EDAF50 — C++ Programming

2. Pointers. User defined types.

Sven Gestegard Robertz
Computer Science, LTH

2018

Data types

Pointers, Arrays and References

» References

» Pointers (similar to Java references)

» Arrays (“built-in arrays”). Similar to Java arrays of primitive
types

2. Pointers. User defined types.

Pointers, arrays, and references : Pointers: Syntax and semantics

Pointers
Syntax, operatorers x and &

» In a declaration:
» prefix *: “pointer to"
int *p;
void swap(intx, intx);
» prefix & “reference to”
int &r; : ris a reference to an int

: p is a pointer to an int
: function taking two pointers

» In an expression:
» prefix *: dereference, “contents of”
*p = 17; the object that p points to is assigned 17
» prefix & “address of”, “pointer to"

int x
int y

17;
42;

swap (&x, &y); Call swap(intx, intx) with pointers to x andy

2. Pointers. User defined types.

Pointers, arrays, and references : Pointers: Syntax and semantics

o Pointers, arrays, and references
@ Pointers: Syntax and semantics
@ References
@ Arrays
© User defined types
@ Structures
@ The operator ->
@ Classes
e Declarations, scope and lifetime
@ The standard library alternatives to C-style arrays
@ std::string
@ std::vector
© Constants
© Enumerations

2. Pointers. User defined types.

Pointers

Similar to references in Java, but
» a pointer is the memory address of an object
> a pointer is an object (a C++ reference is not)

» can be assigned and copied

» has an address

» can be declared without initialization, but then it gets an
undefined value , as do other variables

v

four possible states
© point to an object
@ point to the address immediately past the end of an object
© point to nothing: nullptr. Before C++11: NULL
Q invalid
can be used as an iteger value
» arithmetic, comparisons, etc.
Be very careful!

2. Pointers. User defined types.

v

Pointers, arrays, and references : Pointers: Syntax and semantics

Pointers

Be careful with declarations

Advice: One declaration per line

int *a; // pointer to int

int* b; // pointer to int

int c; // int

int* d, e; // d is a pointer, e is an int

int *f, xg; // f and g are both pointers

Choose a style, either int *a or intx b, and be consistent.

Pointers, arrays, and references : Pointers: Syntax and semantics 2. Pointers. User defined types.

References Pointers and references

Call by pointer

In some cases, a pointer is used instead of a reference to “call by

)) i reference:
» A reference is an alias to a variable .
» cannot be changed (reseated to refer to another variable) Example: swap two integers

» must be initialized void swap2(int* a, int* b)
» is not an object (has no address) {

References are similar to pointers, but

if(a != nullptr & b != nullptr) {

» Dereferencing does not use the operator * int tmp=xa;

*a = *b;
» Using a reference is to use the referenced object. xb = tmp;
}
. , . . d 8 int x, y;
Use a reference if you don't have (a good reason) to use a pointer. } and use 1" oy
. “ . ’ swap2 (&x, &y);
» E.g., if it may have the value nullptr (“no object”) wapz (&x, &)
NB!:

» or if you need to change(“reseat”) the pointer

. » a pointer can be nullptr or uninitialized
» More on this later. p P

» dereferencing such a pointer gives undefined behaviour

Pointers, arrays, and references : References 2. Pointers. User defined types. 7/48 Pointers, arrays, and references : References 2. Pointers. User defined types. 7/48

Pointers and references Arrays (“C-arrays”, " built-in arrays")

Pointer and reference versions of swap

» A sequence of values of the same type (homogeneous

//.Referenfes . //‘Pointers.) Sequence)
void swap(int& a, int& b)| void swap(intx pa, intx* pb) . o
{ { » Similar to Java for primitive types
. 27ea = aullpie 82 pb = nuillEr) | » but no safety net — difference from Java
int tmp = a; int tmp = xpa; . . '
B = b 00 & A » an array does not know its size — the programmer’s
b = tmp; xpb = tmp; responsibility
3) y » Can contain elements of any type
» Java arrays can only contain references (or primitive types)
» Can be a local (or member) variable (Difference from Java)
int m=3, n=4; i 3
SERC, 098 Rererenes versien 48 el » |s declared T alsizel; (Difference from Java)
> The size must be a (compile-time) constant.
swap (&m,&n); Pointer version is called (DifFerent from C99 which has VLAS)

NB! Pointers are called by value: the address is copied

Pointers, arrays, and references : References 2. Pointers. User defined types. Pointers, arrays, and references : Arrays 2. Pointers. User defined types. 9/48

Arrays Data types

Representation in memory C strings

The elements of an array can be of any type
» Java: only primitive types or a reference to an object
» C++: an object or a pointer

Example: array of Point

lass Poi . B . .
¢ assi"toi?t{ pS: x: ps[0] » C strings are char[] that are null terminated.
int y; Y Example: char s[6] = "Hello";

}; 2

X: ps[l} S: !H: yey 717 117)o) 7\07
Point ps[3]; y:

x:

52
= ps[2]

Important difference from Java: no fundamental difference
between built-in and user defined types.

Pointers, arrays, and references : Arrays 2. Pointers. User defined types. 10/48 Pointers, arrays, and references : Arrays 2. Pointers. User defined types. 11/48

Pointers and arrays Pointers and arrays

What does array indexing really mean?

The expression afb] is equivalent to x(a + b) (and, thus, to bra1)

Arrays are accessed through pointers —

float f[4]; // 4 floats E 3 R ; 2 P
or a pointer, Tx p, and an integer i, the expression p + i is
float* pf; // pointer to float P defized I g « si eof('ll?) P
1 y4
pf = f; // same as = &f[0] .
float x = *(pf+3); // Alt. x = pf[31; That is,
x = pf[3]; // Alt. x = *x(pf+3);

» p+1 points to the address after the object pointed to by p
» p+i is an address i objects after p.

0] £[1] £[2) £03] Example: confusing code (t do this)
pf pf[3] int all {1,4,5,7,9};
* (pf+3)
cout << a[2] << " == "<< 2[a] << endl;
5 ==
Pointers, arrays, and references : Arrays 2. Pointers. User defined types. Pointers, arrays, and references : Arrays 2. Pointers. User defined types. 13/48

Pointers and arrays Pointers and references
Function calls
Function for Zeroing an array Pointer and reference versions Of swap
void zero(INExEX, size_t n) { // References // Pointers
for*(l.nt; p=Rg P U= 2omg wop) void swap(int& a, int& b)| void swap(int* pa, int* pb)
p = 0; { {
3 if(pa != nullptr && pb != nullptr) {
L. » The name of an array variable in an expression int tmp = a; int tmp = #pa;
int a[5]; is interpreted as “a pointer to the first element”: a=b; xpa = xpb;
array decay b = tmp; xpb = tmp;
zero(a,5); > a < &alo] 3} 3}
}
Array subscripting
void zero(int x[], size_t n) { » In function parameters T a[] int m=3, n=4;
for (size_t i=0; i != n; ++i) is equivalent to T* a. swap(m,n); Reference version is called
x[i] = o; (Syntactic sugar)
3 » T is more common swap (&m,&n); Pointer version is called
NB! Pointers are called by value: the address is copied
Pointers, arrays, and references : Arrays 2. Pointers. User defined types. 14/48 Pointers, arrays, and references : Arrays 2. Pointers. User defined types. 15/48

User defined types Structures

» Built-in types (e.g., char, int, double, pointers, ...) and

operatl|ons . Example: a vector of doubles
» Rich, but deliberately low-level
. struct Vector {
» Directly and efficiently reflect the capabilites of conventional T Vector v: |sz:
computer hardware double; elem; elem:
» User-defined types iy
» Built using the built-in types and abstraction mechanisms A variable of the type Vector can be created with
> struct, class (cf. class i Java) Vector v:
» Examples from the standard library '
> std::string (cf. java.lang.String) but now v.sz and the pointer v.elem are uninitialized.
> std::vector, std::list ...(cf. corresponding class in
java.util)

]] To be useful, we must give elem som elements to point to.
> enum class: enumeration (cf. enum in Java)

» A concrete type can behave “just like a built-in type”.

User defined types 2. Pointers. User defined types. 16/48 User defined types : Structures 2. Pointers. User defined types. 17/48

Structures

Initialization

A function for initializing a Vector:

void vector_init(Vector& v, int s)
{

v.elem = new double[s];

v.sz = s;
}

A variable of type Vector, with size 10, can be created with

Vector vec;

vector_init(vec, 10); //call-by-reference: vec is changed

» the operator new allocates an object on the heap (“the free
store”)

» objects on the heap live until removed using delete

» more on (better alternatives to) this later

User defined types : Structures 2. Pointers. User defined types.

Structures

Use

18/48

Now we can use our Vector:

#include <iostream>
double read_and_sum(int s)

{
Vector v; // create Vector object
vector_init(v,s); // initialize v with size s
for(int i=0; il!=s; ++i) {
std::cin >> v.elem[i];
3
double sum{0Q};
for(int i=0; il=s; ++i) {
sum += v.elem[i];
3 . .
» >> is the input operator
return sum; .
3 » the standard library <iostream>

> std::cin is standard input

User defined types : Structures 2. Pointers. User defined types.

Access of members through pointers

The operator ->

20/48

For a pointer p, we can express
“The member x in the object p points to in two ways:

> (*p).x
> p->Xx

The operator —>

User defined types : 2. Pointers. User defined types.

Structures

Representation

struct Vector {
int sz;
doublex* elem;

};

void vector_init(Vector& v, int s)

{
v.elem = new double[s];
v.sz = s;

}

void test()

{
Vector vec;
vector_init(vec, 5);
vec.elem[2] = 7;

}

Vector vec: |sz: 5

elen1‘-4444444444*‘ ‘

N

2. Pointers. User defined types.

User defined types : Structures 19/48

Structures

Access of struct members

Vector v;
Vector& rv;

Vector* pv;

int i = v.sz; // access via name (of variable)
int j = rv.sz; // access via reference (alias for name)
int k = pv->sz; // access via pointer

User defined types : Structures 2. Pointers. User defined types. 21/48

Classes

» Make a user-defined type behave like “a real type”
» Tight coupling between operations and the data representation

» Often: make the representation inaccessible to users

A class can have
» data members (“attributes”)
» member functions (“methods”)
» type members
» members can be
» public
» private

» protected
> like in Java

User defined types : Classes 2. Pointers. User defined types. 23/48

Classes

Example

class Vector{

public:
Vector(int s) :elem{new doublel[s]}, sz{s} {}
double& operator[](int i) {return elem[i];}
int size() {return sz;}

// constructor
// subscripting

private:
doublex* elem;
int sz;

};

» constructor, like in Java
» Creates an object and initializes members

Vector vec;

>
the statements vector_init(vec, 5);

become vector vec(5);
» operators can be overloaded, e.g. operator[1(int)
> vec.elem[2] becomes vec[2]
» The representation is not accessible (elem is private)
» NB! Returns a reference so that vecl[i] can be changed
(assigned)

User defined types : Classes 2. Pointers. User defined types. 24/4a8

Class definitions

Member functions: declarations and definitions

Member functions (< “methods” in Java)

Definition of class

class Foo {
public:
int fun(int, int); // Declaration of member function
int get_x() {return x;} // incl definition (inline)
private:
int x;
};
NB! Semicolon after class definition

Definition of member function (outside the class)

int Foo::fun(int x,
//

int y) {

3
No semicolon after function definition

User defined types : Classes 2. Pointers. User defined types. 26/48

Declarations

Scope

Classes
Example
double read_and_sum(int s)
{
Vector v(s); // Create and initialize a Vector of size s
for(int i=0; il!=v.size(); ++i) {
std::cin >> v[il;
}
double sum{0};
for(int i=0; il!=v.size(); ++i) {
sum += v[il;
}
return sum;
3
User defined types : Classes 2. Pointers. User defined types. 25/48

Classes

Resource management

» RAIl Resource Acquisition Is Initialization
» An object is initialized by a constructor
> Allocates the needed resources
» When an object is destroyed, its destructor is executed
» Free resources owned by the object
> In the Vector example: the array pointed to by elem
class Vector{
public:

Vector (int s) :elem{new double[s]}, sz{s} {}
~Vector () {delete[] elem;} // destructor,

// constructor

delete the array
};

Manual memory management

» Objects allocated with new must be freed with delete

» Objects allocated with new[] must be freed with delete[]

» otherwise, the program has a memory leak

» (much) more on this later

User defined types : Classes 2. Pointers. User defined types. 27/48

Declarations
lifetimes

A declarations introduces a name in a scope
Local scope: A name declared in a function is visible

» From the declaration
» To the end of the block (delimited by{ })

» Parameters to functions are local names

Class scope: A name is called a member if it is declared in a class*.
It is visible in the entire class.

Namespace scope: A named is called a namespace member if it is
defined in a namespace*. E.g, std: :cout.

A name declared outside of the above is called a global name and is
in the global namespace.

* outside a function, class or enum class.

Declarations, scope and lifetime

2. Pointers. User defined types.

v

The lifetime of an object is determined by its scope:
An object

» must be initialized (constructed) before it can be used
» is destroyed at the end of its scope.

v

v

a local variable only exists until the function returns

» namespace objects are destroyed when the program terminates

v

an object allocated with new lives until destroyed with delete.
(different from Java)

» Manual memory management

> new is not used as in Java

» Avoid new except in special cases

» more on this later

Declarations, scope and lifetime

2. Pointers. User defined types.

Two types from the standard library

Alternatives to C-style arrays

The standard library alternatives to C-style arrays

Do not use built-in arrays unless you have (a strong reason) to.
Instead of

» char[] — Strings — use std::string
» T[] — Sequences — use std: :vector<T>

More like in Java:

» more functionality — “behaves like a built-in type”
» safety net

2. Pointers. User defined types.

Sequences: std: :vector<T>

A std::vector<T> is

» an ordered collection of objects (of the same type, T)

» every element has an index

which, in contrast to a built-in array

» knows its size
» vector<T>::operator[] does no bounds checking
» vector<T>::at(size_type) throws out_of_range

» can grow (and shrink)
» can be assigned, compared, etc.

Similar to java.util.ArraylList

Is a class template

The standard library alternatives to C-style arrays : Std: :Vector 2. Pointers. User defined types.

Example: std::vector<int>

initialisation

{

}
{

< X o

void print_vec(const std::string& s, const std::vector<int>& v)

std::cout << s << " "

for(int e : v) {
std::cout << e << " ";

3

std::cout << std::endl;

void test_vector_init()

std::vector<int> x(7);
print_vec("x", x);

std::vector<int> y(7,5);
print_vec("y", y);

std::vector<int> z{1,2,3};
print_vec("z", z);

[
e
(S
S

)
5
1

The standard library alternatives to C-style arrays : Std: :Vector 2. Pointers. User defined types.

NO e
w o e

Strings: std::string

std::string has operations for
> assigning
> copying
» concatenation
» comparison

» input and output (<< >>)

» knows its size

Similar to java.lang.String but is mutable.

The standard library alternatives to C-style arrays : Std: :String 2. Pointers. User defined types.

Example: std::string

#include <iostream>
#include <string>
using std::string;
using std::cout;
using std::endl;

string make_email (string fname,
string lname,
const string& domain)

{
fname[@] = toupper(fname[0]);
Iname[@] = toupper(lname[0]);
return fname + ’.’ + lname + '@’ + domain;
3
void test_string()
{
string sr = make_email(”sven”, "robertz”, "cs.lth.se");
cout << sr << endl;
}

Sven.Robertz@cs.1th.se

The standard library alternatives to C-style arrays : Std: :VeCtor 2. Pointers. User defined types.

Example: std::vector<int>

assignment

void test_vector_assign()

{
std::vector<int> x {1,2,3,4,5};
print_vec("x", x);
std::vector<int> y {10,20,30,40,50};
print_vec("y", y);
std::vector<int> z;
print_vec("z", z);
z = {1,2,3,4,5,6,7,8,9};
print_vec("z", z);
z = Xx;
print_vec("z", z);

}

X 12345

y 10 20 30 40 50

z

z 12345617289

z 12345

The standard library alternatives to C-style arrays : Std: :VeCtor 2. Pointers. User defined types.

Example: std: :vector<int>

insertion and comparison

Data types
Two kinds of constants

void test_vector_eq()

{
std::vector<int> x {1,2,3};
std::vector<int> y;
y.push_back (1);
y.push_back(2);
y.push_back(3);

if(x == y) {
std::cout << "equal” << std::endl;
} else {
std::cout << "not equal” << std::endl;

The standard library alternatives to C-style arrays : Std: :Vector 2. Pointers. User defined types.

Functions can be constexpr

» Means that they can be computed at compile time if the
arguments are constexpr

example:
constexpr int square(int x)
{
return x*x;
}
void test_constexpr_fn()
{
char matrix[square(4)];
cout << "sizeof(matrix) = " << sizeof(matrix) << endl;
}

Without constexpr the compiler gives the error

error: variable length arrays are a C99 feature

Constants 2. Pointers. User defined types. 38/48

const and pointers

Example:
void Exempel(intx* ptr,
int const * ptrToConst,
intx const constPtr,
int const * const constPtrToConst)
{
*ptr = 0; // OK: changes the value of the object
ptr = nullptr; // OK: changes the pointer
*ptrToConst = 0; // Error! cannot change the value
ptrToConst = nullptr; // OK: changes the pointer
*constPtr = 0; // OK: changes the value
constPtr = nullptr; // Error! cannot change the pointer
*constPtrToConst = 0; // Error! cannot change the value
constPtrToConst = nullptr; // Error! cannot change the pointer
3
Constants 2. Pointers. User defined types. 39/48

» A variable declared const must not be changed(final in Java)
» Roughly:“l promise not to change this variable.”
» Is checked by the compiler
» Use when specifying function interfaces
» A function that does not change its (reference) argument
> A member function (“method”) that does not change the state
of the object.
» Important for function overloading
» T and const T are different types
» One can overload int f(T&) and int f(const T&)
(for some type T)
» A variable declared constexpr must have a value that can be
computed at compile time.
» Use to specify constants
» Introduced in C++-11

Constants 2. Pointers. User defined types. 37/48

const and pointers

const modifies everything to the left (exception: if const is first, it
modifies what is directly after)

Example

intx ptr;
const intx ptrToConst; //NB! (const int) =*
int constx ptrToConst, // equivalent, clearer?
intx const constPtr; // the pointer is constant
const intx const constPtrToConst; // Both pointer and object
int constx const constPtrToConst; // equivalent, clearer?

Be careful when reading:

char xstrcpy(char xdest, const char *src);

(const char)*, not const (charx)

Constants 2. Pointers. User defined types. 39/48

Pointers

Poin to constant and constant poin

int k; // int that can be modified
int const ¢ = 100;// constant int

int const * pc; // pointer to constant int
int *pi; // pointer to modifiable int

pc = &c; // 0K

pc = &k; // OK, but k cannot be changed through *pc
pi = &c; // Error! pi may not point to a constant
*pc = 0; // Error! pc is a pointer to const int

int* const cp = &k; // Constant pointer
cp = nullptr; // Error! The pointer cannot be reseated
*cp = 123; // OK! Changes k to 123

Constants 2. Pointers. User defined types. 39/48

char[], charx och const charx

const is important for C-strings

Enumerations
C-stil

A string literal (e.g., "I am a string literal”) is const.
» Can be stored in read-only memory

» char* str1 = "Hello"; — deprecated in C++ — gives a
warning

» const char* str2 = "Hello”; — OK, the string is const
» char str3[] = "Hello”; — str3 can be modified

Constants 2. Pointers. User defined types. 40/48

Enumerations

C++: enum class

Problem with enum

Names “leak into surrounding scope.

enum eyes {brown, green, blue};
enum traffic_light {red, yellow, green};

error: redeclaration of ’green’

C++:enum class

enum class EyeColour {brown, green, blue};
enum class TrafficLight {red, yellow, green}

EyeColour e;
TrafficLight t;

e = EyeColour::green;
t = TrafficLight::green;

Enumerations

Enumerations

Comments

2. Pointers. User defined types. 42/a8

enum: a set of named values

enum ans {YES, NO, MAYBE, DONT_KNOW};
enum colour {BLUE=2, RED=3, GREEN=5, WHITE=7};

colour fgcol=BLUE;

colour bgcol=WHITE;
ans svar;

fgcol=RED;
bgcol=GREEN;
svar = NO;

fgcol = MAYBE; // error: cannot convert ’ans’ to ’colour’
svar = 2; // error: invalid conversion from ’int’ to ’ans’

bool silly = (fgcol == svar); // Legal, may give a warning

int x = fgcol; // OK, x = 3

Enumerations

A propos “name-leakage”

Instead of

using namespace std;

it is often better to be specific:

using std::cout;
using std::endl;

cf. Java:

import java.util.x;

import java.util.ArraylList;

Enumerations

Enumerations
Initialization

» enum class
» An enum class always implements

> initialization, assignment and comparison operators (e.g., ==
and <)
» other operators can be implemented

» No implicit conversion to int
> enum
» The values are integers
» Have a value meaning “error” or “uninitialized”.

» the first value, if possible
» always initialize variables, otherwise the value is undefined

v

Use enum class when possible

Enumerations

2. Pointers. User defined types. 4a/a8

Declarations

enum alternatives {ERROR, ALT1, ALT2};
enum class alternatives2 {ERROR, ALT1, ALT2}

The values are well defined

alternatives a{};
alternatives b{ALT1};

alternatives2 p{};
alternatives2 qg{alternatives2::ALT1};

The values are undefined

alternatives x;
alternatives2 y;

Enumerations

2. Pointers. User defined types. a1/a8

2. Pointers. User defined types. 43/4a8

2. Pointers. User defined types. 45/48

Suggested reading

References to sections in Lippman
Pointers and references 2.3
Arrays and pointers 3.5

Classes 2.6,714,7.15,613.1.3
std:string 3.2

std::vector 3.3

Scope och lifetimes 2.2.4, 6.1.1
const, constexpr 2.4

1/0 1.2,8.1-8.2,175.2
Operator overloading 14.1 — 14.3
enumeration types 19.3

2. Pointers. User defined types.

Next lecture

Modularity

References to sections in Lippman
Exceptions 5.6, 18.1.1
Namespaces 18.2

I/0 1.2,8.1-8.2,175.2

