
EDAF50 – C++ Programming

1. Introduction

Sven Gestegård Robertz
Computer Science, LTH

2019

Outline

1 About the course

2 Presentation of C++
History
Introduction
Functions
Data types and variables

1. Introduction 2/1

EDAF50: C++ programming, 7.5 hp

The course gives detailed knowledge about C++. Special emphasis
is placed on the language constructs that make C++ a more

advanced, and also more complex, language than Java.

Knowledge and understanding
I know about and be able to describe the

differences between C++ and Java
I have detailed knowledge about C++

and the standard library STL

Competences and skills
I be able to choose the correct language construct

to solve a given problem
I be able to use tools to develop C++ programs in

a Unix environment
About the course 1. Introduction 3/33

EDAF50: C++ programming , 7.5 hp
Important differences to Java

New or extended concepts in C++
(compared to Java / introductory courses):

I Pointers and memory management
I Functions: call-by-value and call-by-reference
I Polymorphism: both static and dynamic

(compare templates to generics)
I Operator overloading

About the course 1. Introduction 4/33

EDAF50: C++ programming , 7.5 hp
Examination details

The compulsory course items are
I laborations
I project
I written examination

The final grade is based on the result of the written examination.

About the course 1. Introduction 5/33

EDAF50: C++ programming , 7.5 hp
Administration

I Course plan
I Registration
I Sign up for labs

I On the web - link from the course web page
I Sign up for a group – same time all weeks

About the course 1. Introduction 6/33

History
C++ is a descendent of Simula and C.

1967: Simula (Dahl & Nygaard)
1972: C (Dennis Ritchie)
1978: K&R C (Kernighan & Ritchie)
1980: C with Classes (Bjarne Stroustrup)
1985: C++ (Bjarne Stroustrup)
I ISO standard 1998

Other relatives:

1995: Java (James Gosling et al.)
2000: C# (Anders Hejlsberg)
I virtual machine
I automatic memory management
I safe languages

Presentation of C++ : History 1. Introduction 7/33

C++ is not a pure extension of C

I both ISO C and ISO C++ are
descendants of K&R C, and are
“siblings”

I some details are incompatible
between ISO C och C++

I Areas are not to scale

In general: Don’t write C++ as if it were C

Presentation of C++ : History 1. Introduction 8/33

What is C++?

The ISO standard for C++ defines two things
I Core language features, e.g.,

I data types (e.g., char, int)
I control flow mechanisms (e.g., if and while statements).
I rules for declarations
I templates
I exceptions

I Standard-library components, e.g.,
I Data structures (e.g., string, vector, and map)
I Operations for in- and output (e.g., << and getline())
I Algorithms (e.g., find() and sort())

The standard library is written in C++
I Example of what is possible

Presentation of C++ : History 1. Introduction 9/33

A minimal program in C++

empty.cc

int main() { }

I has no parameters
I does nothing
I the return value of main() is interpreted by the system as an

error code
I non-zero means error
I no explicit return value is interpreted as zero (NB! only in

main())
I rarely used in Windows
I often used on Linux/Mac

Presentation of C++ : Introduction 1. Introduction 10/33

The first C++ program
Hello, World!

hello.cc

#include <iostream >
int main()
{

std::cout << "Hello , World!" << std::endl;
return 0;

}

hello.cc

#include <iostream >
using std::cout;
using std::endl;

int main()
{

cout << "Hello , World!" << endl;
return 0;

}

Presentation of C++ : Introduction 1. Introduction 11/33

What is a program?

C++ is a compiled language
I Source code
I Object file(s)
I Executable file

Source file 1

Source file 2

Compilation

Compilation

Object file 1

Object file 2

Linking Executable

Presentation of C++ : Introduction 1. Introduction 12/33

A C++ program

Example: compute and print x2.

#include <iostream >

double square(double x)
{

return x*x;
}

void print_square(double d)
{

std::cout << "the square of " << d <<
" is " << square(d) << std::endl;

}

int main()
{

print_square (1.234);
return 0;

}

Presentation of C++ : Introduction 1. Introduction 14/33

Functions
Declaration and definition

The main way of getting sonething done in C++:
I call a function

I Declare before use
A function must have been declared before it can be called

I A function declaration specifices
I name
I return type
I types of the parameters

I Example: function declarations
int random ();
void exit(int);
double square(double);
int pow(int x, int exponent);

I A function definition contains the implementation
I Must only occur once

Presentation of C++ : Functions 1. Introduction 15/33

I The compiler ignores parameter names
I Give names if it increases readability

Difference from Java
Function and variable declarations

I In Java functions and variables
can only be declared inside a class.

I In C++, functions and variables
can exist independently of classes.

I free functions do not belong to a class
I member functions in a class

I global variables
I member variables

Presentation of C++ : Functions 1. Introduction 16/33

Function declaration
Example

I Declaration and definition

Example: Mean value – variant 1

double mean(double x1, double x2) // Declaration and definition
{

return (x1+x2)/2;
}

int main()
{

double a=2.3, b=3.9;
cout << mean(a, b) << endl;

}

Presentation of C++ : Functions 1. Introduction 17/33

Function definition
With forward declaration

I Fuction declaration before use in main()

I Fuction definition elsewhere

Example: mean – variant 2

double mean(double , double); // declaration (prototype)

mean.h

int main()
{

double a=2.3, b=3.9;
cout << mean(a, b) << endl; // use

} main.cc
mean.cc

double mean(double x1 , double x2) // definition
{

return (x1+x2)/2;
}

Presentation of C++ : Functions 1. Introduction 18/33

Function definition
With forward declaration

I Fuction declaration before use in main()
I Fuction definition elsewhere

Example: mean – variant 2

double mean(double , double); // declaration (prototype)

mean.h

#include "mean.h"

int main()
{

double a=2.3, b=3.9;
cout << mean(a, b) << endl; // use

} main.cc
mean.cc

double mean(double x1, double x2) // definition
{

return (x1+x2)/2;
}

Presentation of C++ : Functions 1. Introduction 18/33

Functions
Function calls

The semantics of function argument passing is the same as
copy initialization: (Same as for primitive types in Java)

I In a function call, the values of the arguments are
I type checked, and
I with implicit type conversion (if needed)
I copied to the function parameters

I Example: with a function double square(double d)

double s2 = square (2); // 2 is converted to double
// double d = 2;

double s3 = square("three"); // error
// double d = "three ";

Presentation of C++ : Functions 1. Introduction 19/33

Functions
Function overloading

I Overloading (“överlagring”)
void print(int);
void print(double);
void print(std:: string);

void user()
{

print (42); // calls print(int);
print (1.23); // calls print(double);
print (4.5f); // calls print(double);
print("Hello") // calls print(std:: string);

}

I Default arguments (sometimes) similar to overloading
I void print(int x, std::ostream& out = std::cout);
I The rules are complex. Only use for trivial cases
I Risk of ambiguity if combined with overloading

Presentation of C++ : Functions 1. Introduction 20/33

I Cannot differ only in return type
I Must not be ambiguous

Functions
Call - ambiguity

I With overloaded functions, the compiler selects “the best”
function (after implicit type conversion)

I If two alternatives are “equally good matches ” it is an error

void print2(int , double);
void print2(double , int);

void user()
{

print2(0, 0); // Error! ambiguous
}

I and also (with print() from last slide)

long l = 17;
print(l); // Error! print(int) or print(double)?

Presentation of C++ : Functions 1. Introduction 21/33

Functions
Rule of thumb

Factor your code into small functions to
I give names to activities and document their dependencies
I avoid writing specific code in the middle of other code
I facilitate testing

I A function should perform a single task
I Keep functions as short as possible
I Rule of thumb

I Max 24 lines
I Max 80 columns
I Max 3 block levels
I Max 5–10 local variables
I Inversely proportional to complexity

Presentation of C++ : Functions 1. Introduction 22/33

Call by value and call by reference
Call by value(värdeanrop)

In a ’normal’ function call, the values of the arguments are copied
to the formal parameters (which are local variables)

Example: swap two integer values

void swap(int a, int b)
{

int tmp=a;
a = b;
b = tmp;

}

. . . and use:
int x = 2;
int y = 10;

swap(x, y);

cout << x ", " << y << endl;

Presentation of C++ : Functions 1. Introduction 23/33

2,10 x and y are not changed

Call by value and call by reference
Call by reference(referensanrop)

Use call by reference instead of call by value:

Example: swap two integer values

void swap(int& a, int& b)
{

int tmp=a;
a = b;
b = tmp;

}. . . and use:
int x = 2; int y = 10;

swap(x, y);

NB! The argument for a reference parameter must be an lvalue
The call swap(x,15); gives the error message
invalid initialization of non -const reference of type "int&"
from an rvalue of type ’int ’

Presentation of C++ : Functions 1. Introduction 24/33

References

I A reference is an alias for a variable

Presentation of C++ : Functions 1. Introduction 25/33

Statements

Mostly the same syntax as in Java:
I if, switch
I for, while, do while

I break, continue
but goto is spelled differently:
I No break to a label
I goto (used in C, rarely used in C++)

Presentation of C++ : Functions 1. Introduction 26/33

Data types and variables

I Every name and every expression has a type
I some concepts:

I a declaration introduces a name (and gives it a type)
I a type defines the set of possible values and operations

(for an object)
I an object is a place in memory that holds a value
I a value is a set of bits interpreted according to a type.
I a variable is a named object

An object has
I a value and
I a representation

Unnamed objects
Unnamed objects include
I temporary values
I objects on the heap

(allocated with new)

Presentation of C++ : Data types and variables 1. Introduction 27/33

Data types
Primitive types

I Integral types: char, short, int, long, long long

I signed (as in Java)
I unsigned (modulo 2N “non-negative” numbers, not in Java)

I Floting point types: float, double, long double

I bool (boolean in Java)
I integer values are implicitly converted to bool
I zero is false, non-zero is true

I The type char is “the natural size to hold a character” on a
given machine (often 8 bits). Its size (in C/C++) is called
“a byte” regardless of the number of bits.

I sizeof(char) ≡ 1 (1 byte)
I The sizes of all other data types are multiples of sizeof(char).

I sizes are implementation defined
I sizeof(int) is commonly 4.

Presentation of C++ : Data types and variables 1. Introduction 28/33

Operators

Operators and expressions quite similar to Java

The same as in Java
E.g., + - * / % ++ -- += -= *= && || & | etc., and [] . ?:

The trinary operator ?:(like in Java)

z = (x>y) ? x : y; if (x>y)
z=x;

else
z=y;

Many more, including
Pointer operators: * & ->

Input and output: << >> (overloaded shift operators)
sizeof, decltype (compile-time)

Presentation of C++ : Data types and variables 1. Introduction 29/33

Variables
Declaration and initialization

Declaration without initialization (avoid)

int x; // x has an undefined value (if local)
// (as local variables in Java)

Declaration and initialization

int x{7}; // C++ style (recommended if unsure)
int y = {7}; // C++ with extra =
int z = 7; // C style

vector <int > v{1,2,3,4,5};

C style: Beware of implicit type conversion

int x = 7.8; // x == 7. No warning
int y {7.8}; // Gives a warning (or error with -pedantic -errors)

Presentation of C++ : Data types and variables 1. Introduction 30/33

Variables
Automatic type inference

auto: The compiler deduces the type from the initialization.

Declaration and initialization

auto x = 7; // int x
auto c = ’c’; // char c
auto b = true; // bool b
auto d = 7.8; // double d

std::vector <int > v;
auto it = v.begin (); // std::vector <int >:: iterator it

double calc_epsilon ();
auto ep = static_cast <float >(calc_epsilon ()); // float ep

In float ep = calc_epsilon(); the narrowing is not obvious NB!
with auto there is no risk of narrowing type conversion, so using = is safe.

Presentation of C++ : Data types and variables 1. Introduction 31/33

Variables
Automatic type inference

Don’t use auto if you need to be explicit about the declared type,
e.g.
I if naming the type makes the code more readable.
I to specify the value range or precision

(e.g., int/ long or float/ double)

Presentation of C++ : Data types and variables 1. Introduction 32/33

Suggested reading

References to sections in Lippman
Functions 6.1 (p 201–207)
Types, variables 2.1,2.2,2.5.2 (p 31–37, 41–47, 69)
Type aliases 2.5.1
Arithmetic 4.1-4.5, 4.11
Constants 2.4 2.4.4 (p 59–60, 65–66)
Pointers and references 2.3 (p 50–59)

Summary 1. Introduction 33/33

