
EDAF50 – C++ Programming

4. Classes

Sven Gestegård Robertz
Computer Science, LTH

2019

Outline

1 Classes
Constructors
the pointer this
const for objects and members
Copying objects
friend
Operator overloading
Static members

4. Classes 2/1

User-defined types
Categories

I Concrete classes
I Abstract classes
I Class hierarchies

Classes 4. Classes 3/42

User-defined types
Concrete classes

A concrete type
I “behaves just like a built-in type”
I its representation is part of its definition,

That allows us to
I refer to objects directly (not just using pointers or references)
I initialize objects directly and completely (with a constructor)
I place objects

I on the stack (i.e., in local variables)
I in other objects
I in statically allocated memory (e.g., global variables)

I copy objects
I assignment of a variable
I copy-constructing an object
I value parameter of a function

Classes 4. Classes 4/42

Constructors

Default constructor
I A constructor that can be called without arguments

I May have parameters with default values

I Automatically defined if no constructor is defined
(in declaration: =default, cannot be called if =delete)

I If not defined, the type is not default constructible

Default constructor with member initializer list.

class Bar {
public:

Bar(int v=100, bool b=false) :value{v},flag{b} {}
private:

int value;
bool flag;

};

Classes : Constructors 4. Classes 5/42

Constructors
Default constructor

Default arguments
I If a constructor can be called without arguments, it is a

default constructor.

class KomplextTal {
public:

KomplextTal(float x=1):re(x),im(0) {}
//...

};

gives the same default constructor as the explicit
KomplextTal ():re{1},im{0} {}

Classes : Constructors 4. Classes 6/42

Constructors
Two ways of initializing members

With member initializer list in constructor
class Bar {
public:

Bar(int v, bool b) :value{v},flag{b} {}
private:

int value;
bool flag;

};

Members can have a default initializer, in C++11:
class Foo {
public:

Foo() =default;
private:

int value {0};
bool flag {false };

};

I prefer default initializer to overloaded constructors or
default arguments

Classes : Constructors 4. Classes 7/42

Constructors
Initialization and assignment

It is (often) possible to write like in Java, but
I it is less efficient
I the members must be assignable

Java-style: assignment in constructor

class Foo {
public:

Foo(const Bar& v) {
value = v; NB! assignment, not initialization

}
private:

Bar value; is default constructed before the body of the constructor
};

An object is initialized before the body of the constructor is run

Classes : Constructors 4. Classes 8/42

Constructors
Member initialization rules

class Bar {
public:

Bar() =default;
Bar(int v, bool b) :value{v},flag{b} {}

private:
int value {0};
bool flag {true};

};

I If a member has both default initializer and a member
initializer in the constructor, the constructor is used.

I Members are initialized in declaration order. (Compiler
warning if member initializers are in different order.)

I Bar() =default; is necessary to make the compiler generate a
default constructor (as another constructor is defined)
.

Classes : Constructors 4. Classes 9/42

Constructors
Prefer default member initializers

Use default member initializers if class member variables have
default values.

Default values through overloaded ctors: risk of inconsistency

class Simple {
public:

Simple () :a(1), b(2), c(3) {}
Simple(int aa , int bb, int cc=-1) :a(aa), b(bb), c(cc) {}
Simple(int aa) :a(aa), b(0), c(0) {}

private:
int a;
int b;
int c;

};

Classes : Constructors 4. Classes 10/42

Constructors
Prefer default member initializers

Use default member initializers if class member variables have
default values.

With default initializers: consistent

class Simple {
public:

Simple () =default;
Simple(int aa , int bb, int cc) :a(aa), b(bb), c(cc) {}
Simple(int aa) : a(aa) {}

private:
int a {-1};
int b {-1};
int c {-1};

};

Classes : Constructors 4. Classes 11/42

Constructors
Default constructor and parentheses

The default constructor cannot be called with empty parentheses.
Bar b1;
Bar b2{};
Bar be(); // Compiler error! "most vexing parse"
Bar b3 (25); // OK

Bar* bp1 = new Bar;
Bar* bp2 = new Bar{};
Bar* bp3 = new Bar(); //OK

Classes : Constructors 4. Classes 12/42

Default constructor and initialization

I automatically generated default constructor (=default)
does not always initialize members
I global variables are initialized to 0 (or corresponding)
I local variables are not initialized (different meaning from Java)

struct A { int x; };

int i; // i is initialized to 0 (global variable)
A a; // a.x is initialized to 0 (global variable)

int main() {
int j; // j is uninitialized
int k = int(); // k is initialized to 0
int l{}; // l is initialized to 0

A b; // b.x is uninitialized
A c = A(); // c.x is initialized to 0
A d{}; // d.x is initialized to 0

}
I always initialize variables
I always implement default constructor (or =delete)

Classes : Constructors 4. Classes 13/42

Constructors
Delegating constructors (C++11)

In C++11 a constructor can call another (like this(...) in Java).

struct Test{
int val;

Test(int v) :val{v} {}

Test(int v, int scale) :Test(v*scale) {}; // delegation

Test(int a, int b, int c) :Test(a+b+c) {}; // delegation
};

A delegating constructor call shall be the only member-initializer.
(A constructor initializes an object completely.)

Classes : Constructors 4. Classes 14/42

The pointer this

Self reference

In a member function, there is an implicit pointer this, pointing to
the object the function was called on. (cf. this in Java).

I typical use: return *this for operations returning a reference
to the object itself

Classes : the pointer this 4. Classes 15/42

Constant objects

I const means “I promise not to change this”

I Objects (variables) can be declared const
I “I promise not to change the variable”

I References can be declared const
I “I promise not to change the referenced object”
I a const& can refer to a non-const object
I common for function parameters

I Member functions can be declared const
I “I promise that the function does not change the state of the

object”
I technically: implicit declaration const T* const this;

Classes : const for objects and members 4. Classes 16/42

Constant objects
Example

const references and const functions
class Point{
public:

Point(int xi , int yi) :x{xi},y{yi}{}
int get_x() const {return x;}
int get_y () const {return y;}
void set_x(int xi) {x = xi;}
void set_y(int yi) {y = yi;}

private:
int x;
int y;

};
void example(Point& p, const Point& o) {

p.set_y (10);
cout << "p: "<< p.get_x() << "," << p.get_y() << endl;

o.set_y (10);
cout << "o: "<< o.get_x() << "," << o.get_y() << endl;

}
passing ’const Point ’ as ’this ’ argument discards qualifiers

Classes : const for objects and members 4. Classes 17/42

Constant objects
Example

Note const in the declaration (and definition!) of the member
function operator[](int) const: (“const is part of the name”)
class Vector {
public:

//...
double operator [](int i) const; // function declaration
//...

private:
double* elem;
//...

};

double Vector :: operator [](int i) const // function definition
{

return elem[i];
}

Classes : const for objects and members 4. Classes 18/42

Constant objects
Example: const overloading

The functions operator[](int) and operator[](int) const

are different functions.

Example

class Vector {
double& operator [](int i) {return elem[i];}
double operator [](int i) const {return elem[i];}

private:
double* elem;
//...

};

I If operator[] is called on a
I non-const object, a reference is returned
I const object, a copy is returned

I The assignment v[2] = 10; only works on a non-const v.

Classes : const for objects and members 4. Classes 19/42

User-defined types
Concrete classes

A concrete type
I “behaves just like a built-in type”
I the representation is part if the definition,

That allows us to
I refer to objects directly (not just using pointers or references)
I initialize objects directly and completely (with a constructor)
I place objects

I on the stack (i.e., in local variables)
I in other objects
I in statically allocated memory (e.g., global variables)

I copy objects
I assignment of a variable
I copy-constructing an object
I value parameter of a function

Classes : Copying objects 4. Classes 20/42

Constructors

Copy Constructor
I Is called when initializing an object
I Is not called on assignment
I Can be defined, otherwise a standard copy constructor is

generated (=default, =delete)

void function(Bar); // by-value parameter

Bar b1(10, false };

Bar b2{b1}; // the copy constructor is called
Bar b3(b2); // the copy constructor is called
Bar b4 = b2; // the copy constructor is called

function(b2); // the copy constructor is called

Classes : Copying objects 4. Classes 21/42

Copy Constructors
default

I Declaration:

class C {
public:

C(const C&) =default;
};

I default copy constructor
I Is automatically generated if not defined in the code

I exception: if there are members that cannot be copied
I shallow copy of each member

I Works for members variables with built-in types,
I or classes that behave like built-in types (RAII-types)
I Does not work for classes which manage resources “manually”

(More on this later)

Classes : Copying objects 4. Classes 22/42

Classes
Example: Copying the Vector class

class Vector{
public:

Vector(int s) :elem{new double[s]}, sz{s} {}
~Vector () {delete [] elem;}
double& operator [](int i) {return elem[i];}
int size() {return sz;}

private:
double* elem;
int sz;

};

elem
sz: 5Vector vec:

No copy constructor defined ⇒ default generated.

Classes : Copying objects 4. Classes 23/42

Classes
Default copy construction: shallow copy

void f(Vector v);

void test()
{

Vector vec (5);
f(vec); // call by value -> copy
// ... other uses of vec

}

elem
sz: 5vec:

sz: 5
elem

v:

I The parameter v is default copy constructed: the value of each
member variable is copied

I When f() returns, the destructor of v is executed:
(delete[] elem;)

I The array pointed to by both copies is deleted. Disaster!
Classes : Copying objects 4. Classes 24/42

X

Constructors
Special cases: zero or one parameter

Copy Constructor
I Has a const & as parameter: Bar::Bar(const Bar& b);

Converting constructor
I A constructor with one parameter defines

an implicit type conversion from the type of the parameter

class KomplextTal {
public:

KomplextTal ():re{0},im{0} {}
KomplextTal(const KomplextTal& k) :re{k.re},im{k.im} {}
KomplextTal(double x):re{x},im{0} {}
//...

private:
double re;
double im;

};

default constructor copy constructor converting constructor
Classes : Copying objects 4. Classes 25/42

Converting constructor
Warning - implicit conversion

class Vector{
public:

Vector(int s); // create Vector with size s
...
int size() const; // return size of Vector
...

};

void example_vector ()
{

Vector v = 7;

std::cout << "v.size (): " << v.size() << std::endl;

}

v.size (): 7

In std::vector the corresponding constructor is declared
explicit vector(size_type count);

Classes : Copying objects 4. Classes 26/42

Converting constructor and explicit

explicit specifies that a constructor does not allow implicit type
conversion.

struct A
{

A(int);
// ...

};

A a1(2); // OK
A a2 = 1; // OK
A a3 = (A)1; // OK

a3 = 17; // OK [1]

struct B
{

explicit B(int);
// ...

};

B b1(2); // OK
B b2 = 1; // Error! [2]
B b3 = (B)1; // OK: explicit cast

b3 = 17; // Error! [3]

[1]: construct an A(17), and then copy

[2]: conversion from ’int ’ to non -scalar type ’B’ requested
[3]: no match for ’operator=’ (operand types are ’B’ and ’int ’)

Classes : Copying objects 4. Classes 27/42

Copying objects
Difference between construction and assignment

void function(Bar); // by-value parameter

Bar b1(10, false };

Bar b2{b1}; // the copy constructor is called
Bar b3(b2); // the copy constructor is called
Bar b4 = b2; // the copy constructor is called

function(b2); // the copy constructor is called

b4 = b3; // the copy constructor is not called

copy assignment – not construction

Classes : Copying objects 4. Classes 28/42

Copying objects
the copy assignment operator: operator=

The copy assignment operator is implicitly defined
I with the type T& T::operator=(const T&)

I if no operator= is declared for the type
I if all member variables can be copied

I i.e., define a copy-assignment operator

I If all members are of built-in (and RAII) types the default
variant works (same problems as with copy ctor).

elem
sz: 5vec:

sz: 5
elem

v:

I More on copy control when we discuss resource management

Classes : Copying objects 4. Classes 29/42

Preventing copying

I Declaration:

class C {
public:

C(const C&) =delete;
C& operator =(const C&) =delete;

};

I A class without copy constructor and copy assignment
operator cannot be copied.
I C++-98: declare private and don’t define

Classes : Copying objects 4. Classes 30/42

friend

Functions or classes with access to all members in a class without
being members themselves

Friend declaration in the class KomplextTal
class KomplextTal{

//...
private:

int re;
int im;
friend ostream& operator <<(ostream&, const KomplextTal &);

};

Definition outside the class KomplextTal
ostream& operator <<(ostream& o, const KomplextTal& c) {

return o << c.re << "+" c.im << "i";
}

The free function operator<<(ostream&, const KomplextTal&) can
access private members in KomplextTal.

Classes : friend 4. Classes 31/42

friend

Functions or classes with full access to all members in a class
without being members themselves

I Free functions,
I member functions of other classes, or
I entire classes can be friends.
I cf. package visibility in Java
I A friend declaration is not part of the class interface, and can

be placed anywhere in the class definition.

Classes : friend 4. Classes 32/42

Operator overloading

Most operators can be overloaded, except
sizeof . .* :: ?:

E.g., these operators can be overloaded
=
+ - * / %
^ & | ~
<< >>
&& || !
!= == < >
++ -- += *=
() []

. . . and the pointer and memory related
* -> ->*
&
new delete new[] delete []

Classes : Operator overloading 4. Classes 33/42

Operator overloading

Operator overloading syntax:

return_type operator⊗ (parameters...)

for an operator ⊗ e.g. == or +

For classes, two possibilities:

I as a member function
I for binary operators, if the order of operands is suitable

I a binary operator takes one argument
I *this is the left operand,
I the function argument is the right operand

I as a free function
I if the public interface is enough, or
I if the function is declared friend

Classes : Operator overloading 4. Classes 34/42

Operator overloading
as member function and as free function

Example: declaration as member functions

class Komplex {
public:

Komplex(float r, float i) : re(r), im(i) {}
Komplex operator +(const Komplex& rhs) const;
Komplex operator *(const Komplex& rhs) const;
// ...

private:
float re , im;

};

Example: declaration of operator+ as friend

Declaration inside the class definition of Komplex:
friend Komplex operator +(const Komplex& l, const Komplex& r);

Note the number of parameters

Classes : Operator overloading 4. Classes 35/42

Operator overloading

Defining operator+ in two ways:

I As member function (one parameter)
Komplex Komplex :: operator +(const Komplex& rhs)const{

return Komplex(re + rhs.re, im + rhs.im);
}

I As a free function (two parameters)
Komplex operator +(const Komplex& lhs , const Komplex& rhs){

return Komplex(lhs.re + rhs.re, lhs.im + rhs.im);
}

NB! the friend declaration is only in the class definition

Classes : Operator overloading 4. Classes 36/42

Operator overloading

Defining operator+ in two ways:

I As member function
Komplex Komplex :: operator +(const Komplex& rhs)const{

return Komplex(re + rhs.re, im + rhs.im);
} the right operand

cannot be changed
the left operand
cannot be changedI As a free function

Komplex operator +(const Komplex& lhs , const Komplex& rhs){
return Komplex(lhs.re + rhs.re, lhs.im + rhs.im);

}

NB! the friend declaration is only in the class definition

Classes : Operator overloading 4. Classes 36/42

Operator overloading
Another implementation of +, using +=

Class definition

class Komplex {
public:

const Komplex& operator +=(const Komplex& z) {
re += z.re;
im += z.im;
return *this;

}
// ...

};

Free function, does not need to be friend

Komplex operator +(Komplex a, const Komplex& b) {
return a+=b;

}

NB! call by value: we want to return a copy.

Classes : Operator overloading 4. Classes 37/42

NB! Returns const reference to
disallow e.g. (a += b) = c;

(non-standard, different from
built-in types).

Operator overloading
Example: inline friend operator<<

The definition (in the class definition)

#include <ostream >
using std:: ostream;

class Komplex{
friend ostream& operator <<(ostream& o, const Komplex& v) {

o << v.re << ’+’ << v.im << ’i’;
return o;

}
//...

};

I inline friend definition: defines a free function in the same
namespace as the class

I operator<< cannot be a member function (due to the order of
operands it would have to be a member of std::ostream)

Classes : Operator overloading 4. Classes 38/42

Conversion operators
Exempel: Counter

Conversion to int

struct Counter {
Counter(int c=0) :cnt{c} {};
Counter& inc() {++cnt; return *this;}
Counter inc() const {return Counter(cnt +1);}
int get() const {return cnt;}
operator int() const {return cnt;}

private:
int cnt {0};

};

Note: operator T().
I no return type in declaration (must obviously be T)
I can be declared explicit

Classes : Operator overloading 4. Classes 39/42

Static members

static members: shared by all objects of the type (like Java)

I declared in the class definition
I defined outside class definition (if not const)
I can be public or private (or protected)

Classes : Static members 4. Classes 40/42

Suggested reading

References to sections in Lippman
Classes 2.6, 7.1.4, 7.1.5
Constructors 7.5–7.5.4
(Aggregate classes) ("C structs" without constructors) 7.5.5
Destructors 13.1.3
this and const p 257–258
inline 6.5.2, p 273
friend 7.2.1
static members 7.6
Copying 13.1.1
Assignment 13.1.2
Operator overloading 14.1 – 14.3

Classes : Static members 4. Classes 41/42

Next lecture

References to sections in Lippman
Dynamic memory and smart pointers 12.1
Dynamically allocated arrays 12.2.1
Classes, resource management 13.1, 13.2
Type casts 4.11

Classes : Static members 4. Classes 42/42

