast to navigate a class hierarchy

Advice 12. Recap. About the project. 37/41



Advice

safer code

» initialize all variables
» use exceptions instead of returning error codes
» use named casts (if you must cast)

» only use union as an implementation technique inside a class
» avoid pointer arithmetics, except

» for trivial array traversal (e.g., ++p)
» for getting iterators into built-in arrays (e.g., a+4)
» in very specialized code (e.g., memory management)

Advice 12. Recap. About the project. 38/41



Advice

The standard library

» use the standard library when possible

» standard containers
» standard algorithms

» prefer std: :string to C-style strings (char[])
» prefer containers (e.g., std::vector<T>) to built-in arrays (T[])
» prefer standard algorithms to hand-written loops.

Often both
» safer and
» more efficient

than custom code

12. Recap. About the project.



Advice

The standard containers

>

vVvyyvyyvyy

use std: :vector by default

use std: :forward_list for sequences that are usually empty
be careful with iterator invalidation

use at() instead of [] to get bounds checking

use range for for simple traversal

initialization: use () for constructor aruments
and {3 for elements

12. Recap. About the project.



Write code that is correct and easily understandable

Good luck on the exam

Questions?

12. Recap. About the project.



	The project
	Classes and inheritance
	Scope
	const for objects and members

	Rules of thumb
	Advice

