
EDAF50 – C++ Programming

10. <chrono>. Concurrency. Integer types.

Sven Gestegård Robertz
Computer Science, LTH

2019

Outline

1 Time representation

2 Concurrency

3 Types
Integer types
Type casts

10. <chrono>. Concurrency. Integer types. 2/1

What is a value

The semantics of a value often include
I a quantity
I a number
I a unit

E.g int length = 2;

I two meters?
I two millimeters?

Including quantity and unit in the type helps avoid mistakes.

Time representation 10. <chrono>. Concurrency. Integer types. 3/28

Time representation

I A “time value” can be either
I A duration – a time interval
I A point in time

I relative to a particular clock
I Different units

I seconds
I milliseconds
I nanoseconds
I manual conversion error prone

I Different semantics
I duration + duration = duration
I duration - duration = duration
I time_point + duration = time_point
I time_point - duration = time_point
I time_point - time_point = duration
I time_point + time_point = error

Time representation 10. <chrono>. Concurrency. Integer types. 4/28

Time representation
<chrono>

I Uses the type system to denote
I if a value is a duration or a point in time
I the unit used (seconds, milliseconds, etc.)
I which clock a point in time is relative to

I system_clock – wall clock time
I steady_clock – stopwatch

I Uses compile-time computations for
I conversions between units

I implicit conversions when safe
I explicit conversions when loosing information
I E.g. duration_cast<seconds>(milliseconds)

Time representation 10. <chrono>. Concurrency. Integer types. 5/28

Time representation
<chrono>

A duration is
I an integer value and
I a ratio (the number of seconds between two values).

std:: chrono :: nanoseconds duration <signed integer (>= 64 bits),
std::nano >

std:: chrono :: microseconds duration <signed integer (>= 55 bits),
std::micro >

std:: chrono :: milliseconds duration <signed integer (>= 45 bits),
std::milli >

std:: chrono :: seconds duration <signed integer (>= 35 bits)>

std:: chrono :: minutes duration <signed integer (>= 29 bits),
std::ratio <60>>

std:: chrono ::hours duration <signed integer (>= 23 bits),
std::ratio <3600>>

std::ratio provides compile-time rational arithmetic

Time representation 10. <chrono>. Concurrency. Integer types. 6/28

Concurrency

I Tasks and threads
I Passing arguments
I Returning results
I Sharing data
I Waiting for events
I Communicating tasks

Concurrency 10. <chrono>. Concurrency. Integer types. 7/28

Concurrency

Demo

Concurrency 10. <chrono>. Concurrency. Integer types. 8/28

Concurrency
futures and promises

I Transfer a value between tasks without an explicit lock
I A future represents a (possibly not yet existing) result

of a computation
I A promise is used to deliver a value to a future

future

value

promise

get()

set_value()

set_exception()

task1:

task2:

Concurrency 10. <chrono>. Concurrency. Integer types. 9/28

Concurrency
packaged_task

A future is connected to a promise
I create a promise

I get a future by calling promise::get_future()

More conventient to use a packaged_task

I a function (object) and the associated future and promise

Concurrency 10. <chrono>. Concurrency. Integer types. 10/28

Concurrency

Demo

Concurrency 10. <chrono>. Concurrency. Integer types. 11/28

Integer types

I Signed integers
Type Size Range (at least)
signed char 8 bits [−127, 127]∗

short at least 16 bits [−215 + 1, 215 − 1]
int at least 16 bits, usually 32 [−215 + 1, 215 − 1]
long at least 32 bits [−231 + 1, 231 − 1]
long long at least 64 bits [−263 + 1, 263 − 1]

∗typically [−128, 127], etc.

I Unsigned integers
I same size as corresponding signed type
I unsigned char: [0, 255] , unsigned short: [0, 216 − 1]. etc.

I special case
I char (can be represented as signed char or unsigned char)
I Use char only for characters
I Use signed char or unsigned char for integer values

I Sizes according to the standard:
char ≤ short ≤ int ≤ long ≤ long long

Types : Integer types 10. <chrono>. Concurrency. Integer types. 12/28

Integer types
Overflow

I overflow of an unsigned n-bit integer is defined as
the value modulo 2n

I overflow of a signed integer is undefined

Types : Integer types 10. <chrono>. Concurrency. Integer types. 13/28

Integer types

Example with sizeof

#include <iostream >
using namespace std;
int main () {

cout << "sizeof(char)= \t" << sizeof(char)<<endl;
cout << "sizeof(short)= \t" << sizeof(short) <<endl;
cout << "sizeof(int) = \t" << sizeof(int) <<endl;
cout << "sizeof(long)= \t" << sizeof(long)<<endl;

}

sizeof(char)= 1
sizeof(short)= 2
sizeof(int) = 4
sizeof(long)= 8

Types : Integer types 10. <chrono>. Concurrency. Integer types. 14/28

Integer types – Example of value range by casting
or: be careful with casts from signed to unsigned types

int main () {
cout << "(signed char) -1 = " << (int)(signed char) -1 << endl;
cout << "(unsigned char) -1 = " << (int)(unsigned char) -1 << endl;
cout << "(short int) -1 = " << (short int) -1 << endl;
cout << "(unsigned short int) -1 = "<<(unsigned short int)-1<<endl;
cout << "(int) -1 = " << (int) -1 << endl;
cout << "(unsigned int) -1 = " << (unsigned int) -1 << endl;
cout << "(long) -1 = " << (long) -1 << endl;
cout << "(unsigned long) -1 = " << (unsigned long) -1 << endl;

}

(char) -1 = -1
(unsigned char) -1 = 255
(short int) -1 = -1
(unsigned short int) -1 = 65535
(int) -1 = -1
(unsigned int) -1 = 4294967295
(long) -1 = -1
(unsigned long) -1 = 18446744073709551615

Types : Integer types 10. <chrono>. Concurrency. Integer types. 15/28

Integer types
Sizes are specified in <climits>

CHAR_BIT Number of bits in a char object (byte) (>=8)
SCHAR_MIN Minimum value for an object of type signed char
SCHAR_MAX Maximum value for an object of type signed char
UCHAR_MAX Maximum value for an object of type unsigned char
CHAR_MIN Minimum value for an object of type char

(either SCHAR_MIN or 0)
CHAR_MAX Maximum value for an object of type char

(either SCHAR_MAX or UCHAR_MAX)
SHRT_MIN Minimum value for an object of type short int
SHRT_MAX Maximum value for an object of type short int
USHRT_MAX Maximum value for an object of type unsigned short int
INT_MIN Minimum value for an object of type int
INT_MAX Maximum value for an object of type int
UINT_MAX Maximum value for an object of type unsigned int
LONG_MIN Minimum value for an object of type long int
LONG_MAX Maximum value for an object of type long int
ULONG_MAX Maximum value for an object of type unsigned long int
LLONG_MIN Minimum value for an object of type long long int
LLONG_MAX Maximum value for an object of type long long int
ULLONG_MAX Maximum value for an object of type unsigned long long

Types : Integer types 10. <chrono>. Concurrency. Integer types. 16/28

Integer types
Sizes are specified in <climits>

#include <iostream >
#include <climits >
int main()
{

std::cout << CHAR_MIN << ", " << CHAR_MAX << ", ";
std::cout << UCHAR_MAX << std::endl;
std::cout << SHRT_MIN << ", " << SHRT_MAX << ", ";
std::cout << USHRT_MAX << std::endl;
std::cout << INT_MIN << ", " << INT_MAX << ", ";
std::cout << UINT_MAX << std::endl;
std::cout << LONG_MIN << ", " << LONG_MAX << ", ";
std::cout << ULONG_MAX << std::endl;
std::cout << LLONG_MIN << ", " << LLONG_MAX << ", ";
std::cout << ULLONG_MAX << std::endl;

}

128, 127, 255
-32768, 32767 , 65535
-2147483648 , 2147483647 , 4294967295
-9223372036854775808 , 9223372036854775807 , 18446744073709551615
-9223372036854775808 , 9223372036854775807 , 18446744073709551615

Types : Integer types 10. <chrono>. Concurrency. Integer types. 17/28

Integer types
Sizes are implementation defined

Typedefs for specific sizes are in <cstdint> (<stdint.h>)

I integer types with exact with:
int8_t int16_t int32_t int64_t

I fastest signed integer type with at least the width
int_fast8_t int_fast16_t int_fast32_t int_fast64_t

I smallest signed integer type with at least the width
int_least8_t int_least16_t int_least32_t int_least64_t

I signed integer type capable of holding a pointer:
intptr_t

I unsigned integer type capable of holding a pointer:
uintptr_t

The corresponding unsigned typedefs are named uint_..._t
Types : Integer types 10. <chrono>. Concurrency. Integer types. 18/28

Type casts
Implicit conversions

Automatic conversions
I Expressions of the type x� y, for some binary operator �

E.g.: double + int ==> double

float + long + char ==> float

I Assignments and initialization: The value of the
right-hand-side is converted to the type of the left-hand-side

I Conversion of an argument to the type of the (formal)
parameter

I Expresions in if statements, etc. ⇒ bool

I built-in array ⇒ pointer (array decay)
I 0 ⇒ nullptr (empty pointer in C++11, previously the

constant NULL was defined)

Types : Type casts 10. <chrono>. Concurrency. Integer types. 19/28

type casts
Named casts (C++-11)

Example

char c; // 1 byte
int *p = (int*) &c; // pointer to int: 4 bytes

*p = 5; // undefined behaviour , stack corruption

int *q = static_cast <int*> (&c); // compiler error

I static_cast<new_type> (expr)

- convert between compatible types (does not do range check)
- “the inverse of a standard implicit conversion sequence”

I reinterpret_cast<new_type> (expr)

- no safety net, same as C-style cast
I const_cast<new_type> (expr) - remove const
I dynamic_cast<new_type> (expr) - use for pointers to objects in class

hierarchies. Uses run-time type info, like instanceof in Java.
Types : Type casts 10. <chrono>. Concurrency. Integer types. 20/28

Type casting
C style casts

Syntax in C and in C++, like in Java
(type) expression , e.g. (float) 10

I Greater risk of mistakes - use named casts
I makes the code clearer, e.g., const_cast can only change

const
I easy to search for: casts are among the first to look for when

debugging
I Warning in GCC: -Wold-style-casts
I Common in older code

Alternative syntax in C++

type(expression)

type must be a single word,
int *(...) eller i.e., unsigned long(...) is not OK.

Types : Type casts 10. <chrono>. Concurrency. Integer types. 21/28

Type casts
Warning example

struct Point{
int x;
int y;

};

struct Point3d {
int x;
int y;
int z;

};

y:
x:

x:
y:
z:

Point:

Point3d:

Types : Type casts 10. <chrono>. Concurrency. Integer types. 22/28

Data types and variables

I some concepts:
I a type defines the set of possible values and operations

(for an object)
I an object is a place in memory that holds a value
I a value is a set of bits interpreted according to a type.

A typecast changes the value of a particurlar memory location by
changing how it should be interpreted.

Types : Type casts 10. <chrono>. Concurrency. Integer types. 23/28

Type casts
Warning example

struct Point{
int x;
int y;

};

Point ps[3];

struct Point3d{
int x;
int y;
int z;

};
Point3d* foo = (Point3d *) ps;

y:
x:

x:
y:
x:
y:

x z:
y x:
x y:
y z:

ps:
ps[0]

ps[1]

ps[2]

foo[0]

foo[1]

With named casts, this requires a reinterpret_cast<Point3d*>

With static_cast<Point3d*> the compiler gives the error
invalid static_cast from type ’Point[3] to type ’Point3d*’

Types : Type casts 10. <chrono>. Concurrency. Integer types. 24/28

special case: void pointer

A void* can point to an object of any type

In C a void* is implicitly converted to/from any pointer
type.

In C++ a T* is implicitly converted to void*. The other
direction requires an explicit type cast.

Types : Type casts 10. <chrono>. Concurrency. Integer types. 25/28

Next lecture
Low-level details and loose ends

References to sections in Lippman
C-style strings 3.5.4
Multi-dimensional arrays 3.6
Bitwise operations 4.8
The comma operator 4.10
Union 19.6
Bit-fields 19.8.1

Types : Type casts 10. <chrono>. Concurrency. Integer types. 26/28

Suggested reading

References to sections in Lippman
Built-in types 2.1
Type casts 4.11

Types : Type casts 10. <chrono>. Concurrency. Integer types. 27/28

