
EDAF50 � C++ Programming

10. <chrono>. Concurrency. Integer types.

Sven Gestegård Robertz

Computer Science, LTH

2018

Outline

1 Time representation

2 Concurrency

3 Types

Integer types

10. <chrono>. Concurrency. Integer types. 2/1

What is a value

The semantics of a value often include

I a quantity

I a number

I a unit

E.g int length = 2;

I two meters?

I two millimeters?

Including quantity and unit in the type helps avoid mistakes.

Time representation 10. <chrono>. Concurrency. Integer types. 3/20

Time representation

I A �time value� can be either
I A duration � a time interval
I A point in time

I relative to a particular clock

I Di�erent units
I seconds
I milliseconds
I nanoseconds
I manual conversion error prone

I Di�erent semantics
I duration + duration = duration
I duration - duration = duration
I time_point + duration = time_point
I time_point - duration = time_point
I time_point - time_point = duration
I time_point + time_point = error

Time representation 10. <chrono>. Concurrency. Integer types. 4/20

Time representation
<chrono>

I Uses the type system to denote
I if a value is a duration or a point in time
I the unit used (seconds, milliseconds, etc.)
I which clock a point in time is relative to

I system_clock � wall clock time
I steady_clock � stopwatch

I Uses compile-time computations for
I conversions between units

I implicit conversions when safe
I explicit conversions when loosing information
I E.g. duration_cast<seconds>(milliseconds)

Time representation 10. <chrono>. Concurrency. Integer types. 5/20

Time representation
<chrono>

A duration is

I an integer value and

I a ratio (the number of seconds between two values).

std:: chrono :: nanoseconds duration </* signed int , at least 64 bits*/,
std::nano >

std:: chrono :: microseconds duration </* signed int , at least 55 bits*/,
std::micro >

std:: chrono :: milliseconds duration </* signed int , at least 45 bits*/,
std::milli >

std:: chrono :: seconds duration </* signed integer , at least 35 bits*/>
std:: chrono :: minutes duration </* signed integer , at least 29 bits*/,

std::ratio <60>>
std:: chrono ::hours duration </* signed integer , at least 23 bits*/,

std::ratio <3600>>

std::ratio provides compile-time rational arithmetic

Time representation 10. <chrono>. Concurrency. Integer types. 6/20

Concurrency

I Tasks and threads

I Passing arguments

I Returning results

I Sharing data

I Waiting for events

I Communicating tasks

Concurrency 10. <chrono>. Concurrency. Integer types. 7/20

Concurrency
futures and promises

I Transfer a value between tasks without an explicit lock

I A future represents a (possibly not yet existing) result

of a computation

I A promise is used to deliver a value to a future

future

value

promise

get()

set_value()

set_exception()

task1:

task2:

Concurrency 10. <chrono>. Concurrency. Integer types. 8/20

Concurrency
packaged_task

A future is connected to a promise

I create a promise

I get a future by calling promise::get_future()

More conventient to use a packaged_task

I a function (object) and the associated future and promise

Concurrency 10. <chrono>. Concurrency. Integer types. 9/20

Concurrency

Demo

Concurrency 10. <chrono>. Concurrency. Integer types. 10/20

Integer types

I Signed integers
Type Size Range (at least)

signed char 8 bits [−127, 127]∗

short at least 16 bits [−215 + 1, 215 − 1]
int at least 16 bits, usually 32 [−215 + 1, 215 − 1]
long at least 32 bits [−231 + 1, 231 − 1]
long long at least 64 bits [−263 + 1, 263 − 1]

∗typically [−128, 127], etc.

I Unsigned integers
I same size as corresponding signed type
I unsigned char: [0, 255] , unsigned short: [0, 216 − 1]. etc.

I special case
I char (can be represented as signed char or unsigned char)
I Use char only for characters
I Use signed char or unsigned char for integer values

I Sizes according to the standard:

char ≤ short ≤ int ≤ long ≤ long long

Types : Integer types 10. <chrono>. Concurrency. Integer types. 11/20

Integer types
Over�ow

I over�ow of an unsigned n-bit integer is de�ned as

the value modulo 2n

I over�ow of a signed integer is unde�ned

Types : Integer types 10. <chrono>. Concurrency. Integer types. 12/20

Integer types

Example with sizeof

#include <iostream >
using namespace std;
int main () {

cout << "sizeof(char)= \t" << sizeof(char)<<endl;
cout << "sizeof(short)= \t" << sizeof(short) <<endl;
cout << "sizeof(int) = \t" << sizeof(int) <<endl;
cout << "sizeof(long)= \t" << sizeof(long)<<endl;

}

sizeof(char)= 1
sizeof(short)= 2
sizeof(int) = 4
sizeof(long)= 8

Types : Integer types 10. <chrono>. Concurrency. Integer types. 13/20

Integer types � Example of value range by casting
or: be careful with casts from signed to unsigned types

int main () {
cout << "(signed char) -1 = " << (int)(signed char) -1 << endl;
cout << "(unsigned char) -1 = " << (int)(unsigned char) -1 << endl;
cout << "(short int) -1 = " << (short int) -1 << endl;
cout << "(unsigned short int) -1 = "<<(unsigned short int)-1<<endl;
cout << "(int) -1 = " << (int) -1 << endl;
cout << "(unsigned int) -1 = " << (unsigned int) -1 << endl;
cout << "(long) -1 = " << (long) -1 << endl;
cout << "(unsigned long) -1 = " << (unsigned long) -1 << endl;

}

(char) -1 = -1
(unsigned char) -1 = 255
(short int) -1 = -1
(unsigned short int) -1 = 65535
(int) -1 = -1
(unsigned int) -1 = 4294967295
(long) -1 = -1
(unsigned long) -1 = 18446744073709551615

Types : Integer types 10. <chrono>. Concurrency. Integer types. 14/20

Integer types
Sizes are speci�ed in <climits>

CHAR_BIT Number of bits in a char object (byte) (>=8)
SCHAR_MIN Minimum value for an object of type signed char
SCHAR_MAX Maximum value for an object of type signed char
UCHAR_MAX Maximum value for an object of type unsigned char
CHAR_MIN Minimum value for an object of type char

(either SCHAR_MIN or 0)
CHAR_MAX Maximum value for an object of type char

(either SCHAR_MAX or UCHAR_MAX)
SHRT_MIN Minimum value for an object of type short int
SHRT_MAX Maximum value for an object of type short int
USHRT_MAX Maximum value for an object of type unsigned short int
INT_MIN Minimum value for an object of type int
INT_MAX Maximum value for an object of type int
UINT_MAX Maximum value for an object of type unsigned int
LONG_MIN Minimum value for an object of type long int
LONG_MAX Maximum value for an object of type long int
ULONG_MAX Maximum value for an object of type unsigned long int
LLONG_MIN Minimum value for an object of type long long int
LLONG_MAX Maximum value for an object of type long long int
ULLONG_MAX Maximum value for an object of type unsigned long long

Types : Integer types 10. <chrono>. Concurrency. Integer types. 15/20

Integer types
Sizes are speci�ed in <climits>

#include <iostream >
#include <climits >
int main()
{

std::cout << CHAR_MIN << ", " << CHAR_MAX << ", ";
std::cout << UCHAR_MAX << std::endl;
std::cout << SHRT_MIN << ", " << SHRT_MAX << ", ";
std::cout << USHRT_MAX << std::endl;
std::cout << INT_MIN << ", " << INT_MAX << ", ";
std::cout << UINT_MAX << std::endl;
std::cout << LONG_MIN << ", " << LONG_MAX << ", ";
std::cout << ULONG_MAX << std::endl;
std::cout << LLONG_MIN << ", " << LLONG_MAX << ", ";
std::cout << ULLONG_MAX << std::endl;

}

128, 127, 255
-32768, 32767, 65535
-2147483648 , 2147483647 , 4294967295
-9223372036854775808 , 9223372036854775807 , 18446744073709551615
-9223372036854775808 , 9223372036854775807 , 18446744073709551615

Types : Integer types 10. <chrono>. Concurrency. Integer types. 16/20

Integer types
Sizes are implementation de�ned

Typedefs for speci�c sizes are in <cstdint> (<stdint.h>)

I integer types with exact with:

int8_t int16_t int32_t int64_t

I fastest signed integer type with at least the width

int_fast8_t int_fast16_t int_fast32_t int_fast64_t

I smallest signed integer type with at least the width

int_least8_t int_least16_t int_least32_t int_least64_t

I signed integer type capable of holding a pointer:

intptr_t

I unsigned integer type capable of holding a pointer:

uintptr_t

The corresponding unsigned typedefs are named uint_..._t
Types : Integer types 10. <chrono>. Concurrency. Integer types. 17/20

Next lecture
Low-level details and loose ends

References to sections in Lippman

C-style strings 3.5.4

Multi-dimensional arrays 3.6

Bitwise operations 4.8

The comma operator 4.10

Union 19.6

Bit-�elds 19.8.1

Types : Integer types 10. <chrono>. Concurrency. Integer types. 18/20

Suggested reading

References to sections in Lippman

Built-in types 2.1

Types : Integer types 10. <chrono>. Concurrency. Integer types. 19/20

