EDAF50 — C++ Programming

4. Classes

Sven Gestegérd Robertz
Computer Science, LTH

2020

QOutline

@ Classes

@ Constructors

@ the pointer this

@ const for objects and members
e Copying objects

e friend

@ Operator overloading

@ Static members

© Function calls

4. Classes 2/1

User-defined types

Categories

» Concrete classes
» Abstract classes

» Class hierarchies

Classes 4. Classes 3/48

User-defined types

Concrete classes

A concrete type
» “behaves just like a built-in type”

> its representation is part of its definition,
That allows us to
> refer to objects directly (not just using pointers or references)
» initialize objects directly and completely (with a constructor)
» place objects
» on the stack (i.e., local variables)
» in other objects (i.e., member variables)
» in statically allocated memory (e.g., global variables)
» copy objects
» assignment of a variable
» copy-constructing an object
» value parameter of a function

Classes 4. Classes a/48

Constructors

Default constructor

» A constructor that can be called without arguments
» May have parameters with default values

» Automatically defined if no constructor is defined
(in declaration: =default, cannot be called if =delete)

» If not defined, the type is not default constructible

Default constructor with member initializer list.

class Bar {
public:
Bar (int v=100, bool b=false) :value{v},flag{b} {3}
private:
int value;
bool flag;
33

Classes : Constructors 4. Classes 5/48

Classes : Constructors 4. Classes

Constructors
Default constructor

Default arguments

» If a constructor can be called without arguments, it is a
default constructor.

class KomplextTal {

public:
KomplextTal (float x=1):re(x),im(@) {3}
/7. ..

};

gives the same default constructor as the explicit
KomplextTal ():re{1},im{0} {3}

6/48

Constructors

Two ways of initializing members

With member initializer list in constructor

class Bar {
public:
Bar(int v, bool b) :value{v},flag{b} {3}
private:
int value;
bool flag;
BE

Members can have a default initializer, in C++11:

class Foo {

public:
Foo() =default;

private:
int value {03};
bool flag {false};

3

» prefer default initializer to overloaded constructors or

default arguments

Classes : Constructors 4. Classes 7/48

Constructors

Initialization and assignment

It is (often) possible to write like in Java, but
> it is less efficient

» the members must be assignable

Java-style: assignment in constructor

class Foo {
public:
Foo(const Bar& v) {
value = v; NB! assignment, not initialization
3
private:
Bar value; is default constructed before the body of the constructor

Bs

An object is initialized before the body of the constructor is run

Classes : Constructors 4. Classes 8/48

Constructors

Member initialization rules

class Bar {
public:
Bar () =default;
Bar(int v, bool b) :value{v},flag{b} {3}
private:
int value {03};
bool flag {true};
BE

» If a member has both default initializer and a member
initializer in the constructor, the constructor is used.

» Members are initialized in declaration order. (Compiler
warning if member initializers are in different order.)

» Bar() =default; is necessary to make the compiler generate a
default constructor (as another constructor is defined)

Classes : Constructors 4. Classes 9/48

Constructors

Prefer default member initializers

Use default member initializers if class member variables have
default values.

Default values through overloaded ctors: risk of inconsistency

class Simple {
public:
Simple() :a(1), b(2), c(3) {3
Simple(int aa, int bb, int cc=-1) :a(aa), b(bb), c(cc) {3}
Simple(int aa) :a(aa), b(@), c(0) {3}
private:
int a;
int b;
int c;

b8

Classes : Constructors 4. Classes 10/48

Constructors

Prefer default member initializers

Use default member initializers if class member variables have
default values.

With default initializers: consistent

class Simple {
public:
Simple() =default;
Simple(int aa, int bb, int cc) :a(aa), b(bb), c(cc) {3}
Simple(int aa) : a(aa) {}
private:
int a {-13};
int b {-13};
int ¢ {-13};
b5

Classes : Constructors 4. Classes 11/48

Constructors

Default constructor and parentheses

The default constructor cannot be called with empty parentheses.

Bar b1;

Bar b2{};

Bar be(); //
Bar b3(25); //
Bar* bpl = new

Bar* bp2 = new
Barx bp3 = new

wrong! "most vexing parse”
0K

Bar;
Bar{};
Bar (); //0K

NB! The compiler error will be at the use of be e.g.,

be.fun();

request for member ’fun’ in ’be’, which is of non-class type ’'Bar()’

Classes : Constructors

4. Classes 12/48

Default constructor and initialization

» automatically generated default constructor (=default)
does not always initialize members
» global variables are initialized to 0 (or corresponding)
» Jlocal variables are not initialized (different meaning from Java)
struct A { int x; 3};

int i; // i is initialized to @ (global variable)
A a; // a.x is initialized to © (global variable)

int main() {

int j; // j is uninitialized

int k = int(); // k is initialized to @
int 1{}; // 1 is initialized to @

A b; // b.x is uninitialized
Ac = AQ0; // c.x is initialized to @
A d{}; // d.x is initialized to @

}
» always initialize variables
» always implement default constructor (or =delete)

Classes : Constructors 4. Classes 13/48

Constructors

Delegating constructors (C++11)

In C+411 a constructor can call another (like this(...) in Java).
struct Test{

int val;

Test(int v) :val{v} {}

Test(int v, int scale) :Test(vxscale) {}; // delegation

Test(int a, int b, int c) :Test(a+b+c) {3}; // delegation
3

A delegating constructor call shall be the only member-initializer.
(A constructor initializes an object completely.)

Classes : Constructors 4. Classes 14/48

The pointer this

Self reference

In a member function, there is an implicit pointer this, pointing to
the object the function was called on. (cf. this in Java).

» typical use: return xthis for operations returning a reference
to the object itself

Constant objects

» const means "l promise not to change this"

» Objects (variables) can be declared const
» "l promise not to change the variable”

» References can be declared const

» "l promise not to change the referenced object”
» a const& can refer to a non-const object
» common for function parameters

» Member functions can be declared const
» | promise that the function does not change the state of the
object”
» technically: implicit declaration const Tx const this;

Classes : for objects and members 4. Classes

Constant objects

Example

const references and const functions

class Point{
public:
Point(int xi, int yi) :x{xi},y{yi}{}
int get_x() const {return x;}
int get_y() const {return y;}
void set_x(int xi) {x = xi;}
void set_y(int yi) {y = yi;}

private:
int x;
int y;
B8
void example(Point& p, const Point& o) {
p.set_y(10);
cout << "p: "<< p.get_x() << "," << p.get_y() << endl;

o.set_y(10);
cout << "o: "<< o.get_x() << "," << o.get_y() << endl;

passing ’const Point’ as ’this’ argument discards qualifiers

for objects and members 4. Classes

Constant objects

Example

Note const in the declaration (and definition!) of the member
function operator[](int) const: (“const is part of the name”)

class Vector {

public:
// ...
double operator[](int i) const; // function declaration
//. ..
private:
doublex* elem;
/7. ..
3
double Vector::operator[](int i) const // function definition
{

return elem[i];

3

t for objects and members 4. Classes

Constant objects

Example: const overloading

The functions operator[](int) and operator[](int) const
are different functions.

Example

class Vector {

double& operator[](int i) {return elem[i];}

double operator[](int i) const {return elem[il];}
private:

doublex elem;

// ...

Bs

» If operator[] is called on a

» non-const object, a reference is returned
» const object, a copy is returned

» The assignment v[2] = 10; only works on a non-const v.

Classes : for objects and members 4. Classes

User-defined types

Concrete classes

A concrete type
» “behaves just like a built-in type”

» the representation is part if the definition,
That allows us to
> refer to objects directly (not just using pointers or references)
» initialize objects directly and completely (with a constructor)
» place objects
» on the stack (i.e., in local variables)
» in other objects
» in statically allocated memory (e.g., global variables)
» copy objects
» assignment of a variable
» copy-constructing an object
» value parameter of a function

Classes : Copying objects 4. Classes 20/48

Constructors

Copy Constructor

» s called when initializing an object
» s not called on assignment

» Can be defined, otherwise a standard copy constructor is
generated (=default, =delete)

void function(Bar); // by-value parameter

Bar b1(10, false?};

Bar b2{b1}; // the copy constructor is called
Bar b3(b2); // the copy constructor is called
Bar b4 = b2; // the copy constructor is called
function(b2); // the copy constructor is called

Classes : Copying objects 4. Classes 21/48

Copy Constructors

default

» Declaration:

class C {
public:
C(const C&) =default;
};
» default copy constructor
» Is automatically generated if not defined in the code
» exception: if there are members that cannot be copied

» shallow copy of each member

» Works for members variables with built-in types,

» or classes that behave like built-in types (RAll-types)

» Does not work for classes which manage resources “manually”
(More on this later)

Classes : Copying objects 4. Classes 22/48

Classes

Example: Copying the Vector class

class Vector{

public:
Vector(int s) :elem{new double[s]}, sz{s} {3}
~Vector () {delete[] elem;}
double& operator[J(int i) {return elem[i];}
int size() {return sz;}

private:
doublex* elem;
int sz;

3

Vector vec: |sz: b

elemoé————

No copy constructor defined = default generated.

Classes : Copying objects 4. Classes 23/48

Classes

Default copy construction: shallow copy

void f(Vector v);

void test()

{
Vector vec(5);
f(vec); // call by value -> copy
// ... other uses of vec
3
vec: [sz: 5

elemo—4———

v: [sz: b /

elem @

» The parameter v is default copy constructed: the value of each
member variable is copied

» When f() returns, the destructor of v is executed:
(delete[] elem;)

» The array pointed to by both copies is deleted. Disaster!

sses : Copying objects

Constructors

Special cases: zero or one parameter

Copy Constructor

» Has a const & as parameter: Bar::Bar(const Bar& b);

Converting constructor

» A constructor with one parameter defines
an implicit type conversion from the type of the parameter

class KomplextTal {
public:
KomplextTal ():re{@},im{0} {3}
KomplextTal (const KomplextTal& k) :re{k.re},im{k.im} {3}
KomplextTal (double x):re{x},im{0} {3}
/7. ..
private:
double re;
double im;
3

default constructor copy constructor converting constructor

Classes : Copying objects 4. Classes 25/48

Converting constructor

Warning - implicit conversion

class Vector{
public:
Vector (int s); // create Vector with size s

int size() const; // return size of Vector

3
void example_vector ()
{
Vector v = 7;
std::cout << "v.size(): " << v.size() << std::endl;
}

v.size(): 7

In std: :vector the corresponding constructor is declared

explicit vector(size_type count);

Classes : Copying objects 4. Classes 26/48

Converting constructor and explicit

explicit specifies that a constructor does not allow implicit type

conversion.
struct A struct B
{ {
A(int); explicit B(int);
VA //
3 3
A al(2); // 0K B b1(2); // OK
A a2 = 1; // 0K B b2 = 1; // Error! [2]
A a3 = (A)1; // OK B b3 = (B)1; // OK: explicit cast
a3 = 17; // OK [1] b3 = 17; // Error! [3]

[1]: construct an A(17), and then copy

[2]: conversion from ’int’ to non-scalar type ’'B’ requested
[31: no match for ’operator=’ (operand types are ’B’ and ’int’)

Classes : Copying objects 4. Classes 27/48

Copying objects

Difference between construction and assignment

void function(Bar); //

Bar b1(10, false};

Bar b2{b1}; //
Bar b3(b2); //
Bar b4 = b2; //
function(b2); //
b4 = b3; //

by-value

the
the
the
the

the

copy
copy
copy
copy

copy

parameter

constructor
constructor
constructor

constructor

constructor

copy assignment — not construction

Classes : Copying objects

is
is
is

is

is

called
called
called
called

not called

4. Classes

28/48

Copying objects

the copy assignment operator: operator=

The copy assignment operator is implicitly defined
» with the type T& T::operator=(const T&)
» if no operator=is declared for the type

» if all member variables can be copied
> i.e., define a copy-assignment operator

» If all members are of built-in (and RAII) types the default
variant works (same problems as with copy ctor).

vec: [sz: b
elemo—+———

v: |sz: b /

elem @

» More on copy control when we discuss resource management

sses : Copying objects

Preventing copying

» Declaration:

class C {
public:

C(const C&) =delete;

C& operator=(const C&) =delete;
3

» A class without copy constructor and copy assignment
operator cannot be copied.

» C++-98: declare private and don't define

Classes : Copying objects 4. Classes 30/48

IIIII|iiiiii||||III

Functions or classes with access to all members in a class without
being members themselves

Friend declaration in the class KomplextTal

class KomplextTal{

/7. ..
private:

int re;

int im;

friend ostream& operator<<(ostream&, const KomplextTal&);
3

Definition outside the class KomplextTal

ostream& operator<<(ostream& o, const KomplextTal& c) {
return o << c.re << "+" c.im << "i";

3

The free function operator<<(ostream&, const KomplextTal&) can
access private members in KomplextTal.

Classes : friend 4. Classes 31/48

friend

Functions or classes with full access to all members in a class
without being members themselves

VVvyVvYyYVvy

Classes : friend

Free functions,

member functions of other classes, or
entire classes can be friends.

cf. package visibility in Java

A friend declaration is not part of the class interface, and can
be placed anywhere in the class definition.

4. Classes

32/48

Operator overloading

Most operators can be overloaded, except

sizeof . L 88 ?:

E.g., these operators can be overloaded

O 0

...and the pointer and memory related

*x => =>%
&
new delete new[] delete[]

Classes : Operator overloading 4. Classes 33/48

Classes : Operator overloading 4. Classes

Operator overloading

Operator overloading syntax:

return_type operator® (parameters...)

for an operator ® e.g. == or +

For classes, two possibilities:
» as a member function

» for binary operators, if the order of operands is suitable

» a binary operator takes one argument
» xthis is the left operand,
» the function argument is the right operand

» as a free function

» if the public interface is enough, or
» if the function is declared friend

34/a8

Operator overloading

as member function and as free function

Example: declaration as member functions

class Komplex {

public:
Komplex (float r, float i) : re(r), im(i) {3}
Komplex operator+(const Komplex& rhs) const;
Komplex operator*(const Komplex& rhs) const;
//

private:
float re, im;

55

Example: declaration of operator+ as friend

Declaration inside the class definition of Komplex:

friend Komplex operator+(const Komplex& 1, const Komplex& r);

Note the number of parameters

Classes : Operator overloading 4. Classes 35/48

Operator overloading

Defining operator+ in two ways:
» As member function (one parameter)

Komplex Komplex::operator+(const Komplex& rhs)const{
return Komplex(re + rhs.re, im + rhs.im);

3

» As a free function (two parameters)

Komplex operator+(const Komplex& lhs, const Komplex& rhs){
return Komplex(lhs.re + rhs.re, lhs.im + rhs.im);

3

NB! the friend declaration is only in the class definition

Classes : Operator overloading 4. Classes 36/48

Operator overloading

Defining operator+ in two ways:
» As member function

Komplex Komplex::operator+(Komplex& rhs)
return Komplex(re + rhs.re, Yu + rhs.im);

3

the right operand
cannot be changed

the Tleft operand
cannot be changed

» As a free function

Komplex operator+ 1
return Komplex

omplex& lhs, Komplex& rhs){
s.re + rhs.re, lhs.im + rhs.im);

}

NB! the friend declaration is only in the class definition

Classes : Operator overloading 4. Classes 36/48

Operator overloading
Another implementation of +, using +=

Class definition

class Komplex {
public:
Komplex& operator+=(const Komplex& z) {
re += z.re;
im += z.im;
return xthis;
3
//
BE

Free function, does not need to be friend

Komplex operator+(Komplex a, const Komplex& b) {
return at+=b;

}

NB! call by value: we want to return a copy.

Classes : Operator overloading 4. Classes 37/48

Operator overloading
Example: inline friend operator<<

The definition (in the class definition)

#include <ostream>
using std::ostream;

class Komplex{
friend ostream& operator<<(ostream& o, const Komplex& v) {
0 << v.re << '+’ << v.im << ’i’;
return o;

// ...
bs

» inline friend definition: defines a free function in the same
namespace as the class

» operator<< cannot be a member function (due to the order of
operands it would have to be a member of std::ostream)

Classes : Operator overloading 4. Classes 38/48

Conversion operators
Exempel: Counter

Conversion to int

struct Counter {
Counter (int c=0) :cnt{c} {3};
Counter& inc() {++cnt; return xthis;}
Counter inc() const {return Counter(cnt+1);3}
int get() const {return cnt;}
operator int() const {return cnt;}

private:
int cnt{0};

L

Note: operator T().
» no return type in declaration (must obviously be T)
» can be declared explicit

Classes : Operator overloading 4. Classes 39/48

Static members

static members: shared by all objects of the type (like Java)
» declared in the class definition

» defined outside class definition (if not const)

» can be public or private (or protected)

Function calls and results

Returning objects by value

» A function cannot return references to local variables
» the object is destroyed at return — dangling reference

» How (in)efficient is it to return objects by value (a copy)?

return value optimization (RVO)

The compiler may optimize away copies of objects on return from
functions

» return by value often efficient, also for larger objects

» RVO allowed even if the copy-constructor or destructor
has side effects

» avoid such side effects to make code portable

Rules of thumb for function parameters

» Return by value more often

» Do not over-use call-by-value

“reasonable defaults”

[| cheap to copy | moderately cheap to copy | expensive to copy |
In fX) | f(const X&)

In/Out FOX&)
Out X fO | f (X&)

For results, if the cost of copying is

» small, or moderate (< 1k, contiguous): return by value
(modern copilers do RVO: return value optimization)

» large : call by reference as out parameter
» or maybe allocate with new and return pointer

Function calls 4. Classes 43/48

Call by reference or by value?

Rules of thumb

For passing an object to a function when
» you may want to change the value of the object
» reference: void f(T&); or
» pointer: void f(T*);
» you will not change it, it is /arge (or impossible to copy)
» constant reference: void f(const T&);

» otherwise, call by value
» void f(T);

Call by reference or by value?

Rules of thumb

» How big is “large”?
» more than a few words

» When to use out parameters?
» prefer code that is obvious

Example: two functions: Use:
void incri1(int& x) int v = 0;
{
++X;
} incri(v);

int incr2(int x)
{ v = incr2(v);

return x + 1; L
} Here it is much clearer

that v = incr2(v) changes v

» For multiple output values, consider returning a struct,
a std::pair or a std: :tuple

Function calls 4. Classes 4s5/48

reference or pointer?

» required parameter: pass reference

» optional parameter: pass pointer (can be nullptr)

void f(widget& w)

{
use(w); //required parameter
3
void g(widget* w)
{
if(w) use(w); //optional parameter
}

Function calls 4. Classes 46/48

Suggested reading

References to sections in Lippman
Classes 26,714,715
Constructors 7.5-7.5.4
(Aggregate classes) ("C structs" without constructors) 7.5.5
Destructors 13.1.3

this and const p 257-258

inline 6.5.2, p 273

friend 7.2.1

static members 7.6

Copying 13.1.1

Assignment 13.1.2

Operator overloading 14.1 — 14.3

Next lecture

References to sections in Lippman
Dynamic memory and smart pointers 12.1
Dynamically allocated arrays 12.2.1
Classes, resource management 13.1, 13.2

Type casts 4.11

	Classes
	Constructors
	the pointer this
	const for objects and members
	Copying objects
	friend
	Operator overloading
	Static members

	Function calls

