
© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP

F3-1

PVG (EDAF45) - lecture 3:
Konfigurationshantering

Ulf Asklund/Lars Bendix

Department of Computer Science
Lund Institute of Technology

Sweden

PVG lecture 3, CM for XP

Agenda…

• CM-grunder
– CM finns ”överallt”
– Varför CM?
– Olika målgrupper för CM
– Traditionell CM

• CM-aktiviteter
– CM för utvecklare

• CM för XP
• Versionshanteringsmodeller

– CVS
– git

PVG lecture 3, CM for XP

What is SCM?

Software Configuration Management:
is the discipline of organising, controlling and managing the

development and evolution of software systems. (IEEE, ISO,...)

The goal is to maximize productivity by minimizing mistakes.
(Babich)

D

Management

D

Developer

PVG lecture 3, CM for XP

Building on sand?

Software Configuration Management

Req. Coding QATestingDesign

CM is a CMM level 2 key process area

PVG lecture 3, CM for XP

Configuration
Identification

Configuration
Control

Configuration
Status Accounting

Configuration
Auditing

CM activities

Release Management

PVG lecture 3, CM for XP

CM - Configuration Identification

Baseline

Plan

EMWXXX

Identify

Structure

Document

PVG lecture 3, CM for XP

CM - Configuration Control

• Change management
• Traceability

PVG lecture 3, CM for XP

Configuration Control

Change Request (CR) Process

Document

CCB

Verify

Implement

Approve

Disapprove

Change
proposal

Evaluate

PVG lecture 3, CM for XP

The goal of CM - Change tracking

Oh some great
new features!
We have XGML
support, and new
cool color sets...

What has changed
from release 3 to
the new release 3.5
that we got now?

Customer Development
project

• File a.java is new
• File b.java altered line 35,

added line 147 – 163
• File c.java was removed

CR 17
CR 24

CR 32

• Bug fixes
• Enhancements
• New features

PVG lecture 3, CM for XP

CM - Configuration Status Accounting

Status Accounting

PVG lecture 3, CM for XP

CM - Configuration Auditing

Functional AuditPhysical Audit

PVG lecture 3, CM for XP

Release Management

Release
Management

“Which configurations does this customer have?”

“Did we deliver a consistent configuration?”

“Did the customer modify the code”

“How exactly was this delivery configuration produced?”

“Were all regression tests performed on this system delivery version?”

“Did we deliver an up-to-date binary version to the customer?”

PVG lecture 3, CM for XP

Release Management

Ver 1

Products

Doc

PVG lecture 3, CM for XP

Delivery

Customer records

Product
documentation

Education

Support

The need for CM - The maintenance phase

Manuals

PVG lecture 3, CM for XP

The goal of CM - Software deployment

© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP

F3-16

SCM for XP development

Support and help for:
• handling source code
• collective ownership
• simple integration
• painless refactoring
• ease of testing
• effortless releasing
• handling document(ation)

© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP

F3-17

How does a programmer spend his time?

• 50 % interacting with other team members

• 30 % working alone (pair-programming??)

• 20 % non-productive activities

Common heritage is the reason:
• sharing things
• memory/history
• communication
• co-ordination

© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP

F3-18

Problems of co-ordination

Shared data

Double maintenance

Simultaneous update

© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP

F3-19

Co-ordination

Working in isolation:
• local dynamicity
• global stability
• problem:

- multiple maintenance

Working in group:
• global dynamicity
• problems:

- shared data
- simultaneous update

PVG lecture 3, CM for XP

Configuration Management
Strategies - Models - Tools

PVG lecture 3, CM for XP

Concurrent development

optimistic

conservative

PVG lecture 3, CM for XP

Developing Strategy

optimistic

conservative

PVG lecture 3, CM for XP

Update Strategy

optimistic

D

conservative
D

early
integration

work in peace
(isolation)

© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP

F3-24

Immutability principle

Principle: components are immutable

copy

add

edit

data
base

local
working
copies

© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP

F3-25

Working

update

commit

Project repository Private/pair workspace

© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP

F3-26

Copy/merge work model

Can we lock the things we want to work on? NO!

So we copy everything to our workspace...
...and everyone else copy to their workspaces...
Þ double maintenance !!

o

Fortunately ”update” has a built-in merge facility:
• We first merge from the repository into the workspace
• Then we check and fix problems
• Finally we commit (add) to the repository

© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP

F3-27

• Overall CVS (and CM) was a HUGE help for the project.
• The version history was a real life saver.
• CVS made it possible for 12 people to work on the same

code at the same time.
• CVS rules!
• It would have been impossible to merge different

people’s work without it.
• CVS sucks!
• Branching made releasing much easier.
• We tagged the releases – it served it’s purpose.

Quotes from XP’ers

© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP

F3-28

So how is CM used?

• update-commit
• merge – merge – merge
• no versioning, diff, tag, …
• change log only to identify people

© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP

F3-29

Long transactions I

Lars

Checkout

Ulf

Checkout

Repository

workspace creation

© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP

F3-30

Long transactions II

Repository

UlfLars

update

commit commit

workspace usage (termination)

© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP

F3-31

Unfortunately :-(

Repository

UlfLars

commit commit

NO strict long transactions - so...

PVG lecture 3, CM for XP

Distributed version control

Repository

UlfLars

commit update/merge

Yes, strict long transactions (push/pull)

Repository

commit update/merge

Repository

push

fetch push

fetch

PVG lecture 3, CM for XP

git - BitBucket

Repository

UlfLars

commit update/merge

Yes, strict long transactions (push/pull)

Repository

commit update/merge

Repository

push

fetch push

fetch

BitBucket - cloud

© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP

F3-34

Extreme programming

SCM-related practices:
• collective ownership (developer)
• continuous integration (developer)
• refactoring (coding)
• small releases (business)
• planning game (business/developer)
• test-driven development (developer)

© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP

F3-35

Collective code ownership

Goal: to spread the responsibility for the code to the team

How/why:
• from individual (pair) to team ownership
• reinforces code review (and readability)
• enables refactoring

Requires:
• team spirit
• frequent integration

SCM dangers:
• huge merge conflicts

© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP

F3-36

Integrate continually I

Goal: to reduce the impact of adding new features

How/why:
• ”download” & ”upload” integration
• run tests; update (merge); re-run tests; commit
• all components must be in repository
• integration machine/responsibility/how often?
• keeps everyone in synchronisation
• keeps the project releasable all the time

© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP

F3-37

Integrate continually II

Requires:
• collective source code repository
• short tasks

SCM dangers:
• huge merge conflicts
• false positives

© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP

F3-38

Goal: to find the code’s optimal design

How:
• before & after a task, think about refactoring
• changes the structure, but not the behaviour
• break out code; remove duplications; …

Requires:
• collective code ownership
• coding standards

SCM dangers:
• big-bang refactorings

Refactor mercilessly

© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP

F3-39

Release regularly
Goal: to return the customer’s investment often

Why/when/how:
• two-way feedback
• at the end of each iteration (daily?)
• clean machine principle
• automating and optimising the release

Requires:
• continuous integration

SCM dangers:
• manual process takes time
• a broken release :-(

© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP

F3-40

Play the Planning Game
Goal: to schedule the most important work

Why/how:
• to maximize the value of features produced
• divides planning responsibilities (what/how)
• developers estimate user stories
• developers split stories up into tasks

Requires:
• active customer
• mutual respect

SCM dangers:
• sloppy estimates and work break-down

© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP

F3-41

XP process
1. Always start with all of the “released” code.
2. Write tests that correspond to your tasks.
3. Run all unit tests.
4. Fix any unit tests that are broken.
5. When all unit tests run, your local changes become

release candidates.
6. Release candidate changes are integrated with the

currently released code.
7. If the released code was modified, compare the

differences and integrate them with your changes.
8. Rerun tests, fix, rerun tests, fix, rerun ….
9. When the unit tests run, release all of your code, making

a new official version.

© Lars Bendix - Lund Institute of Technology PVG lecture 3, CM for XP

F3-42

Diffing and merging

1.1 1.2 2.1 2.2 3.1

1.2.1.1

Visualisation of differences:
• diff

Merging of branches:
• merge
• always control manually that things went well

