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User-defined types

Categories

» Concrete classes
» Abstract classes

» Class hierarchies
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User-defined types

Concrete classes

A concrete type
» “behaves just like a built-in type”

> its representation is part of its definition,
That allows us to
> refer to objects directly (not just using pointers or references)
» initialize objects directly and completely (with a constructor)
» place objects
» on the stack (i.e., local variables)
» in other objects (i.e., member variables)
» in statically allocated memory (e.g., global variables)
» copy objects
» assignment of a variable
» copy-constructing an object
» value parameter of a function
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Constructors

Default constructor

» A constructor that can be called without arguments
» May have parameters with default values

» Automatically defined if no constructor is defined
(in declaration: =default, cannot be called if =delete)

» If not defined, the type is not default constructible

Default constructor with member initializer list.

class Bar {
public:
Bar (int v=100, bool b=false) :value{v},flag{b} {3}
private:
int value;
bool flag;
33
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Classes : Constructors 4. Classes

Constructors
Default constructor

Default arguments

» If a constructor can be called without arguments, it is a
default constructor.

class KomplextTal {

public:
KomplextTal (float x=1):re(x),im(@) {3}
/7. ..

};

gives the same default constructor as the explicit
KomplextTal ():re{1},im{0} {3}
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Constructors

Two ways of initializing members

With member initializer list in constructor

class Bar {
public:
Bar(int v, bool b) :value{v},flag{b} {3}
private:
int value;
bool flag;
BE

Members can have a default initializer, in C++11:

class Foo {

public:
Foo() =default;

private:
int value {03};
bool flag {false};

3

» prefer default initializer to overloaded constructors or

default arguments
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Constructors

Initialization and assignment

It is (often) possible to write like in Java, but
> it is less efficient

» the members must be assignable

Java-style: assignment in constructor

class Foo {
public:
Foo(const Bar& v) {
value = v; NB! assignment, not initialization
3
private:
Bar value; is default constructed before the body of the constructor

Bs

An object is initialized before the body of the constructor is run
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Constructors

Member initialization rules

class Bar {
public:
Bar () =default;
Bar(int v, bool b) :value{v},flag{b} {3}
private:
int value {03};
bool flag {true};
BE

» If a member has both default initializer and a member
initializer in the constructor, the constructor is used.

» Members are initialized in declaration order. (Compiler
warning if member initializers are in different order.)

» Bar() =default; is necessary to make the compiler generate a
default constructor (as another constructor is defined)
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Constructors

Prefer default member initializers

Use default member initializers if class member variables have
default values.

Default values through overloaded ctors: risk of inconsistency

class Simple {
public:
Simple() :a(1), b(2), c(3) {3
Simple(int aa, int bb, int cc=-1) :a(aa), b(bb), c(cc) {3}
Simple(int aa) :a(aa), b(@), c(0) {3}
private:
int a;
int b;
int c;

b8
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Constructors

Prefer default member initializers

Use default member initializers if class member variables have
default values.

With default initializers: consistent

class Simple {
public:
Simple() =default;
Simple(int aa, int bb, int cc) :a(aa), b(bb), c(cc) {3}
Simple(int aa) : a(aa) {}
private:
int a {-13};
int b {-13};
int ¢ {-13};
b5
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Constructors

Default constructor and parentheses

The default constructor cannot be called with empty parentheses.

Bar b1;

Bar b2{};

Bar be(); //
Bar b3(25); //
Bar* bpl = new

Bar* bp2 = new
Barx bp3 = new

wrong! "most vexing parse”
0K

Bar;
Bar{};
Bar (); //0K

NB! The compiler error will be at the use of be e.g.,

be.fun();

request for member ’fun’ in ’be’, which is of non-class type ’'Bar()’

Classes : Constructors
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Default constructor and initialization

» automatically generated default constructor (=default)
does not always initialize members
» global variables are initialized to 0 (or corresponding)
» Jlocal variables are not initialized (different meaning from Java)
struct A { int x; 3};

int i; // i is initialized to @ (global variable)
A a; // a.x is initialized to © (global variable)

int main() {

int j; // j is uninitialized

int k = int(); // k is initialized to @
int 1{}; // 1 is initialized to @

A b; // b.x is uninitialized
Ac = AQ0; // c.x is initialized to @
A d{}; // d.x is initialized to @

}
» always initialize variables
» always implement default constructor (or =delete)
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Constructors

Delegating constructors (C++11)

In C+411 a constructor can call another (like this(...) in Java).
struct Test{

int val;

Test(int v) :val{v} {}

Test(int v, int scale) :Test(vxscale) {}; // delegation

Test(int a, int b, int c) :Test(a+b+c) {3}; // delegation
3

A delegating constructor call shall be the only member-initializer.
( A constructor initializes an object completely.)
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The pointer this

Self reference

In a member function, there is an implicit pointer this, pointing to
the object the function was called on. (cf. this in Java).

» typical use: return xthis for operations returning a reference
to the object itself




Constant objects

» const means "l promise not to change this"

» Objects (variables) can be declared const
» "l promise not to change the variable”

» References can be declared const

» "l promise not to change the referenced object”
» a const& can refer to a non-const object
» common for function parameters

» Member functions can be declared const
» | promise that the function does not change the state of the
object”
» technically: implicit declaration const Tx const this;
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Constant objects

Example

const references and const functions

class Point{
public:
Point(int xi, int yi) :x{xi},y{yi}{}
int get_x() const {return x;}
int get_y() const {return y;}
void set_x(int xi) {x = xi;}
void set_y(int yi) {y = yi;}

private:
int x;
int y;
B8
void example(Point& p, const Point& o) {
p.set_y(10);
cout << "p: "<< p.get_x() << "," << p.get_y() << endl;

o.set_y(10);
cout << "o: "<< o.get_x() << "," << o.get_y() << endl;

passing ’const Point’ as ’this’ argument discards qualifiers

for objects and members 4. Classes



Constant objects

Example

Note const in the declaration (and definition!) of the member
function operator[](int) const: (“const is part of the name”)

class Vector {

public:
// ...
double operator[](int i) const; // function declaration
//. ..
private:
doublex* elem;
/7. ..
3
double Vector::operator[](int i) const // function definition
{

return elem[i];

3
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Constant objects

Example: const overloading

The functions operator[](int) and operator[](int) const
are different functions.

Example

class Vector {

double& operator[](int i) {return elem[i];}

double operator[](int i) const {return elem[il];}
private:

doublex elem;

// ...

Bs

» If operator[] is called on a

» non-const object, a reference is returned
» const object, a copy is returned

» The assignment v[2] = 10; only works on a non-const v.

Classes : for objects and members 4. Classes



User-defined types

Concrete classes

A concrete type
» “behaves just like a built-in type”

» the representation is part if the definition,
That allows us to
> refer to objects directly (not just using pointers or references)
» initialize objects directly and completely (with a constructor)
» place objects
» on the stack (i.e., in local variables)
» in other objects
» in statically allocated memory (e.g., global variables)
» copy objects
» assignment of a variable
» copy-constructing an object
» value parameter of a function

Classes : Copying objects 4. Classes 20/48



Constructors

Copy Constructor

» s called when initializing an object
» s not called on assignment

» Can be defined, otherwise a standard copy constructor is
generated (=default, =delete)

void function(Bar); // by-value parameter

Bar b1(10, false?};

Bar b2{b1}; // the copy constructor is called
Bar b3(b2); // the copy constructor is called
Bar b4 = b2; // the copy constructor is called
function(b2); // the copy constructor is called

Classes : Copying objects 4. Classes 21/48



Copy Constructors

default

» Declaration:

class C {
public:
C(const C&) =default;
};
» default copy constructor
» Is automatically generated if not defined in the code
» exception: if there are members that cannot be copied

» shallow copy of each member

» Works for members variables with built-in types,

» or classes that behave like built-in types (RAll-types)

» Does not work for classes which manage resources “manually”
(More on this later)

Classes : Copying objects 4. Classes 22/48



Classes

Example: Copying the Vector class

class Vector{

public:
Vector(int s) :elem{new double[s]}, sz{s} {3}
~Vector () {delete[] elem;}
double& operator[J(int i) {return elem[i];}
int size() {return sz;}

private:
doublex* elem;
int sz;

3

Vector vec: |sz: b

elemoé————

No copy constructor defined = default generated.
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Classes

Default copy construction: shallow copy

void f(Vector v);

void test()

{
Vector vec(5);
f(vec); // call by value -> copy
// ... other uses of vec
3
vec: [sz: 5

elemo—4———

v: [sz: b /

elem @

» The parameter v is default copy constructed: the value of each
member variable is copied

» When f() returns, the destructor of v is executed:
(delete[] elem;)

» The array pointed to by both copies is deleted. Disaster!
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Constructors

Special cases: zero or one parameter

Copy Constructor

» Has a const & as parameter: Bar::Bar(const Bar& b);

Converting constructor

» A constructor with one parameter defines
an implicit type conversion from the type of the parameter

class KomplextTal {
public:
KomplextTal ():re{@},im{0} {3}
KomplextTal (const KomplextTal& k) :re{k.re},im{k.im} {3}
KomplextTal (double x):re{x},im{0} {3}
/7. ..
private:
double re;
double im;
3

default constructor copy constructor  converting constructor
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Converting constructor

Warning - implicit conversion

class Vector{
public:
Vector (int s); // create Vector with size s

int size() const; // return size of Vector

3
void example_vector ()
{
Vector v = 7;
std::cout << "v.size(): " << v.size() << std::endl;
}

v.size(): 7

In std: :vector the corresponding constructor is declared

explicit vector( size_type count );
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Converting constructor and explicit

explicit specifies that a constructor does not allow implicit type

conversion.
struct A struct B
{ {
A(int); explicit B(int);
VA //
3 3
A al(2); // 0K B b1(2); // OK
A a2 = 1; // 0K B b2 = 1; // Error! [2]
A a3 = (A)1; // OK B b3 = (B)1; // OK: explicit cast
a3 = 17; // OK [1] b3 = 17; // Error! [3]

[1]: construct an A(17), and then copy

[2]: conversion from ’int’ to non-scalar type ’'B’ requested
[31: no match for ’operator=’ (operand types are ’B’ and ’int’)
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Copying objects

Difference between construction and assignment

void function(Bar); //

Bar b1(10, false};

Bar b2{b1}; //
Bar b3(b2); //
Bar b4 = b2; //
function(b2); //
b4 = b3; //

by-value

the
the
the
the

the

copy
copy
copy
copy

copy

parameter

constructor
constructor
constructor

constructor

constructor

copy assignment — not construction
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called
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called

not called
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Copying objects

the copy assignment operator: operator=

The copy assignment operator is implicitly defined
» with the type T& T::operator=(const T&)
» if no operator=is declared for the type

» if all member variables can be copied
> i.e., define a copy-assignment operator

» If all members are of built-in (and RAII) types the default
variant works (same problems as with copy ctor).

vec: [sz: b
elemo—+———

v: |sz: b /

elem @

» More on copy control when we discuss resource management
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Preventing copying

» Declaration:

class C {
public:

C(const C&) =delete;

C& operator=(const C&) =delete;
3

» A class without copy constructor and copy assignment
operator cannot be copied.

» C++-98: declare private and don't define
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Functions or classes with access to all members in a class without
being members themselves

Friend declaration in the class KomplextTal

class KomplextTal{

/7. ..
private:

int re;

int im;

friend ostream& operator<<(ostream&, const KomplextTal&);
3

Definition outside the class KomplextTal

ostream& operator<<(ostream& o, const KomplextTal& c) {
return o << c.re << "+" c.im << "i";

3

The free function operator<<(ostream&, const KomplextTal&) can
access private members in KomplextTal.
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friend

Functions or classes with full access to all members in a class
without being members themselves

VVvyVvYyYVvy

Classes : friend

Free functions,

member functions of other classes, or
entire classes can be friends.

cf. package visibility in Java

A friend declaration is not part of the class interface, and can
be placed anywhere in the class definition.

4. Classes
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Operator overloading

Most operators can be overloaded, except

sizeof . L 88 ?:

E.g., these operators can be overloaded

O 0

...and the pointer and memory related

*x => =>%
&
new delete new[] delete[]
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Classes : Operator overloading 4. Classes

Operator overloading

Operator overloading syntax:

return_type operator® (parameters...)

for an operator ® e.g. == or +

For classes, two possibilities:
» as a member function

» for binary operators, if the order of operands is suitable

» a binary operator takes one argument
» xthis is the left operand,
» the function argument is the right operand

» as a free function

» if the public interface is enough, or
» if the function is declared friend
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Operator overloading

as member function and as free function

Example: declaration as member functions

class Komplex {

public:
Komplex (float r, float i) : re(r), im(i) {3}
Komplex operator+(const Komplex& rhs) const;
Komplex operator*(const Komplex& rhs) const;
//

private:
float re, im;

55

Example: declaration of operator+ as friend

Declaration inside the class definition of Komplex:

friend Komplex operator+(const Komplex& 1, const Komplex& r);

Note the number of parameters
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Operator overloading

Defining operator+ in two ways:
» As member function (one parameter)

Komplex Komplex::operator+(const Komplex& rhs)const{
return Komplex(re + rhs.re, im + rhs.im);

3

» As a free function (two parameters)

Komplex operator+(const Komplex& lhs, const Komplex& rhs){
return Komplex(lhs.re + rhs.re, lhs.im + rhs.im);

3

NB! the friend declaration is only in the class definition
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Operator overloading

Defining operator+ in two ways:
» As member function

Komplex Komplex::operator+( Komplex& rhs)
return Komplex(re + rhs.re, Yu + rhs.im);

3

the right operand
cannot be changed

the Tleft operand
cannot be changed

» As a free function

Komplex operator+ 1
return Komplex

omplex& lhs, Komplex& rhs){
s.re + rhs.re, lhs.im + rhs.im);

}

NB! the friend declaration is only in the class definition
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Operator overloading
Another implementation of +, using +=

Class definition

class Komplex {
public:
Komplex& operator+=(const Komplex& z) {
re += z.re;
im += z.im;
return xthis;
3
//
BE

Free function, does not need to be friend

Komplex operator+(Komplex a, const Komplex& b) {
return at+=b;

}

NB! call by value: we want to return a copy.
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Operator overloading
Example: inline friend operator<<

The definition (in the class definition)

#include <ostream>
using std::ostream;

class Komplex{
friend ostream& operator<<(ostream& o, const Komplex& v) {
0 << v.re << '+’ << v.im << ’i’;
return o;

// ...
bs

» inline friend definition: defines a free function in the same
namespace as the class

» operator<< cannot be a member function (due to the order of
operands it would have to be a member of std::ostream)
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Conversion operators
Exempel: Counter

Conversion to int

struct Counter {
Counter (int c=0) :cnt{c} {3};
Counter& inc() {++cnt; return xthis;}
Counter inc() const {return Counter(cnt+1);3}
int get() const {return cnt;}
operator int() const {return cnt;}

private:
int cnt{0};

L

Note: operator T().
» no return type in declaration (must obviously be T)
» can be declared explicit
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Static members

static members: shared by all objects of the type (like Java)
» declared in the class definition

» defined outside class definition (if not const)

» can be public or private (or protected)




Function calls and results

Returning objects by value

» A function cannot return references to local variables
» the object is destroyed at return — dangling reference

» How (in)efficient is it to return objects by value (a copy)?




return value optimization (RVO)

The compiler may optimize away copies of objects on return from
functions

» return by value often efficient, also for larger objects

» RVO allowed even if the copy-constructor or destructor
has side effects

» avoid such side effects to make code portable




Rules of thumb for function parameters

» Return by value more often

» Do not over-use call-by-value

“reasonable defaults”

[ | cheap to copy | moderately cheap to copy | expensive to copy |
In fX) | f(const X&)

In/Out FOX&)
Out X fO | f (X&)

For results, if the cost of copying is

» small, or moderate (< 1k, contiguous): return by value
(modern copilers do RVO: return value optimization)

» large : call by reference as out parameter
» or maybe allocate with new and return pointer
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Call by reference or by value?

Rules of thumb

For passing an object to a function when
» you may want to change the value of the object
» reference: void f(T&); or
» pointer: void f(T*);
» you will not change it, it is /arge (or impossible to copy)
» constant reference: void f(const T&);

» otherwise, call by value
» void f(T);




Call by reference or by value?

Rules of thumb

» How big is “large”?
» more than a few words

» When to use out parameters?
» prefer code that is obvious

Example: two functions: Use:
void incri1(int& x) int v = 0;
{
++X;
} incri(v);

int incr2(int x)
{ v = incr2(v);

return x + 1; L
} Here it is much clearer

that v = incr2(v) changes v

» For multiple output values, consider returning a struct,
a std::pair or a std: :tuple
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reference or pointer?

» required parameter: pass reference

» optional parameter: pass pointer (can be nullptr)

void f(widget& w)

{
use(w); //required parameter
3
void g(widget* w)
{
if(w) use(w); //optional parameter
}

Function calls 4. Classes 46/48



Suggested reading

References to sections in Lippman
Classes 26,714,715
Constructors 7.5-7.5.4
(Aggregate classes) ("C structs" without constructors) 7.5.5
Destructors 13.1.3

this and const p 257-258

inline 6.5.2, p 273

friend 7.2.1

static members 7.6

Copying 13.1.1

Assignment 13.1.2

Operator overloading 14.1 — 14.3




Next lecture

References to sections in Lippman
Dynamic memory and smart pointers 12.1
Dynamically allocated arrays 12.2.1
Classes, resource management 13.1, 13.2

Type casts  4.11
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