
EDAF30 – Programming in C++

10. More about resource management, classes and the standard library.

Sven Gestegård Robertz
Computer Science, LTH

2023

Outline

1 Containers and resource management
Insertion

2 Function calls
defaults
inline

3 Pairs and tuples
tuples and std::tie()

4 Copy and move

5 Pointers vs references

10. More about resource management, classes and the standard library. 2/1

Container and resource management

▶ Containers have value semantics
▶ Elements are copied into the container

Containers and resource management 10. More about resource management, classes and the standard library. 3/40

The classes vector and deque

Insertion with insert/push_back and emplace(back)

insert: copying (or moving)

iterator insert (const_iterator pos , const value_type& val);
iterator insert (const_iterator pos , size_type n,

const value_type& val);
template <class InputIterator >
iterator insert (const_iterator pos , InputIterator first ,

InputIterator last);
iterator insert (const_iterator pos ,

initializer_list <value_type > il);

and push_back.

emplace: construction “in-place”

template <class ... Args >
iterator emplace (const_iterator position , Args &&... args);

template <class ... Args >
void emplace_back (Args &&... args);

Containers and resource management : Insertion 10. More about resource management, classes and the standard library. 4/40

The classes vector and deque

Example with insert and emplace

struct Foo {
int x;
int y;
Foo(int a=0,int b=0) :x{a},y{b} {cout <<*this <<"\n";}
Foo(const Foo& f) :x{f.x},y{f.y} {cout <<"** Copying Foo\n";}

};
std:: ostream& operator <<(std:: ostream& os, const Foo& f)
{

return os << "Foo("<< f.x << ","<<f.y<<")";
}
vector <Foo > v;
v.reserve (4);
v.insert(v.begin(), Foo (17 ,42));

print_seq(v);
v.insert(v.end(), Foo (7 ,2));

print_seq(v);
v.emplace_back ();
print_seq(v);
v.emplace_back (10);
print_seq(v);

Foo (17 ,42)
** Copying Foo

length = 1: [Foo (17 ,42)]
Foo(7,2)
** Copying Foo

length = 2: [Foo (17 ,42)][Foo(7 ,2)]
Foo(0,0)

length = 3: [Foo (17 ,42)][Foo (7 ,2)][Foo(0,0)]
Foo(10,0)

length = 4: [Foo (17 ,42)][Foo (7 ,2)][Foo (0 ,0)][Foo (10 ,0)]

Containers and resource management : Insertion 10. More about resource management, classes and the standard library. 5/40

Container and resource management

▶ Containers have value semantics
▶ Elements are copied into the container
▶ When an element is removed, it is destroyed
▶ The destructor of a container destroys all elements
▶ Usually a bad idea to store owning raw pointers in a container

▶ Requires explicit destruction of the elements
▶ Prefer smart pointers

Containers and resource management : Insertion 10. More about resource management, classes and the standard library. 6/40

Function calls and results
Returning objects by value

▶ A function cannot return references to local variables
▶ the object is destroyed at return – dangling reference

▶ How (in)efficient is it to return objects by value (a copy)?

Function calls : defaults 10. More about resource management, classes and the standard library. 7/40

return value optimization (RVO)

The compiler may optimize away copies of objects on return from
functions

▶ return by value often efficient, also for larger objects
▶ RVO allowed even if the copy-constructor or destructor

has side effects
▶ avoid such side effects to make code portable

Function calls : defaults 10. More about resource management, classes and the standard library. 8/40

Rules of thumb for function parameters

▶ Return by value more often
▶ Do not over-use call-by-value

“reasonable defaults”
cheap to copy moderately cheap to copy expensive to copy

In f(X) f(const X&)
In/Out f(X&)
Out X f() f(X&)

For results, if the cost of copying is
▶ small, or moderate (< 1k, contiguous): return by value

(modern copilers do RVO: return value optimization)

▶ large : call by reference as out parameter
▶ or maybe allocate with new and return pointer

Function calls : defaults 10. More about resource management, classes and the standard library. 9/40

Call by reference or by value?
Rules of thumb

For passing an object to a function when
▶ you may want to change the value of the object

▶ reference: void f(T&); or
▶ pointer: void f(T*);

▶ you will not change it, it is large (or impossible to copy)
▶ constant reference: void f(const T&);

▶ otherwise, call by value
▶ void f(T);

Function calls : defaults 10. More about resource management, classes and the standard library. 10/40

reference or pointer?

▶ required parameter: pass reference
▶ optional parameter: pass pointer (can be nullptr)

void f(widget& w)
{

use(w); // required parameter
}

void g(widget* w)
{

if(w) use(w); // optional parameter
}

Function calls : defaults 10. More about resource management, classes and the standard library. 11/40

Call by reference or by value?

▶ How big is “large”?
▶ more than a few words

▶ When to use out parameters?
▶ prefer code that is obvious

Example: two functions:

void incr1(int& x)
{

++x;
}

int incr2(int x)
{

return x + 1;
}

Use:

int v = 0;
...

incr1(v);

...

v = incr2(v);

▶ For multiple output values, consider returning a struct,
a std::pair or a std::tuple

Function calls : defaults 10. More about resource management, classes and the standard library. 12/40

Here it is much clearer
that v = incr2(v) changes v

Rules of thumb for function parameters

▶ Return by value more often
▶ Do not over-use call-by-value

“reasonable defaults”
cheap to copy moderately cheap to copy expensive to copy

In f(X) f(const X&)
In/Out f(X&)
Out X f() f(X&)

Function calls : defaults 10. More about resource management, classes and the standard library. 13/40

Class definitions
Member functions and inline

Function inlining:
▶ Replace a function call with the code in the function body

▶ inline is a hint to the compiler

▶ Only suitable for (very) small functions
▶ Implicit if the function definition is in the class definition
▶ If the function is defined outside the class definition, use the

keyword inline

Function calls : inline 10. More about resource management, classes and the standard library. 14/40

Class definitions
Member functions and inline, example

Inline is implicit
in the class definition:
class Foo {
public:

int scale(int x) {
return value * x;

}
// ...

private:
int value;

};

Inline definition outside the
class definition:
inline int Foo:: scale(int x)
{

return value * x;
}

Usage: With the code
Foo f;
//...
auto v = f.scale (17);

inlining means compiling to
code that behaves like

Foo f;
//...
auto v = f.value * 17;

Function calls : inline 10. More about resource management, classes and the standard library. 15/40

Sets and maps
The return value of insert

insert() returns a pair

std::pair <iterator ,bool > insert(const value_type& value);

The insert member function returns two things:
▶ An iterator to the inserted value

▶ or to the element that prevented insertion

▶ A bool: true if the element was inserted

Using std::tie to unpack a pair (or tuple)

bool inserted;
std::tie(std::ignore , inserted) = set.insert(value);

Pairs and tuples 10. More about resource management, classes and the standard library. 16/40

pairs and std::tie
Example: explicit element access

Getting the elements of a pair

void example1 ()
{

auto t = std:: make_pair (10, "Hello");

int i = t.first;
string s = t.second;

cout << "i: " << i << ", s: " << s << endl;
}

Pairs and tuples : tuples and std::tie() 10. More about resource management, classes and the standard library. 17/40

pairs and std::tie
Example: using std::tie

Getting the elements of a pair

void example1b ()
{

auto t = std:: make_pair (10, "Hello");

int i;
string s;

std::tie(i,s) = t;

cout << "i: " << i << ", s: " << s << endl;
}

Pairs and tuples : tuples and std::tie() 10. More about resource management, classes and the standard library. 18/40

tuples and std::tie
Example: using std::get(std::tuple)

Getting the elements of a tuple

void example2 ()
{

auto t = std:: make_tuple (10, "Hello" ,4.2);

int i;
string s;
double d;

i = std::get <0>(t);
s = std::get <1>(t);
d = std::get <2>(t);

cout << "i: " << i << ", s: " << s << ", d: " << d << endl;
}

NB! std::get(std:tuple) takes the index as a template parameter.

Pairs and tuples : tuples and std::tie() 10. More about resource management, classes and the standard library. 19/40

tuples and std::tie
Example: using std::tie

Getting the elements of a tuple

void example2b ()
{

auto t = std:: make_tuple (10, "Hello" ,4.2);

int i;
string s;
double d;

std::tie(i,s,d) = t;

cout << "i: " << i << ", s: " << s << ", d: " << d << endl;
}

Pairs and tuples : tuples and std::tie() 10. More about resource management, classes and the standard library. 20/40

std::tie
Example: ignoring values with std::ignore

Getting the elements of a tuple

void example2c ()
{

auto t = std:: make_tuple (10, "Hello" ,4.2);

int i;
double d;

std::tie(i,std::ignore ,d) = t;

cout << "i: " << i << ", d: " << d << endl;
}

std::ignore is an object of unspecified type such that assigning
any value to it has no effect.

Pairs and tuples : tuples and std::tie() 10. More about resource management, classes and the standard library. 21/40

std::tie
Example: implementation sketch

tie for a pair<int, string>

std::pair <int&, string&> mytie(int& x, string& y)
{

return std::pair <int&, string&>(x,y);
}

▶ returns a temporary pair of lvalue references
▶ the assignment operator of pair assigns each member
▶ the references are aliases for the variables passed as arguments
▶ assigning to the references is the same as assigning to the

variables
int i;
string s;

mytie(i,s) = t;

Pairs and tuples : tuples and std::tie() 10. More about resource management, classes and the standard library. 22/40

std::tie
Comments

possible implementation

template <typename ... Args >
std::tuple <Args &...> tie(Args &... args)
{

return std::tuple <Args &...>(args ...);
}

▶ std::tie can be used on both std::pair and std::tuple, as a
tuple has an implicit conversion from pair.

▶ The variables used with std::tie must have been declared.
▶ C++17 introduces structured bindings that lets you write code

like const auto& [i,s,d] = some_tuple;
▶ No need to declare variables before
▶ Cannot use std::ignore: compiler warning if you don’t use all

variables.

Pairs and tuples : tuples and std::tie() 10. More about resource management, classes and the standard library. 23/40

Resource management
copy assignment: operator=

Declaration (in the class definition of Vector)

const Vector& operator =(const Vector& v);

Definition (outside the class definition)

Vector& Vector :: operator=(const Vector& v)
{

if (this != &v) {
auto tmp = new int[sz];
for (int i=0; i<sz; i++)

tmp[i] = v.elem[i];
sz = v.sz;
delete [] elem;
elem = tmp;

}
return *this;

}

1 check “self
assignment”

2 Allocate new
resources

3 Copy values
4 Free old resources

For error handling, better to allocate and copy first and only delete if copying

succeded.
Copy and move 10. More about resource management, classes and the standard library. 24/40

Copy control: (Move semantics – C++11)
Example: Vector

Move assignment
Vector& Vector :: operator =(Vector && v) {

if(this != &v) {
delete [] elem; // delete current array
elem = v.elem; // "move" the array from v
v.elem = nullptr; // mark v as an "empty hulk"
sz = v.sz;
v.sz = 0;

}
return *this;

}

Copy and move 10. More about resource management, classes and the standard library. 25/40

Copy/move assignment
We can (often) do better

▶ Code complexity
▶ Both copy and move assignment operators
▶ Code duplication
▶ Brittle, manual code

▶ self-assignment check
▶ copying
▶ memory management

alternative: The copy-and-swap idiom.

Copy and move 10. More about resource management, classes and the standard library. 26/40

Copy assignment
The copy and swap idiom

Copy and move assignment
Vector& Vector :: operator =(Vector v) {

swap(*this , v);
return *this;

}

▶ Call by value
▶ let the compiler do the copy
▶ works for both copy assign and move assign

▶ called with lvalue ⇒ copy construction
▶ called with rvalue ⇒ move construction

▶ No code duplication
▶ Less error-prone
▶ May need an overloaded swap()

▶ Slightly less efficient (one additional assignment)

Copy and move 10. More about resource management, classes and the standard library. 27/40

Swapping – std::swap

The standard library defines a function (template) for swapping the
values of two variables:
Example implementation (C++11)

template <typename T>
void swap(T& a, T& b)
{

T tmp = a;
a = b;
b = tmp;

}

template <typename T>
void swap(T& a, T& b)
{

T tmp = std::move(a);
a = std::move(b);
b = std::move(tmp);

}

The generic version may do unnecessary copying (especially pre
move semantics, or if members cannot be moved), for Vector we
can simply swap the members.

Overload for Vector (needs to be friend)
void swap(Vector& a, Vector& b) noexcept
{

using std::swap;
swap(a.sz, b.sz);
swap(a.elem , b.elem);

}

Copy and move 10. More about resource management, classes and the standard library. 28/40

common idiom:
▶ use using to make std::swap visible
▶ call swap unqualified to allow ADL to find

an overloaded swap for the argument type

Swapping – std::swap

▶ The swap function can be both declared as a friend and
defined inside the class definition.

▶ Still a free function
▶ In the same namespace as the class

▶ Good for ADL

Overload for Vector (“inline” friend)
class Vector {

// declarations of members ...

friend void swap(Vector& a, Vector& b) noexcept
{

using std::swap;
swap(a.sz, b.sz);
swap(a.elem , b.elem);

}
};

Copy and move 10. More about resource management, classes and the standard library. 29/40

Swapping – std::swap

▶ The swap function can be both declared as a friend and
defined inside the class definition.

▶ Still a free function
▶ In the same namespace as the class

▶ Good for ADL

Overload for Vector (“inline” friend)
class Vector {

// declarations of members ...

friend void swap(Vector& a, Vector& b) noexcept
{

using std::swap;
swap(a.sz, b.sz);
swap(a.elem , b.elem);

}
};

Copy and move 10. More about resource management, classes and the standard library. 29/40

Swapping – std::swap

▶ The swap function can be both declared as a friend and
defined inside the class definition.

▶ Still a free function
▶ In the same namespace as the class

▶ Good for ADL

Overload for Vector (“inline” friend)
class Vector {

// declarations of members ...

friend void swap(Vector& a, Vector& b) noexcept
{

using std::swap;
swap(a.sz, b.sz);
swap(a.elem , b.elem);

}
};

Demo...
Copy and move 10. More about resource management, classes and the standard library. 29/40

Standard container iterators and swap

23.2.1 General container requirements includes
The expression a.swap(b), for containers a and b of a stan-
dard container type other than array, shall exchange the
values of a and b without invoking any move, copy, or
swap operations on the individual container elements.

and
no swap() function invalidates any references, pointers, or
iterators referring to the elements of the containers being
swapped. [Note: The end() iterator does not refer to any
element, so it may be invalidated. — end note]

C++-14 clarifies:
Every iterator referring to an element in one container
before the swap shall refer to the same element in the other
container after the swap.

Copy and move 10. More about resource management, classes and the standard library. 30/40

Swapping vectors vs. swapping elements
std::swap swaps the pointers

elem
sz: 5Vector vec:

1 2 3 4 5

elem
sz: 7Vector vec2:

11 12 13 14 15 16 17

using std::swap;
swap(vec , vec2);

elem
sz: 7Vector vec:

1 2 3 4 5

elem
sz: 5Vector vec2:

11 12 13 14 15 16 17

Copy and move 10. More about resource management, classes and the standard library. 31/40

Swapping vectors vs. swapping elements
std::swap_ranges swaps elements

elem
sz: 5Vector vec:

1 2 3 4 5

elem
sz: 7Vector vec2:

11 12 13 14 15 16 17

std:: swap_ranges(vec.begin(), vec.end(), vec2.begin ());

elem
sz: 5Vector vec:

11 12 13 14 15

elem
sz: 7Vector vec2:

1 2 3 4 5 16 17

Copy and move 10. More about resource management, classes and the standard library. 32/40

Swapping – std::swap_ranges (from <algorithm>)

template < class ForwardIt1 , class ForwardIt2 >
ForwardIt2 swap_ranges(ForwardIt1 first1 , ForwardIt1 last1 ,

ForwardIt2 first2);

Returns an iterator one past the last element swapped
in the range beginning with first2

Copy and move 10. More about resource management, classes and the standard library. 33/40

References

References are similar to pointers, but
▶ A reference is an alias to a variable

▶ cannot be changed (reseated to refer to another variable)
▶ must be initialized
▶ is not an object (has no address)

▶ Dereferencing does not use the operator *
▶ Using a reference is to use the referenced object.

Use a reference if you don’t have (a good reason) to use a pointer.

Pointers vs references 10. More about resource management, classes and the standard library. 34/40

Pointers

Similar to references in Java, but
▶ a pointer is the memory address of an object
▶ a pointer is an object (a C++ reference is not)

▶ can be assigned and copied
▶ has an address
▶ can be declared without initialization, but then it gets an

undefined value , as do other variables
▶ four possible states

1 point to an object
2 point to the address immediately past the end of an object
3 point to nothing: nullptr. Before C++11: NULL
4 invalid

▶ can be used as an iteger value
▶ arithmetic, comparisons, etc.

Pointers vs references 10. More about resource management, classes and the standard library. 35/40

References vs pointers

Use a reference if you don’t have (a good reason) to use a pointer.

▶ E.g., if it may have the value nullptr (“no object”)
▶ or if you need to change(“reseat”) the pointer,
▶ for dynamically allocated objects: (new returns a pointer),
▶ for creating objects of polymorph types, and especially
▶ for storing polymorph types in a container like std::vector.

Pointers vs references 10. More about resource management, classes and the standard library. 36/40

Pointers and references

Pointer and reference versions of swap

// References
void swap(int& a, int& b)
{

int tmp = a;
a = b;
b = tmp;

}

// Pointers
void swap(int* pa, int* pb)
{

if(pa != nullptr && pb != nullptr) {
int tmp = *pa;
*pa = *pb;
*pb = tmp;

}
}

int m=3, n=4;
swap(m,n); Reference version is called

swap(&m,&n); Pointer version is called

NB! Pointers are called by value: the address is copied

Pointers vs references 10. More about resource management, classes and the standard library. 37/40

Suggested reading

References to sections in Lippman
swap 13.3
Copying and moving objects 13.4, 13.6
(allocators) 12.2.2
(Classes, dynamic memory allocation) 13.5
Container Adapters 9.6
Pairs 11.2.3
Tuples 17.1
static members 7.6
inline 6.5.2, p 273

Pointers vs references 10. More about resource management, classes and the standard library. 39/40

	Containers and resource management
	Insertion

	Function calls
	defaults
	inline

	Pairs and tuples
	tuples and std::tie()

	Copy and move
	Pointers vs references

