
EDAF50 – C++ Programming

5. Resource management

Sven Gestegård Robertz
Computer Science, LTH

2020

Outline

1 Resource management
Memory allocation
Stack allocation
Heap allocation: new and delete

2 Smart pointers

3 Classes, resource management
copy assignment

4 type casts

5. Resource management 2/1

Resource management

A resource is
I something that must be allocated
I and later released

Example:
I memory
I file handles
I sockets
I locks
I . . .

Resource management 5. Resource management 3/43

Resource handles

Organize resource management with classes that own resources
I allocates resources in the constructor
I releases resources in the destructor
I RAII User-defined types that behave like built-in types

Resource management 5. Resource management 4/43

Memory Allocation

Two kinds of memory allocation:
I on the stack - automatic variables. Are destroyed when the

program exits the block where they are declared.
I on the heap - dynamically allocated objects. Live until

explicitly destroyed.

Resource management : Memory allocation 5. Resource management 5/43

Memory allocation
stack allocation

unsigned fac(unsigned n)
{

if(n == 0)
return 1;

else return n * fac(n-1);
}

int main()
{

unsigned f = fac (2);
cout << f;
return 0;

}

main() ...

unsigned f:
unsigned tmp0:

fac() ...

unsigned n: 2
unsigned tmp0:

fac() ...

unsigned n: 1
unsigned tmp0:

fac() ...

unsigned n: 0

I local variables are allocated on the stack in an activation record
I objects are destroyed when exiting their scope

Resource management : Stack allocation 5. Resource management 6/43

Memory allocation
Dynamic memory, allocation “on the heap”, or “free store”

Dynamically allocated memory
I is allocated on the heap, with new (like in Java)

I does not belong to a scope
I unnamed object: access through pointer or reference
I new returns a pointer

I remains in memory until deallocated with delete (difference
from Java)

I Objects allocated in dynamic memory can outlive the scope
they were allocated in

Resource management : Heap allocation: new and delete 5. Resource management 7/43

Memory Allocation
Dynamic memory, allocation “on the heap”, or “free store”

Space for dynamic objects is allocated with new

double* pd = new double; // allocate a double
*pd = 3.141592654; // assign a value
float* px; // uninitialized pointers
float* py; // (avoid when possible)
px = new float [20]; // allocate an array
py = new float [20] {1.1, 2.2, 3.3}; // allocate and initialize

Memory is released with delete

delete pd;
delete [] px; // [] is required for an array
delete [] py;

Resource management : Heap allocation: new and delete 5. Resource management 8/43

Memory Allocation
Warning! be careful with parentheses

Allocating an array: char[80]

char* c = new char [80];

Almost the same. . .

char* c = new char (80);

Almost the same. . .

char* c = new char {80};

The latter two allocate one byte
and initializes it with the value 80 (’P’).

char* c = new char(’P’);

Resource management : Heap allocation: new and delete 5. Resource management 9/43

Memory Allocation

Mistake: not allocating memory

char name [80];

*name = ’Z’; // OK , name allocated on the stack. name [0]=’Z’

char *p; // Uninitialized pointer
// No compiler warning

*p = ’Z’; // Error! ’Z’ written to an undefined memory address

cin.getline(p, 80); //(almost) certain error during execution
//(" Segmentation fault ") or memory corruption

modern C++: auto is safer

auto q = new char [80]; // auto --> cannot be uninitialized

Resource management : Heap allocation: new and delete 5. Resource management 10/43

Memory Allocation

Example: failed read_line function

char* read_line () {
char temp [80];
cin.getline(temp , 80);
return temp;

}

void exempel () {
cout << "Enter your name: ";
char* name = read_line ();

cout << "Enter your town: ";
char* town = read_line ();

cout << "Hello " << name << " from " << town << endl;
}

"Dangling pointer": pointer to object that no longer exists

Resource management : Heap allocation: new and delete 5. Resource management 11/43

Memory Allocation

Partially corrected version of read_line

char* read_line () {
char temp [80];
cin.getline(temp , 80);
size_t len=strnlen(temp ,80);
char *res = new char[len +1];
strncpy(res , temp , len +1);
return res; // dynamically allocated: survives

}
void exempel () {

cout << "Enter your name";
char* name = read_line ();
cout << "Enter your town";
char* town = read_line ();
cout << "Hello " << name << " from " << town << endl;

}

Works , but memory leak !

Resource management : Heap allocation: new and delete 5. Resource management 12/43

Memory Allocation

Further corrected version of read_line

char* read_line () {
char temp [80];
cin.getline(temp , 80);
size_t len=strnlen(temp ,80);
char *res = new char[len +1];
strncpy(res , temp , len +1);
return res; Dynamically allocated: survives

}
void exempel () {

cout << "Enter your name: ";
char* name = read_line (); NB! calling function takes ownership
cout << "Enter your town ";
char* town = read_line ();
cout << "Hello " << name << " from " << town << endl;

delete [] name; Deallocate strings
delete [] town;

}

Resource management : Heap allocation: new and delete 5. Resource management 13/43

Use std::string

Simpler and safer with std::string

#include <iostream >
#include <string >

using std::cin; void example ()
using std::cout; {
using std:: string; cout << "Name:";

string name = read_line ();
string read_line () cout << "Town:";
{ string town = read_line ();

string res;
getline(cin , res); cout << "Hello , " << name <<
return res; " from " << town << endl;

} }

I std::string is a resource handle
I RAII
I Dynamic memory is rarely needed (in user code)

Resource management : Heap allocation: new and delete 5. Resource management 14/43

Memory Allocation
ownership of resources

For dynamically allocated objects, ownership is important
I An object or a function can own a resource
I The owner is responsible for deallocating the resource
I If you have a pointer, you must know who owns

the object it points to
I Ownership can be transferred by a function call

I but is often not
I be clear about owning semantics

Every time you write new you are responsible for
that someone will do a delete

when the object is no longer in use.

Resource management : Heap allocation: new and delete 5. Resource management 15/43

Classes
RAII

I RAII Resource Acquisition Is Initialization
I An object is initialized by a constructor

I Allocates the resources needed (“resource handle”)
I When an object is destroyed, its destructor is executed

I Free the resources owned by the object
I Example: Vector: delete the array elem points to

class Vector{
private:

double elem*; // pointer to an array
int sz; // the size of the array

public:
Vector(int s) :elem{new double[s]}, sz{s} {} // ctor
~Vector () {delete [] elem;} // dtor , delete the array

};

Manual memory management
I Objects allocated with new must be dellocated with delete
I Objects allocated with new[] must be dellocated with delete[]
I otherwise the program will leak memory

Resource management : Heap allocation: new and delete 5. Resource management 16/43

Classes
Resource management, representation

struct Vector {
Vector(int s) :sz{s},elem{new double(sz)} {}
~Vector () {delete [] elem;}
double& operator [](int i) {return elem[i];}
int sz;
double* elem;

};

void test()
{

Vector vec (5);
vec [2] = 7;

}

elem
sz: 5Vector vec:

7

I Resource handle – Vector owns its double[]

I the object: pointer + size, the array is on the heap

Resource management : Heap allocation: new and delete 5. Resource management 17/43

Dynamic memory, example
Error handling

void f(int i, int j)
{

X* p=new X; // allocate new X
//...
if(i<99) throw E{}; // may throw an exception
if(j<77) return; // may return "early"
//
p->do_something (); // may throw
//
delete p;

}

Will leak memory if delete p is not called

Smart pointers 5. Resource management 18/43

Memory allocation
C++: Smart pointers

The standard library <memory> has two “smart” pointer types
(C++11):

I std::unique_ptr<T> – a single owner
I std::shared_ptr<T> – shared ownership

that are resource handles:
I their destructor deallocates the object they point to.

I Other examples of resource handles:
I std::vector<T>
I std::string

shared_ptr contains a reference counter: when the last shared_ptr
to an object is destroyed, the object is destroyed. Cf. garbage
collection in Java.

Smart pointers 5. Resource management 19/43

Smart pointer, exempel

void f(int i, int j)
{

unique_ptr <X> p{new X};// allocate new X and give to unique_ptr
//...
if(i<99) throw E{}; // may throw an exception
if(j<77) return; // may return "early"
//
p->do_something (); // may throw

}

The destructor of p is always executed: no leak

Smart pointers 5. Resource management 20/43

Smart pointer, example
Dynamic memory is rarely needed

void f(int i, int j)
{

X x{};

if(i<99) throw E{}; // may throw an exception
if(j<77) return; // may return "early"

x.do_something (); // may throw
}

Use local variables when possible

Smart pointers 5. Resource management 21/43

read_line with unique_ptr

unique_ptr <char[]> read_line ()
{

char temp [80];
cin.getline(temp , 80);
int size = strlen(temp)+1;
char* res = new char[size];
strncpy(res , temp , size);
return unique_ptr <char[]>{res};

}

void exempel ()
{

cout << "Enter name: ";
unique_ptr <char[]> name = read_line ();
cout << "Enter town: ";
unique_ptr <char[]> town = read_line ();
cout << "Hello " << name.get() << " from " << town.get() << endl;

}

I To get a char* we call unique_ptr<char[]>::get().
I Needed here to get right overload for operator<<

Smart pointers 5. Resource management 22/43

read_line with unique_ptr

with no explicit new and delete (c++14)

unique_ptr <char[]> read_line ()
{

char temp [80];
cin.getline(temp , 80);
int size = strlen(temp)+1;
auto res = std:: make_unique <char[]> (size);
strncpy(res.get(), temp , size);
return res;

}

Smart pointers 5. Resource management 23/43

Smart pointers
Vector from previous examples

class Vector{
public:

Vector(int s) :elem{new double[s]}, sz{s} {}
double& operator [](int i) {return elem[i];}
int size() {return sz;}

private:
std:: unique_ptr <double[]> elem;
int sz;

};

I All member variables are of RAII types
I The default destructor works
I The object cannot be copied (no default functions generated)

I A unique_ptr cannot be copied – it is unique

Smart pointers 5. Resource management 24/43

Memory allocation
C++: Smart pointers

Rules of thumb for pointer parameters to functions:

if ownership is not transferred
I Use “raw” pointers
I Use std::unique_ptr<T> const &

if ownership is transferred
.
I Use by-value std::unique_pointer<T>

(then std::move() must be used)

I This is an orientation about smart pointers.
I “Raw” pointers are common; you must master them.

Smart pointers 5. Resource management 25/43

C++: Smart pointers
Coarse summary

“Raw” (“naked”) pointers:
I The programmer takes all responsibility
I Risk of memory leaks
I Risk of dangling pointers

Smart pointers:
I No (less) risk of memory leaks
I (minor) Risk of dangling pointers if used incorrectly

(e.g., more than one unique_ptr to the same object)

Smart pointers 5. Resource management 26/43

Common pitfall
Default copying

For classes containing owning pointers,
the default copying does not work.

Example: Vector

I call by value
I copying pointer values

(both objects point to the same resource)
I the destructor is executed on return

I dangling pointer
I double delete

Classes, resource management 5. Resource management 27/43

Classes
Example: Copying the Vector class

class Vector{
public:

Vector(int s) :elem{new double[s]}, sz{s} {}
~Vector () {delete [] elem;}
double& operator [](int i) {return elem[i];}
int size() {return sz;}

private:
double* elem;
int sz;

};

elem
sz: 5Vector vec:

No copy constructor defined ⇒ default generated.

Classes, resource management 5. Resource management 28/43

Classes
Default copy construction: shallow copy

void f(Vector v);

void test()
{

Vector vec (5);
f(vec); // call by value -> copy
// ... other uses of vec

}

elem
sz: 5vec:

sz: 5
elem

v:

I The parameter v is default copy constructed: the value of each
member variable is copied

I When f() returns, the destructor of v is executed:
(delete[] elem;)

I The array pointed to by both copies is deleted. Disaster!
Classes, resource management 5. Resource management 29/43

X

Copying objects
the copy assignment operator: operator=

The copy assignment operator is implicitly defined
I with the type T& T::operator=(const T&)

I if no operator= is declared for the type
I if all member variables can be copied

I i.e., define a copy-assignment operator

I If all members are of built-in (and RAII) types the default
variant works (same problems as with copy ctor).

elem
sz: 5vec:

sz: 5
elem

v:

I For owning pointers, the copy member functions must be
implemented

Classes, resource management : copy assignment 5. Resource management 30/43

“Rule of three”
Canonical construction idiom

IF a class owns a resource, it shall implement a
1 Destructor
2 Copy constructor
3 Copy assignment operator

in order not to leak memory. E.g. the class Vector

Rule:
If you define any of these, you should define all.

Classes, resource management : copy assignment 5. Resource management 31/43

Copy control
Example: Vector

Copy constructor

Vector :: Vector(const Vector& v) :elem{new double[v.sz]}, sz{v.sz}
{

for(int i=0; i < sz; ++i) {
elem[i] = v[i];

}
}

Or, use the standard library:
std::copy(v.elem , v.elem+v.sz , elem);

Classes, resource management : copy assignment 5. Resource management 32/43

Copy control
Example: Vector

Copy assignment
Vector& Vector :: operator=(const Vector& v) {

if (this != &v) {
auto tmp = new double[v.sz];
for (int i=0; i<v.sz; i++)

tmp[i] = v.elem[i];
sz = v.sz;
delete [] elem;
elem = tmp;

}
return *this;

}

1 check “self assignment”
2 allocate new resources
3 copy values
4 free old resources

Only delete if allocation succeeded.

Classes, resource management : copy assignment 5. Resource management 33/43

Type casts
Implicit conversions

Automatic conversions
I Expressions of the type x� y, for some binary operator �

E.g.: double + int ==> double

float + long + char ==> float

I Assignments and initialization: The value of the
right-hand-side is converted to the type of the left-hand-side

I Conversion of an argument to the type of the (formal)
parameter

I Expresions in if statements, etc. ⇒ bool

I built-in array ⇒ pointer (array decay)
I 0 ⇒ nullptr (empty pointer in C++11, previously the

constant NULL was defined)

type casts 5. Resource management 34/43

type casts
Named casts (C++-11)

Example

char c; // 1 byte
int *p = (int*) &c; // pointer to int: 4 bytes

*p = 5; // undefined behaviour , stack corruption

int *q = static_cast <int*> (&c); // compiler error

I static_cast<new_type> (expr)

- convert between compatible types (does not do range check)
- “the inverse of a standard implicit conversion sequence”

I reinterpret_cast<new_type> (expr)

- no safety net, same as C-style cast
I const_cast<new_type> (expr) - remove const
I dynamic_cast<new_type> (expr) - use for pointers to objects in class

hierarchies. Uses run-time type info, like instanceof in Java.
type casts 5. Resource management 35/43

Type casting
C style casts

Syntax in C and in C++, like in Java
(type) expression , e.g. (float) 10

I Greater risk of mistakes - use named casts
I makes the code clearer, e.g., const_cast can only change

const
I easy to search for: casts are among the first to look for when

debugging
I Warning in GCC: -Wold-style-casts
I Common in older code

Alternative syntax in C++

type(expression)

type must be a single word,
int *(...) eller i.e., unsigned long(...) is not OK.

type casts 5. Resource management 36/43

Type casts
Warning example

struct Point{
int x;
int y;

};

struct Point3d {
int x;
int y;
int z;

};

y:
x:

x:
y:
z:

Point:

Point3d:

type casts 5. Resource management 37/43

Data types and variables

I some concepts:
I a type defines the set of possible values and operations

(for an object)
I an object is a place in memory that holds a value
I a value is a set of bits interpreted according to a type.

A typecast changes the value of a particurlar memory location by
changing how it should be interpreted.

type casts 5. Resource management 38/43

Type casts
Warning example

struct Point{
int x;
int y;

};

Point ps[3];

struct Point3d{
int x;
int y;
int z;

};
Point3d* foo = (Point3d *) ps;

y:
x:

x:
y:
x:
y:

x z:
y x:
x y:
y z:

ps:
ps[0]

ps[1]

ps[2]

foo[0]

foo[1]

With named casts, this requires a reinterpret_cast<Point3d*>

With static_cast<Point3d*> the compiler gives the error
invalid static_cast from type ’Point[3] to type ’Point3d*’

type casts 5. Resource management 39/43

special case: void pointer

A void* can point to an object of any type
In C a void* is implicitly converted to/from any pointer

type.
In C++ a T* is implicitly converted to void*. The other

direction requires an explicit type cast.

type casts 5. Resource management 40/43

Next lecture: Algorithms

References to sections in Lippman
Function templates 16.1.1
Algorithms 10 – 10.3.1, 10.5
Iterators 10.4
Function objects 14.8
Random numbers 17.4.1

Summary 5. Resource management 42/43

Suggested reading

References to sections in Lippman
Dynamic memory and smart pointers 12.1
Dynamically allocated arrays 12.2.1
Classes, resource management 13.1, 13.2
Type casts 4.11

Summary 5. Resource management 43/43

	Resource management
	Memory allocation
	Stack allocation
	Heap allocation: new and delete

	Smart pointers
	Classes, resource management
	copy assignment

	type casts
	Summary

