
EDAF50 – C++ Programming

2. Pointers. Arrays. User defined types.

Sven Gestegård Robertz
Computer Science, LTH

2019

Outline

1 Pointers, arrays, and references
Pointers: Syntax and semantics
References
Arrays

2 Declarations, scope and lifetime
3 User defined types

Structures
The operator ->
Classes

4 The standard library alternatives to C-style arrays
std::string

std::vector

5 Constants

2. Pointers. Arrays. User defined types. 2/1

Data types
Pointers, Arrays and References

I References
I Pointers (similar to Java references)
I Arrays (“built-in arrays”). Similar to Java arrays of primitive

types

Pointers, arrays, and references : Pointers: Syntax and semantics 2. Pointers. Arrays. User defined types. 3/46

Pointers

Similar to references in Java, but
I a pointer is the memory address of an object
I a pointer is an object (a C++ reference is not)

I can be assigned and copied
I has an address
I can be declared without initialization, but then it gets an

undefined value , as do other variables

I four possible states
1 point to an object
2 point to the address immediately past the end of an object
3 point to nothing: nullptr. Before C++11: NULL
4 invalid

I can be used as an iteger value
I arithmetic, comparisons, etc.

Be very careful!
Pointers, arrays, and references : Pointers: Syntax and semantics 2. Pointers. Arrays. User defined types. 4/46

Pointers
Syntax, operatorers * and &

I In a declaration:
I prefix *: “pointer to”

int *p; : p is a pointer to an int
void swap(int*, int*); : function taking two pointers

I prefix &: “reference to”
int &r; : r is a reference to an int

I In an expression:
I prefix *: dereference, “contents of” (pointer → object)

*p = 17; the object that p points to is assigned 17
I prefix &: “address of”, “pointer to“ (object → pointer)

int x = 17;
int y = 42;

swap(&x, &y); Call swap(int*, int*) with pointers to x and y

Pointers, arrays, and references : Pointers: Syntax and semantics 2. Pointers. Arrays. User defined types. 5/46

Pointers
Be careful with declarations

Advice: One declaration per line

int *a; // pointer to int
int* b; // pointer to int
int c; // int

int* d, e; // d is a pointer , e is an int
int* f, *g; // f and g are both pointers

Choose a style, either int *a or int* b, and be consistent.

Pointers, arrays, and references : Pointers: Syntax and semantics 2. Pointers. Arrays. User defined types. 6/46

References

References are similar to pointers, but
I A reference is an alias to a variable

I cannot be changed (reseated to refer to another variable)
I must be initialized
I is not an object (has no address)

I Dereferencing does not use the operator *
I Using a reference is to use the referenced object.

Use a reference if you don’t have (a good reason) to use a pointer.

I E.g., if it may have the value nullptr (“no object”)
I or if you need to change(“reseat”) the pointer
I More on this later.

Pointers, arrays, and references : References 2. Pointers. Arrays. User defined types. 7/46

Pointers and references
Call by pointer

In some cases, a pointer is used instead of a reference to “call by
reference:

Example: swap two integers

void swap2(int* a, int* b)
{

if(a != nullptr && b != nullptr) {
int tmp=*a;
*a = *b;
*b = tmp;

}
} ... and use: int x, y;

...
swap2(&x, &y);

NB!:
I a pointer can be nullptr or uninitialized
I dereferencing such a pointer gives undefined behaviour

Pointers, arrays, and references : References 2. Pointers. Arrays. User defined types. 7/46

Pointers and references

Pointer and reference versions of swap

// References
void swap(int& a, int& b)
{

int tmp = a;
a = b;
b = tmp;

}

// Pointers
void swap(int* pa, int* pb)
{

if(pa != nullptr && pb != nullptr) {
int tmp = *pa;
*pa = *pb;
*pb = tmp;

}
}

int m=3, n=4;
swap(m,n); Reference version is called

swap(&m,&n); Pointer version is called

NB! Pointers are called by value: the address is copied

Pointers, arrays, and references : References 2. Pointers. Arrays. User defined types. 8/46

Arrays (“C-arrays”, “built-in arrays”)

I A sequence of values of the same type (homogeneous
sequence)

I Similar to Java for primitive types
I but no safety net – difference from Java
I an array does not know its size – the programmer’s

responsibility
I Can contain elements of any type

I Java arrays can only contain references (or primitive types)

I Can be a local (or member) variable (Difference from Java)
I Is declared T a[size]; (Difference from Java)

I The size must be a (compile-time) constant.
(Different from C99 which has VLAs)

Pointers, arrays, and references : Arrays 2. Pointers. Arrays. User defined types. 9/46

Arrays
Representation in memory

The elements of an array can be of any type
I Java: only primitive types or a reference to an object
I C++: an object or a pointer

Example: array of Point
class Point{

char x;
char y;

};

Point ps[3];

y:
x:

x:
y:
x:
y:

ps:
ps[0]

ps[1]

ps[2]

Important difference from Java: no fundamental difference
between built-in and user defined types.

Pointers, arrays, and references : Arrays 2. Pointers. Arrays. User defined types. 10/46

Multidimensional arrays

multi-dimensional arrays
I Does not (really) exist in C++

I are arrays of arrays
I Look like in Java

I Java: array of references to arrays
I C++: two alternatives

I Array of arrays
I Array of pointers (to the first element of an array)

Pointers, arrays, and references : Arrays 2. Pointers. Arrays. User defined types. 11/46

Multi-dimensional arrays

Initializing a matrix with an initializer list:

3 rows, 4 columns

int a[3][4] = {
{0, 1, 2, 3} , /* initializer list for row 0 */
{4, 5, 6, 7} , /* initializer list for row 1 */
{8, 9, 10, 11} /* initializer list for row 2 */

};

Instead of nested lists one can write the initialization as a single list:
int a[3][4] = {0,1,2,3,4,5,6,7,8,9,10,11};

I Multi-dimensional arrays are stored like an array in memory.
I The dimension closest to the name is the size of the array
I The remaining dimensions belong to the element type

Pointers, arrays, and references : Arrays 2. Pointers. Arrays. User defined types. 12/46

Multi-dimensional arrays
Representation of arrays in memory

An array T array[4] is represented memory by a sequence of four
elements of type T: | T | T | T | T |

An int[4] is represented as
| int | int | int | int |

Thus, int[3][4] is represented as
| int | int | int | int | int | int | int | int | int | int | int | int |

Pointers, arrays, and references : Arrays 2. Pointers. Arrays. User defined types. 13/46

Data types
C strings

I C strings are char[] that are null terminated.
Example: char s[6] = "Hello";

s: ’H’ ’e’ ’l’ ’l’ ’o’ ’\0’

Pointers, arrays, and references : Arrays 2. Pointers. Arrays. User defined types. 14/46

Pointers and arrays

Arrays are accessed through pointers

float f[4]; // 4 floats
float* pf; // pointer to float

pf = f; // same as = &f[0]
float x = *(pf+3); // Alt. x = pf[3];
x = pf[3]; // Alt. x = *(pf+3);

Pointers, arrays, and references : Arrays 2. Pointers. Arrays. User defined types. 15/46

Pointers and arrays
What does array indexing really mean?

The expression a[b] is equivalent to *(a + b) (and, thus, to b[a])

Definition
For a pointer, T* p, and an integer i, the expression p + i is

defined as p + i * sizeof(T)

That is,
I p+1 points to the address after the object pointed to by p

I p+i is an address i objects after p.

Example: confusing code (Don’t do this)

int a[] {1,4,5,7,9};

cout << a[2] << " == "<< 2[a] << endl;

5 == 5

Pointers, arrays, and references : Arrays 2. Pointers. Arrays. User defined types. 16/46

Pointers and arrays
Function calls

Function for zeroing an array
void zero(int* x, size_t n) {

for (int* p=x; p != x+n; ++p)
*p = 0;

}

...
int a[5];

zero(a,5);

I The name of an array variable in an expression
is interpreted as “a pointer to the first element”:
array decay

I a ⇔ &a[0]

Array subscripting
void zero(int x[], size_t n) {

for (size_t i=0; i != n; ++i)
x[i] = 0;

}

I In function parameters T a[]
is equivalent to T* a.
(Syntactic sugar)

I T* is more common

Pointers, arrays, and references : Arrays 2. Pointers. Arrays. User defined types. 17/46

Pointers and references

Pointer and reference versions of swap

// References
void swap(int& a, int& b)
{

int tmp = a;
a = b;
b = tmp;

}

// Pointers
void swap(int* pa, int* pb)
{

if(pa != nullptr && pb != nullptr) {
int tmp = *pa;
*pa = *pb;
*pb = tmp;

}
}

int m=3, n=4;
swap(m,n); Reference version is called

swap(&m,&n); Pointer version is called

NB! Pointers are called by value: the address is copied

Pointers, arrays, and references : Arrays 2. Pointers. Arrays. User defined types. 18/46

Declarations
Scope

A declaration introduces a name in a scope
Local scope: A name declared in a function is visible

I From the declaration
I To the end of the block (delimited by{ })
I Parameters to functions are local names

Class scope: A name is called a member if it is declared in a class∗.
It is visible in the entire class.

Namespace scope: A named is called a namespace member if it is
defined in a namespace∗. E.g, std::cout.

A name declared outside of the above is called a global name and is
in the global namespace.

∗ outside a function, class or enum class.

Declarations, scope and lifetime 2. Pointers. Arrays. User defined types. 19/46

Declarations
lifetimes

I The lifetime of an object is determined by its scope:
I An object

I must be initialized (constructed) before it can be used
I is destroyed at the end of its scope.

I a local variable is destroyed when the function returns

I a member variable is destroyed when the object is destroyed

I namespace objects are destroyed when the program terminates

I an object allocated with new lives until destroyed with delete.
(different from Java)
I Manual memory management
I new is not used as in Java
I Avoid new except in special cases
I more on this later

Declarations, scope and lifetime 2. Pointers. Arrays. User defined types. 20/46

User defined types

I Built-in types (e.g., char, int, double, pointers, . . .) and
operations
I Rich, but deliberately low-level
I Directly and efficiently reflect the capabilites of conventional

computer hardware

I User-defined types
I Built using the built-in types and abstraction mechanisms
I struct, class (cf. class i Java)
I Examples from the standard library

I std::string (cf. java.lang.String)
I std::vector, std::list . . . (cf. corresponding class in

java.util)
I enum class: enumeration (cf. enum in Java)

I A concrete type can behave “just like a built-in type”.

User defined types 2. Pointers. Arrays. User defined types. 21/46

Structures

Example: a vector of doubles
struct Vector {

int sz;
double* elem;

};

elem:
sz:Vector v:

A variable of the type Vector can be created with
Vector v;

but now v.sz and the pointer v.elem are uninitialized.

To be useful, we must give elem som elements to point to.

User defined types : Structures 2. Pointers. Arrays. User defined types. 22/46

Structures
Initialization

A function for initializing a Vector:
void vector_init(Vector& v, int s)
{

v.elem = new double[s];
v.sz = s;

}

A variable of type Vector, with size 10, can be created with
Vector vec;
vector_init(vec, 10); //call -by-reference: vec is changed

I the operator new allocates an object on the heap (“the free
store”)

I objects on the heap live until removed using delete

I more on (better alternatives to) this later

User defined types : Structures 2. Pointers. Arrays. User defined types. 23/46

Structures
Representation

struct Vector {
int sz;
double* elem;

};
void vector_init(Vector& v, int s)
{

v.elem = new double[s];
v.sz = s;

}

void test()
{

Vector vec;
vector_init(vec , 5);
vec.elem [2] = 7;

}

elem
sz: 5Vector vec:

7

User defined types : Structures 2. Pointers. Arrays. User defined types. 24/46

Structures
Use

Now we can use our Vector:
#include <iostream >
double read_and_sum(int s)
{

Vector v; // create Vector object
vector_init(v,s); // initialize v with size s
for(int i=0; i!=s; ++i) {

std::cin >> v.elem[i];
}

double sum {0};
for(int i=0; i!=s; ++i) {

sum += v.elem[i];
}

return sum;
}

User defined types : Structures 2. Pointers. Arrays. User defined types. 25/46

I >> is the input operator
I the standard library <iostream>

I std::cin is standard input

Structures
Access of struct members

Vector v(10);

Vector& rv = v;

Vector* pv = &v;

...

int i = v.sz; // access via name (of variable)

int j = rv.sz; // access via reference (alias for name)

int k = pv ->sz; // access via pointer

User defined types : Structures 2. Pointers. Arrays. User defined types. 26/46

Access of members through pointers
The operator ->

For a pointer p, we can express
“The member x in the object p points to in two ways:

I (*p).x

I p->x

User defined types : The operator -> 2. Pointers. Arrays. User defined types. 27/46

Classes

I Make a user-defined type behave like “a real type”
I Tight coupling between operations and the data representation
I Often: make the representation inaccessible to users

A class can have
I data members (“attributes”)
I member functions (“methods”)
I type members
I members can be

I public
I private
I protected
I like in Java

User defined types : Classes 2. Pointers. Arrays. User defined types. 28/46

Classes
Example

class Vector{
public:

Vector(int s) :elem{new double[s]}, sz{s} {} // constructor
double& operator [](int i) {return elem[i];} // subscripting
int size() {return sz;}

private:
double* elem;
int sz;

};

I constructor, like in Java
I Creates an object and initializes members

I the statements Vector vec;
vector_init(vec , 5);

become Vector vec(5);

I constructor body often empty

I operators can be overloaded, e.g. operator[](int)
I vec.elem[2] becomes vec[2]

I The representation is not accessible (elem is private)
I NB! Returns a reference so that vec[i] can be changed

(assigned)
User defined types : Classes 2. Pointers. Arrays. User defined types. 29/46

Classes
Example

double read_and_sum(int s)
{

Vector v(s); // Create and initialize a Vector of size s
for(int i=0; i!=v.size (); ++i) {

std::cin >> v[i];
}

double sum {0};
for(int i=0; i!=v.size (); ++i) {

sum += v[i];
}

return sum;
}

User defined types : Classes 2. Pointers. Arrays. User defined types. 30/46

Class definitions
Member functions: declarations and definitions

Member functions (⇔ “methods” in Java)

Definition of class

class Foo {
public:

int fun(int , int); // Declaration of member function
int get_x() {return x;} // ... incl definition (inline)
...

private:
int x;

};

NB! Semicolon after class definition

Definition of member function (outside the class)

int Foo::fun(int x, int y) {
return 3*x + 4*y;

}

No semicolon after function definition
User defined types : Classes 2. Pointers. Arrays. User defined types. 31/46

Classes
Resource management

I RAII Resource Acquisition Is Initialization
I An object is initialized by a constructor

I Allocates the needed resources
I When an object is destroyed, its destructor is executed

I Free resources owned by the object
I In the Vector example: the array pointed to by elem

class Vector{
public:
Vector(int s) :elem{new double[s]}, sz{s} {} // constructor
~Vector () {delete [] elem;} // destructor , delete the array
...

};

Manual memory management
I Objects allocated with new must be freed with delete
I Objects allocated with new[] must be freed with delete[]
I otherwise, the program has a memory leak
I (much) more on this later

User defined types : Classes 2. Pointers. Arrays. User defined types. 32/46

Two types from the standard library
Alternatives to C-style arrays

Do not use built-in arrays unless you have (a strong reason) to.
Instead of
I char[] – Strings – use std::string

I T[] – Sequences – use std::vector<T>

More like in Java:
I more functionality – “behaves like a built-in type”
I safety net

The standard library alternatives to C-style arrays 2. Pointers. Arrays. User defined types. 33/46

Strings: std::string

std::string has operations for
I assigning
I copying
I concatenation
I comparison
I input and output (<< >>)

and
I knows its size

Similar to java.lang.String but is mutable.

The standard library alternatives to C-style arrays : std::string 2. Pointers. Arrays. User defined types. 34/46

Sequences: std::vector<T>

A std::vector<T> is
I an ordered collection of objects (of the same type, T)
I every element has an index

which, in contrast to a built-in array
I knows its size

I vector<T>::operator[] does no bounds checking
I vector<T>::at(size_type) throws out_of_range

I can grow (and shrink)
I can be assigned, compared, etc.

Similar to java.util.ArrayList

Is a class template

The standard library alternatives to C-style arrays : std::vector 2. Pointers. Arrays. User defined types. 35/46

Example: std::string

#include <iostream >
#include <string >
using std:: string;
using std::cout;
using std::endl;

string make_email(string fname ,
string lname ,
const string& domain)

{
fname [0] = toupper(fname [0]);
lname [0] = toupper(lname [0]);
return fname + ’.’ + lname + ’@’ + domain;

}

void test_string ()
{

string sr = make_email("sven", "robertz", "cs.lth.se");

cout << sr << endl;
}

Sven.Robertz@cs.lth.se

The standard library alternatives to C-style arrays : std::vector 2. Pointers. Arrays. User defined types. 36/46

Example: std::vector<int>

initialisation

void print_vec(const std:: string& s, const std::vector <int >& v)
{

std::cout << s << " : " ;
for(int e : v) {

std::cout << e << " ";
}
std::cout << std::endl;

}
void test_vector_init ()
{

std::vector <int > x(7);
print_vec("x", x);

std::vector <int > y(7,5);
print_vec("y", y);

std::vector <int > z{1,2,3};
print_vec("z", z);

}

x: 0 0 0 0 0 0 0
y: 5 5 5 5 5 5 5
z: 1 2 3

The standard library alternatives to C-style arrays : std::vector 2. Pointers. Arrays. User defined types. 37/46

Example: std::vector<int>

assignment

void test_vector_assign ()
{

std::vector <int > x {1,2,3,4,5};
print_vec("x", x);
std::vector <int > y {10 ,20 ,30 ,40 ,50};
print_vec("y", y);
std::vector <int > z;
print_vec("z", z);
z = {1,2,3,4,5,6,7,8,9};
print_vec("z", z);
z = x;
print_vec("z", z);

}

x : 1 2 3 4 5
y : 10 20 30 40 50
z :
z : 1 2 3 4 5 6 7 8 9
z : 1 2 3 4 5

The standard library alternatives to C-style arrays : std::vector 2. Pointers. Arrays. User defined types. 38/46

Example: std::vector<int>

insertion and comparison

void test_vector_eq ()
{

std::vector <int > x {1,2,3};
std::vector <int > y;
y.push_back (1);
y.push_back (2);
y.push_back (3);

if(x == y) {
std::cout << "equal" << std::endl;

} else {
std::cout << "not equal" << std::endl;

}
}

equal

The standard library alternatives to C-style arrays : std::vector 2. Pointers. Arrays. User defined types. 39/46

Data types
Two kinds of constants

I A variable declared const must not be changed(final in Java)
I Roughly:“I promise not to change this variable.”
I Is checked by the compiler
I Use when specifying function interfaces

I A function that does not change its (reference) argument
I A member function (“method”) that does not change the state

of the object.
I Important for function overloading

I T and const T are different types
I One can overload int f(T&) and int f(const T&)

(for some type T)
I A variable declared constexpr must have a value that can be

computed at compile time.
I Use to specify constants
I Introduced in C++-11

Constants 2. Pointers. Arrays. User defined types. 40/46

Functions can be constexpr

I Means that they can be computed at compile time if the
arguments are constexpr

example:
constexpr int square(int x)
{

return x*x;
}

void test_constexpr_fn ()
{

char matrix[square (4)];

cout << "sizeof(matrix) = " << sizeof(matrix) << endl;
}

Without constexpr the compiler gives the error
error: variable length arrays are a C99 feature

Constants 2. Pointers. Arrays. User defined types. 41/46

const and pointers

const modifies everything to the left (exception: if const is first, it
modifies what is directly after)

Example

int* ptr;
const int* ptrToConst; //NB! (const int) *
int const* ptrToConst , // equivalent , clearer?

int* const constPtr; // the pointer is constant

const int* const constPtrToConst; // Both pointer and object
int const* const constPtrToConst; // equivalent , clearer?

Be careful when reading:

char *strcpy(char *dest , const char *src);

(const char)*, not const (char*)

Constants 2. Pointers. Arrays. User defined types. 42/46

const and pointers
Example:

void Exempel(int* ptr ,
int const * ptrToConst ,
int* const constPtr ,
int const * const constPtrToConst)

{
*ptr = 0; // OK: changes the value of the object pointed to
ptr = nullptr; // OK: changes the pointer

*ptrToConst = 0; // Error! cannot change the value
ptrToConst = nullptr; // OK: changes the pointer

*constPtr = 0; // OK: changes the value
constPtr = nullptr; // Error! cannot change the pointer

*constPtrToConst = 0; // Error! cannot change the value
constPtrToConst = nullptr; // Error! cannot change the pointer

}

Constants 2. Pointers. Arrays. User defined types. 42/46

Pointers

Pointers to constant and constant pointer

int k; // int that can be modified
int const c = 100;// constant int
int const * pc; // pointer to constant int
int *pi; // pointer to modifiable int

pc = &c; // OK
pc = &k; // OK, but k cannot be changed through *pc
pi = &c; // Error! pi may not point to a constant
*pc = 0; // Error! pc is a pointer to const int

int* const cp = &k; // Constant pointer
cp = nullptr; // Error! The pointer cannot be reseated
*cp = 123; // OK! Changes k to 123

Constants 2. Pointers. Arrays. User defined types. 42/46

char[], char* och const char*

const is important for C-strings

A string literal (e.g., "I am a string literal") is const.
I Can be stored in read-only memory

I char* str1 = "Hello"; — deprecated in C++ – gives a
warning

I const char* str2 = "Hello"; — OK, the string is const

I char str3[] = "Hello"; — str3 can be modified

Constants 2. Pointers. Arrays. User defined types. 43/46

Suggested reading

References to sections in Lippman
Pointers and references 2.3
Arrays and pointers 3.5
Classes 2.6, 7.1.4, 7.1.5, 13.1.3
std::string 3.2
std::vector 3.3
Scope and lifetimes 2.2.4, 6.1.1
const, constexpr 2.4
I/O 1.2, 8.1–8.2, 17.5.2
Operator overloading 14.1 – 14.3
enumeration types 19.3

Summary 2. Pointers. Arrays. User defined types. 45/46

Next lecture
Modularity

References to sections in Lippman
Exceptions 5.6, 18.1.1
Namespaces 18.2
I/O 1.2, 8.1–8.2, 17.5.2

Constants 2. Pointers. Arrays. User defined types. 46/46

