Lunds tekniska hogskola

Datavetenskap, Nov 21, 2016

EDAF45 Programvaruutveckling i grupp—projekt
Labb 2 (Git): Labbhandledning

Checked on Git versions: 2.7.4

Lab Exercise
Git: A distributed version control system

Goal

This lab is intended to demonstrate basic usage of git, a distributed version control system. You are
supposed to work in pairs on one computer, simulating a small software team developing a simple program
component under version control. The lab also demonstrates the XP practices of Collective Ownership
and Continuous Integration. The lab is divided into two parts. In part one you will learn git working
from the command line. In part two you will instead do all version control directly from within Eclipse.

Note!
e During the lab, keep notes of what you do.
e You may use a text file instead of paper for your notes, if you think that is easier.
e Write down the commands that you use and brief descriptions of the results.
e Write down brief answers to all questions appearing in this lab text.
e Be prepared to discuss your notes with the lab coach.

e As part of the explanation we sometimes refer to CVS and compare git commands with CVS
commands. This is because you might already be familiar with CVS and the comparison will make
it easier for you to understand. If you are not familiar with CVS, just ignore this comparisons and
focus on the git commands.

1 Working from the command line

Later in this lab and also in the project, you will use version control tools in Eclipse. However, in the
first part of this lab exercise you will work with the version control tools directly from the command line,
and edit files using an ordinary text editor. This will give you a better insight into how the tools work,
than if you had only used them via Eclipse. If you are unfamiliar with unix concepts and commands, you
can find information in ”Introduktion till LTH:s Unixdatorer” (http://www.ddg.lth.se/perf/unix/
unix-x.pdf), and you can also google different commands.

2 Introduction

In this lab you will meet Alice and Bob, i.e. you will play the roles of Alice and Bob to try out Git.
Alice and Bob are planning to move their development to the new popular version control system Git.
They want to start working in a simple way, similar to CVS, with a common central repository that
they both can commit changes to, or rather, using Git parlance, they will push changes to it. Since Git
works a bit differently from CVS, they draw two figures to get a better understanding of similarities and
differences. In figure [I] it is shown how checkout is used in CVS to create a local workspace from the

http://www.ddg.lth.se/perf/unix/unix-x.pdf
http://www.ddg.lth.se/perf/unix/unix-x.pdf

common repository. In Git, the command clone is used instead, which creates both a local repository
and an associated workspace. The local repository is a clone of the common repository, and contains all
the versions of the software. The common repository is bare, meaning that it does not have any associated
workspace.

CVS common repo Git common "bare" repo
/ \Q ’ \
3/ \% o/ &
o % @)
Eold ‘% 57 N
\ 9 \
E?/ \(? / \
/ \ / \
/ \ / \
k «d
wRl o wsn
Alice Bob Alice Bob

Figure 1: Creating a local workspace. In Git, a local repository is created along with the workspace.

Figure [2] shows how a developer works. In CVS, the developer updates the workspace to get the
latest version from the repository, edits files, and then commits the changes to the common repository.
In Git, the developer pulls the latest version from the common repository to his/her own local repos-
itory /workspace, then edits files, then commits the changes to the local repository, and finally pushes
changes in the local repository back to the common repository.

CVS common repo Git common "bare" repo

Figure 2: Working with CVS and Git. In Git, the changes are first committed to the local repository.
Then the changes are pushed to the common repository.

Now, study the two figures and make sure you understand what clone, pull, commit, push, and bare
means in Git. Write down your own descriptions here:

clone

pull

commit

push

bare

Alice and Bob now have some doubts about Git because it would seem that it could take a lot of
space to have the complete repository locally. And in CVS you can check out a single module from the
repository, whereas in Git you get a workspace for the latest version of the complete repository. However,
after consulting with others, they find out the following:

e Git uses compression algorithms to keep down the size of the repositories. But to keep down the size
it is also important to commit only source data, like source files and text files, and avoid committing
large generated binary files, like class files and jar files.

e In CVS it is common to have a large repository with many submodules, e.g., for different products
or packages. But in Git, you typically have many smaller repositories instead.

Alice and Bob still think that Git looks a bit more complicated than CVS, so they wonder about what
the advantages could be. Again, they consult with others and get a lot of different answers, for example
the following:

e You can work locally, committing to your own local repo, without any network connection.
e You can create branches locally, without needing to make them visible to others.

e You can create your own repositories locally, so you can get the benefits of version control for your
own private work, not just for collaboration.

e Instead of using a central repository, you can push and pull directly between developer repositories,
creating your own work policies.

e If the central server breaks down, you will still have all your data, and can keep on working.

e It’s the most popular version control system right now, so you get a lot of cool support from source
code hosting providers like GitHub, BitBucket, Google Code, and others.

Encouraged by this, Alice and Bob think it is worth giving Git a try. They will build a simple
HelloWorld application and version control it using Git. In the following, you should play the roles of
Alice and Bob, as indicated by the box in the margin.

3 Alice starts working locally

Alice is eager to get started. She rushes ahead and creates a new directory for the project in her pvglab2
directory, and creates an empty README file for the project.

$ mkdir pvglab2

cd pvglab2

mkdir HelloProject
cd HelloProject
touch README

@H BH hH P

Alice thinks about this wonderful news that she can have her own local git repository, and get version
control on her own code. She decides to try this out before contacting Bob about any collaboration.
3.1 Configuring git

Alice has never worked with git before, so she first configures git with her name, email, and the default
text editor she would like to use (nano is still her favorite text editor):

$ git config --global user.name "Alice Wonderland"
$ git config --global user.email alicedatl12@student.lth.se
$ git config --global core.editor nano

She then checks her current configuration, to make sure the new info is there:
$ git config --list

She wonders where this information is stored, and finds out that it is in a file called .gitconfig, in her
home directory, so she looks at its content:

$ less "/.gitconfig

3.2 Creating a local repository

Alice creates a local repository simply by doing the git command ¢nit in her new project directory, adding
all files (currently just the README file), and committing them to the new repository:

$ cd HelloProject
$ git init
$ git add .

$ git commit -m "New project"

She wonders where git placed the repository, and finds it in a subdirectory .git. She takes a look at
the contents of the repo, just out of curiosity:

$ 1s -1 .git

She notes that there are files and directories called HEAD, branches, config, etc., and she thinks this
looks just like the kind of stuff you would expect in a version control repository.

3.3 Working with the local repository

Alice now starts working with her local repository. She edits the README file, and commits again, |Alice
checking the git status in between the commands, and checking the commit log:

git status

nano README

git status

git add README

git status

git commit -m "Updated README"
git status

git log

6B hH P P BH P P LB

She notes some things:

e She is working on a branch called master

e Before committing she needs to add new and changed files to the so called staging area

e Changed files can be staged by using the -a option for commit, instead of explictly doing an add

e When there is nothing to commit, the working directory is said to be clean

Alice also finds out that each commit is identified by a long hexadecimal string, like
6b8736fe84cb3e842352af055e0b3948e602£c80

She finds out that this is a hash value of the contents of the committed version and its complete
history of earlier versions. Alice also finds out that these hash values (produced by the SHA-1 secure
hash algorithm) are sufficiently unique, so that it is extremely unlikely that two different commits would
get the same hash code. In fact, she read somewhere that a hash collision might occur if you had 2**80
commits, which incidentally is the same order of magnitude as the number of atoms in the universe.
So Alice feels pretty confident it will not happen in her project. She also finds out that Git uses these
hash values internally to identify files, directories, etc., to be able to decide extremely quickly if two
files/trees/commits, etc. are equal or not, i.e., without having to actually compare the contents.

Alice notes that commands like commit and push use seven-digit hexadecimal numbers, like 6b8736f,
and she finds out that this is simply a way of abbreviating the long hash values by only showing the first
seven digits.

4 Setting up a common repository

Alice would now like to create a common repository, so that she can invite Bob to start collaborating
with her on the new project. She will simply place the common repository in Bitbucket cloud. She will
create the repository on her user account there, and give Bob write access. This way, Bob can push to
the repository, even if it is located on Alice’s account.

When logged in to your Bitbucket account at http://bitbucket.org, you will find online help and
tutorials that you can look at if needed.

4.1 Creating the common repository

Alice now log in to Bitbucket and creates a new repository. She calls the new repository HelloProject.
She makes it private. She also, already now, gives Bob write access to her repo (in ”Settings” and ” User
and group access”) so that he will be able to push into it.

4.2 Connecting the developer repository to the common repository

Alice now needs to connect her developer repository to the new common repository and push its contents
to it. She goes to the developer repository and performs the following magic for doing this:

$ cd pvglab2/HelloProject
$ git remote add origin https://<username>@bitbucket.org/<username>/helloproject.git
$ git push -u origin master

where <username> is Alice’s Bitbucket username.
These commands will make it look like the developer repository was cloned from the common repos-
itory (although we in fact created the repositories in the opposite order).

http://bitbucket.org

Out of curiosity, Alice looks up the more precise meaning of these commands and finds out the
following:

e The remote command sets up the common repository as the origin of the developer repository.
e The push command pushes the master branch of the developer repository into the origin repository.

e The -u option configures her master branch to track the master branch in the common repository.
This has the effect that when she in the future does a git push, the changes will end up in the
right place in the common repository.

Alice does not entirely grasp all this, but is happy with accepting that the magic probably does what
it should. To check that everything works, Alice does a small change to the README file, commits it,
and pushes it to the common repository.

$ nano README
$ git commit -a -m "Updated README"
$ git push

She also tries the pull command.
$ git pull
Of course, nothing new is pulled, since Bob has not started working yet.

Avoiding writing the password?

Alice thinks it is a bit tedious to have to write the bitbucket password for every pull or push. She knows
this can be avoided by ssh and generating an ssh key, but she thinks this is too much work for this short
experiment with git.

5 Alice invites Bob to work on the project

Alice now invites Bob to work on the project. He starts by configuring git in a similar way as Alice did.

5.1 Cloning the common repository

Bob clones the common repository into a suitable place in his own account, and checks the contents of
his working directory.

$ cd pvglab2

$ git clone https://<Bob username>@bitbucket.org/<Alice username>/helloproject.git
$ cd HelloProject

$ 1s -a

5.2 Bob starts working

Bob starts working. He edits the README file some more, commits it, and pushes back the changes to
the common repository. Write down the commands he uses here:

5.3 Alice pulls the new changes

i
=
Q
@

Alice pulls down Bob’s changes, and takes a look at the commit log.

$ git pull
$ git log

5.4 Concurrent development: using stash

Alice and Bob now start experimenting with developing at the same time. Just like you should do update

before you do commit in CVS, you should do pull before you do commit and push in Git. And just like in

CVS, you should make sure that the code is clean (compiles and tests) before committing and pushing.
First, try the following scenario where Alice and Bob edit the same file:

e Alice edits the README file and saves it. Alice
e Bob edits the README file and saves it. Bob

e Alice pulls, commits, and pushes. Alice
e Bob pulls in order to merge with the latest version before he commits and pushes. Bob

What happens? It turns out that you cannot pull if your working directory contains uncommitted
files that need to be merged with the pulled changes. Bob now has two options:

commit he can commit his changes and then pull

stash he can stash away his changes, then do pull, and later apply the stashed changes, merging them
with the new version of the files.

The stash command takes all the uncommitted changes to the working directory and moves them
away to a safe place, the stash, so that all edits are undone, and the working directory is set back to
the previous clean state (with no uncommitted changes). The stash apply command takes the changes
from the stash, and applies them on the working directory again, i.e., merges them with the files in the
working directory.

Bob tries the stash option, checking the contents of the README file after each step. If necessary, |Bob
he edits the README file before the commit, to make sure it has the desired merged content.

git stash

more README

git pull

more README

git stash apply
more README

nano README

git commit -a -m
git push

B hH hH P PH PP P LD

Bob realizes that stash is like a light-weight anonymous branch.

5.5 Continued concurrent development

Alice and Bob continue with their development, creating the HelloWorld application. They experiment
with different ways of getting into merge situations, making sure that Alice also tries out the stash
command.

Alice and Bob then reflect on what they have learnt, by writing down descriptions of git concepts and
commands:

repository

working directory

staged area

stash

commit identifier

git config

git init

git clone

git status

git log

git add

git commit

git push

git pull

git stash

git stash apply

6 Part II - Using Git from Eclipse

Now you know the basics of git and how to work with Bitbucket cloud as the common repository. In this
part of the lab, you will create a Java project in Eclipse and put it under version control using git and
Bitbucket. All git commands will be executed from within Eclipse. However, feel free to in parallel see
what happens in you local git repository from the command line.

6.1 What to do

Study the YouTube clip made by Patrik (https://www.youtube.com/watch?v=JNiWJhi80Cc). Do "ex-
actly” the same thing using your bitbucket account, e.g. use ” Alice” account and give ”Bob” write access.
Also, start two instances of Eclipse, one from each of your unix accounts, to make it as real as possible
simulating two developers working in parallel on the same project.

Make sure you experience several possible scenarios of parallel modifications and how they can be
solved using git and Eclipse.

7 Learning more
Alice and Bob now discuss some additional things they would like to learn about Git, for example how to

use branches in Git. As a starting point, they take a look at the official Git site: http://git-scm. com,
then they decide it is time for a break.

https://www.youtube.com/watch?v=JNiWJhi8OCc
http://git-scm.com

	Working from the command line
	Introduction
	Alice starts working locally
	Configuring git
	Creating a local repository
	Working with the local repository

	Setting up a common repository
	Creating the common repository
	Connecting the developer repository to the common repository

	Alice invites Bob to work on the project
	Cloning the common repository
	Bob starts working
	Alice pulls the new changes
	Concurrent development: using stash
	Continued concurrent development

	Part II - Using Git from Eclipse
	What to do

	Learning more

