
EDAF50 – C++ Programming

8. Classes and polymorphism.

Sven Gestegård Robertz
Computer Science, LTH

2019

Outline

1 Polymorphism and inheritance
Concrete and abstract types
Virtual functions
Class templates and inheritance
Constructors and destructors
Accessibility
Inheritance without polymorphism

2 Usage

3 Pitfalls

8. Classes and polymorphism. 2/1

Polymorphism and dynamic binding

Polymorphism

Overloading Static binding
Generic programming (templates) Static binding
Virtual functions Dynamic binding

Static binding: The meaning of a construct is decided
at compile-time

Dynamic binding: The meaning of a construct is decided
at run-time

Polymorphism and inheritance 8. Classes and polymorphism. 3/42

Concrete and abstract types

A concrete type behaves “just like built-in-types”:
I The representation is part of the definition 1

I Can be placed on the stack, and in other objects
I can be directly refererred to
I Can be copied
I User code must be recompiled if the type is changed

An Abstract types isolates the user from implementation details
and decouples the interface from the representation:
I The representation of objects (incl. the size!) is not known
I Can only be accessed through pointers or references
I Cannot be instantiated (only concrete subclasses)
I Code using the abstract type does not need to be recompiled if

the concrete subclasses are changed
1can be private, but is known

Polymorphism and inheritance : Concrete and abstract types 8. Classes and polymorphism. 4/42

Concrete and abstract types
A concrete type: Vector

class Vector {
public:

Vector(int l = 0) :elem{new int[l]},sz{l} {}
~Vector () {delete [] elem;}
int size() const {return sz;}
int& operator [](int i) {return elem[i];}

private:
int *elem;
int sz;

};

Generalize: extract interface

class Container
public:

int size() const;
int& operator [](int o);

};

Polymorphism and inheritance : Concrete and abstract types 8. Classes and polymorphism. 5/42

Concrete and abstract types
Generalization: an abstract type, Container

class Container {
public:

virtual int size() const =0;
virtual int& operator [](int o) =0;
virtual ~Container () {}

};

I pure virtual function
I Abstract class
I or interface in Java

class Vector :public Container {
public:

Vector(int l = 0) :p{new int[l]},sz{l} {}
~Vector () {delete [] elem;}
int size() const override {return sz;}
int& operator [](int i) override {return elem[i];}

private:
int *elem;
int sz;

}; I extends (or implements) Container in Java
I override ⇔ @Override in Java (C++11)
I A polymorph type needs a virtual destructor

Polymorphism and inheritance : Virtual functions 8. Classes and polymorphism. 6/42

Concrete and abstract types
Use of an abstract class

void fill(Container& c, int v)
{

for(int i=0; i!=c.size (); ++i){
c[i] = v;

}
}
void print(Container& c)
{

for(int i=0; i!=c.size (); ++i){
cout << c[i] << " " ;

}
cout << endl;

}
void test_container ()
{

Vector v(10);

print(v);
fill(v,3);
print(v);

}

Polymorphism and inheritance : Virtual functions 8. Classes and polymorphism. 7/42

Concrete and abstract types
Use of an abstract class

Assume that we have two other subclasses to Container

class MyArray : public Container { ...};
class List : public Container { ...};

void test_container ()
{

Vector v(10);
print(v);
fill(v,7);
print(v);

MyArray a(5);
fill(a,0);
print(a);

List l{1,2,3,4,5,6,7};
print(l);

}

I Dynamic binding of Container::size() and
Container::operator[]()

Polymorphism and inheritance : Virtual functions 8. Classes and polymorphism. 8/42

Concrete and abstract types
Variant, without changing Vector

Instead of changing Vector we can use it in a new class:
class Vector_container :public Container {
public:

Vector_container(int l = 0) :v{l} {}
~Vector_container () =default;
int size() const override {return v.size ();}
int& operator [](int i) override {return v[i];}

private:
Vector v;

};

I Vector is a concrete class
I Note that v is a Vector object, not a reference

I Different from Java

I The destructor of a member variable (here, v) is implicitly
called by the default destructor

Polymorphism and inheritance : Virtual functions 8. Classes and polymorphism. 9/42

Dynamic binding

I virtual function table (vtbl)
I contains pointers to the virtual functions of the object
I each class with virtual member function(s) has a vtbl
I each object of such a class has a pointer to the vtbl of the class
I calling a virtual function (typically) < 25% more expensive

v.sz
v.elem

Vector_container: vtbl:
Vector_container::size()

Vector_container::operator[]()

Vector_container::˜Vector_container

...

List: vtbl:
List::size()

List::operator[]()

List::˜List

Polymorphism and inheritance : Virtual functions 8. Classes and polymorphism. 10/42

Class templates
The Container classes

class Container {
public:

virtual int size() const =0;
virtual int& operator [](int o) =0;
virtual ~Container () {}
virtual void print() const =0;

};

I generalize on element
type

class Vector :public Container {
public:

explicit Vector(int l);
~Vector ();
int size() const override;
int& operator [](int i) override;
virtual void print() const override;

private:
int *p;
int sz;

};

Polymorphism and inheritance : Class templates and inheritance 8. Classes and polymorphism. 11/42

Class templates
Generic Container and Vector

template <typename T>
class Container {
public:

using value_type = T;
virtual size_t size() const =0;
virtual T& operator [](size_t o) =0;
virtual ~Container () {}
virtual void print() const =0;

};

template <typename T>
class Vector :public Container <T> {
public:

Vector(size_t l = 0) :p{new T[l]},sz{l} {}
~Vector () {delete [] p;}
size_t size() const override {return sz;}
T& operator [](size_t i) override {return p[i];}
virtual void print() const override;

private:
T *p;
size_t sz;

};

Polymorphism and inheritance : Class templates and inheritance 8. Classes and polymorphism. 12/42

Constructors and inheritance
Rules for the base class constructor

I The default constructor of the base class is implicitly called
I if it exists!

I Arguments to the base class constructor
I are given in the member initializer list in the derived class

constructor.
I the name of the base class must be used.

(super() like in Java does not exist due to multiple
inheritance.)

Polymorphism and inheritance : Constructors and destructors 8. Classes and polymorphism. 13/42

Constructors and inheritance

Order of initialization in a constructor (for a derived class)
1 The base class is initialized: The base class ctor is called
2 The derived class is initialized: Data members (in the derived

class) is initialized
3 The constructor body of the derived class is executed

Explicit call of base class constructor in the member initializer list
D::D(param ...) :B(param ...), ... {...}

Note:
I Constructors are not inherited
I Do not call virtual functions in a constructor.:

In the base class B, this is of type B*.

B

D

Polymorphism and inheritance : Constructors and destructors 8. Classes and polymorphism. 14/42

Constructors and inheritance

Constructors are not inherited

class Base{
public:

Base(int i) :x{i} {}
virtual void print() {cout << "Base: " << x << endl;}

private:
int x;

};

class Derived :public Base {
};

void test_ctors ()
{

Derived b1; // use of deleted function
// Derived :: Derived ()

Derived d2(5); // no matching function for call to
// Derived :: Derived(int)

}

Polymorphism and inheritance : Constructors and destructors 8. Classes and polymorphism. 15/42

Constructors and inheritance

Constructors are not inherited

class Base{
public:

Base(int i) :x{i} {}
virtual void print() {cout << "Base: " << x << endl;}

private:
int x;

};

class Derived :public Base {
Derived(int i) :Base(i) {}

};

void test_ctors ()
{

Derived b1; // use of deleted function
// Derived :: Derived ()

Derived d2(5); // OK

}

Polymorphism and inheritance : Constructors and destructors 8. Classes and polymorphism. 16/42

Constructors and inheritance

using: make the base class constructor visible (C++11)

class Base{
public:

Base(int i) :x{i} {}
virtual void print() {cout << "Base: " << x << endl;}

private:
int x;

};

class Derived :public Base {
using Base::Base;

};

void test_ctors ()
{

Derived d1; //use of deleted function
// Derived :: Derived ()

Derived d2(5); // OK!
d2.print ();

}

Polymorphism and inheritance : Constructors and destructors 8. Classes and polymorphism. 17/42

Constructors vid inheritance

Now with a default constructor

class Base{
public:

Base(int i=0) :x{i} {}
virtual void print() {cout << "Base: " << x << endl;}

private:
int x;

};

class Derived :public Base {
using Base::Base;

};

void test_ctors ()
{

Derived b; // OK!
d.print ();
Derived d2(5); // OK!
d2.print ();

}

Polymorphism and inheritance : Constructors and destructors 8. Classes and polymorphism. 18/42

Inherited constructors
rules

I using makes all base class constructors inherited, except
I those hidden by the derived class (with the same parameters)
I default, copy, and move constructors

⇒ if not defined, synthesized as usual

I default arguments in the super class gives multiple inherited
constructors

Polymorphism and inheritance : Constructors and destructors 8. Classes and polymorphism. 19/42

Copying and inheritance

I The copy constructor shall copy the entire object
I typically: call the base class copy-constructor

I The same applies to operator=
I Different from the destructor

I A destructor shall only deallocate what has been allocated in
the class itself. The base class destructior is implicitly called.

I The synthesized default constructor or the copy control
members are deleted in a derived class if the corresponding
function is deleted in the base class.
(i.e., private or =delete)
I default constructor,
I copy constructor,
I copy assignment operator
I (destructor, but avoid classes without a destructor)

I Base classes should (typically) define these =default

Polymorphism and inheritance : Constructors and destructors 8. Classes and polymorphism. 20/42

Destructors and inheritance

Destruction is done in reverse order:

Execution order in a destructor
1 The function body of the derived class destructor is executed
2 The members of the derived class are destroyed
3 The base class destructor is called

The base class destructor must be virtual

Polymorphism and inheritance : Constructors and destructors 8. Classes and polymorphism. 21/42

Accessibility

The different levels of accessibility

class C {
public:

// Members accessible from any function
protected:

// Members accessible from member functions
// in the class or a derived class

private:
// Members accessible only from member functions
// in the class

};

Polymorphism and inheritance : Accessibility 8. Classes and polymorphism. 22/42

Accessibility

Accessibility and inheritance

class D1 : public B { // Public inheritance
// ...

};

class D2 : protected B { // Protected inheritance
// ...

};

class D3 : private B { // Private inheritance
// ...

};

Polymorphism and inheritance : Accessibility 8. Classes and polymorphism. 23/42

Accessibility

Accessibility and inheritance

Accessibility in B Accessibility through D

public public

Public inheritance protected protected

private private

public protected

Protected inheritance protected protected

private private

public private

Private inheritance protected private

private private

The accessibility inside D is not affected by the type of inheritance
Polymorphism and inheritance : Accessibility 8. Classes and polymorphism. 24/42

Function overloading and inheritance

Function overloading does not work as usual
between levels in a class hierarchy

class C1 {
public:

void f(int) {cout << "C1::f(int)\n";}
};

class C2 : public C1 {
public:

void f(); {cout << "C2::f(void)\n";}
};

C1 a;
C2 b;
a.f(5); // Ok, calls C1::f(int)
b.f(); // Ok, calls C2::f(void)
b.f(2) // Error! C1::f is hidden!
b.C1::f(10); // Ok

Polymorphism and inheritance : Accessibility 8. Classes and polymorphism. 25/42

Function overloading and inheritance
Make base class names visible with using

Function overloading between levels of a class hierarchy

class C1 {
public:

void f(int); {cout << "C1::f(int)\n";}
};

class C2 : public C1 {
public:

using C1::f;
void f(); {cout << "C2::f(void)\n";}

};

//...
C1 a;
C2 b;
a.f(5); // Ok, calls C1::f(int)
b.f(); // Ok, calls C2::f(void)
b.f(2) // Ok, calls C1::f(int)

Polymorphism and inheritance : Accessibility 8. Classes and polymorphism. 26/42

Inheritance and scope

I The scope of a derived class is nested inside the base class
I Names in the base class are visible in derived classes
I if not hidden by the same name in the derived class

I Use the scope operator :: to access hidden names
I Name lookup happens at compile-time

I static type of a pointer or reference determines which names
are visible (like in Java)

I Virtual functions must have the same parameter types in
derived classes.

Polymorphism and inheritance : Accessibility 8. Classes and polymorphism. 27/42

Inheritance without virtual functions

In C++ member functions are not virtual unless declared so.
(Difference from Java)

I It is possible to inherit from a class and hide functions.
I Base class funcions can be called explicitly
I can be used to “extend” a function. (Add things before and

after the function.)

Polymorphism and inheritance : Inheritance without polymorphism 8. Classes and polymorphism. 28/42

Inheritance without virtual functions
Example

struct Clock{
Clock(int h, int m, int s) :seconds {60*(60*h+m) + s} {}
Clock& tick (); // NB! Not virtual
int get_ticks () {return seconds ;}

private:
int seconds;

};
struct AlarmClock : public Clock {

using Clock::Clock;
void setAlarm(int h, int m, int s);
AlarmClock& tick (); // hides Clock::tick()
void soundAlarm ();

private:
int alarmTime;

};

AlarmClock& AlarmClock ::tick()
{

Clock::tick (); // explicit call of base class function
if(get_ticks () == alarmTime) soundAlarm ();
return *this;

}

Polymorphism and inheritance : Inheritance without polymorphism 8. Classes and polymorphism. 29/42

Example: A class hierarchy

class Animal{
public:

void speak () const { cout << get_sound () << endl;}
virtual string get_sound () const =0;
virtual ~Animal () =default;

};

class Dog :public Animal{
public:

string get_sound () const override {return "Woof!";}
};
class Cat :public Animal{
public:

string get_sound () const override {return "Meow!";}
};
class Bird :public Animal{
public:

string get_sound () const override {return "Tweet!";}
};
class Cow :public Animal{
public:

string get_sound () const override {return "Moo!";}
};Usage 8. Classes and polymorphism. 30/42

Example
Use (not polymorphic)

int main()
{

Dog d;
Cat c;
Bird b;
Cow w;

d.speak (); Woof!
c.speak (); Meow!
b.speak (); Tweet!
w.speak (); Moo!

}

Usage 8. Classes and polymorphism. 31/42

Example
Call by reference

void test_polymorph(const Animal& a)
{

a.speak ();
}

int main()
{

Dog d;
Cat c;
Bird b;
Cow w;

test_polymorph(d); Woof!
test_polymorph(c); Meow!
test_polymorph(b); Tweet!
test_polymorph(w); Moo!

}

Usage 8. Classes and polymorphism. 32/42

Example
Container with polymorph objects

int main()
{

Dog d;
Cat c;
Bird b;
Cow w;

vector <Animal > zoo{d,c,b,w};

for(auto x : zoo){
x.speak ();

};

}

error: cannot allocate an object of abstract type ’Animal ’

Usage 8. Classes and polymorphism. 33/42

Example
Must use container of pointers

int main()
{

Dog d;
Cat c;
Bird b;
Cow w;

vector <Animal*> zoo{&d,&c,&b,&w};

for(auto x : zoo){
x->speak (); Woof!

}; Meow!
Tweet!

} Moo!

Usage 8. Classes and polymorphism. 34/42

Pitfalls

I Type conversion
I Copying objects of polymorph types

Pitfalls 8. Classes and polymorphism. 35/42

Type conversion

I Be careful with type casts
I In particular (Derived*) base_class_pointer
I No safety net, no ClassCastException

I Use dynamic_cast (returns nullptr or throws if not OK)
Vector v;

Container* c = &v;

if(dynamic_cast <Vector*>(c)) {
cout << " *c instanceof Vector\n";

}

I typeid corresponds to .getClass() in Java
if(typeid (*c) == typeid(Vector)) {

cout << " *c is a Vector\n";
}

Pitfalls 8. Classes and polymorphism. 36/42

Object slicing
Example

class Point {...};
class Point3d : public Point {...};

Point3d b;
Point a = b;

Not dangerous, but a only contains the Point part of b

Point3d b1;
Point3d b2;

Point& point_ref = b2;
point_ref = b1;

Wrong! b2 now contains the Point part of b1 and the Point3d part
of its old value.

Pitfalls 8. Classes and polymorphism. 37/42

Object slicing
Example

struct Point{
Point(int xi, int yi) :x{xi}, y{yi} {}
virtual void print() const; // prints Point(x,y)
int x;
int y;

};

struct Point3d :public Point{
Point3d(int xi, int yi, int zi) :Point(xi,yi), z{zi} {}
virtual void print() const; // prints Point3d(x,y,z)
int z;

};

void test_slicing () {
Point3d q1{1,2,3};
Point3d q2{3,4,5};

q2.print (); Point3d(3,4,5)
Point& pr = q2;

pr = q1; solution: virtual operator=
q2.print (); Point3d(1,2,5)

}
Pitfalls 8. Classes and polymorphism. 38/42

Object slicing
Solution with virtual operator=

struct Point {
. . .
virtual Point& operator =(const Point& p) =default;

};

struct Point3d :public Point{
. . .
virtual Point3d& operator =(const Point& p) noexcept;

};

Point3d& Point3d :: operator =(const Point& p) noexcept
{

Point:: operator =(p);
auto p3d = dynamic_cast <const Point3d *>(&p);
if(p3d){

z = p3d ->z;
} else {

z = 0;
}
return *this;

}

Pitfalls 8. Classes and polymorphism. 39/42

Next lecture
Standard library containers. More about inheritance.

References to sections in Lippman
Sequential containers 9.1 – 9.3
Container Adapters 9.6
Associative containers chapter 11
Tuples 17.1
Swap 13.3

Pitfalls 8. Classes and polymorphism. 41/42

Suggested reading

References to sections in Lippman
Dynamic polymorphism and inheritance chapter 15 – 15.4
Accessibility and scope 15.5 – 15.6
Type conversions and polymorphism 15.2.3
Inheritance and resource management 15.7
Polymorph types and containers 15.8
Multiple inheritance 18.3
Virtual base classes 18.3.4 – 18.3.5

Pitfalls 8. Classes and polymorphism. 42/42

