
EDAF30 – Programming in C++

2. Introduction. More on function calls and types.

Sven Gestegård Robertz
Computer Science, LTH

2023

Outline

1 Function calls and parameter passing

2 Pointers, arrays, and references
Pointers: Syntax and semantics
References
Arrays

3 The standard library alternatives to C-style arrays
std::string

std::vector

4 User defined types
Structures
Classes

5 I/O

2. Introduction. More on function calls and types. 2/1

Functions
Function calls

The semantics of function argument passing is the same as
copy initialization: (Same as for primitive types in Java)

▶ In a function call, the values of the arguments are
▶ type checked, and
▶ with implicit type conversion (if needed)
▶ copied to the function parameters

▶ Example: with a function double square(double d)

double s2 = square (2); // 2 is converted to double
// double d = 2;

double s3 = square("three"); // error
// double d = "three";

Function calls and parameter passing 2. Introduction. More on function calls and types. 3/46

Functions
Function overloading

▶ Overloading (“överlagring”)
void print(int);
void print(double);
void print(std::string , int);

void user()
{

print (42); // calls print(int);
print (1.23); // calls print(double);
print (4.5f); // calls print(double);
print("Hello", 17) // calls print(std::string , int);

}

▶ Default arguments (sometimes) similar to overloading
▶ void print(int x, int max_width=20);
▶ The rules are complex. Only use for trivial cases
▶ Risk of ambiguity if combined with overloading

Function calls and parameter passing 2. Introduction. More on function calls and types. 4/46

▶ Cannot differ only in return type
▶ Must not be ambiguous

Functions
Call - ambiguity

▶ With overloaded functions, the compiler selects “the best”
function (after implicit type conversion)

▶ If two alternatives are “equally good matches ” it is an error

void print2(int , double);
void print2(double , int);

void user()
{

print2(0, 0); // Error! ambiguous
}

▶ and also (with print() from last slide)

void print(int);
void print(double);

long l = 17;
print(l); // Error! print(int) or print(double)?

Function calls and parameter passing 2. Introduction. More on function calls and types. 5/46

Functions
Rule of thumb

Factor your code into small functions to
▶ give names to activities and document their dependencies
▶ avoid writing specific code in the middle of other code
▶ facilitate testing

▶ A function should perform a single task
▶ Keep functions as short as possible
▶ Rule of thumb

▶ Max 24 lines
▶ Max 80 columns
▶ Max 3 block levels
▶ Max 5–10 local variables
▶ Inversely proportional to complexity

Function calls and parameter passing 2. Introduction. More on function calls and types. 6/46

Call by value and call by reference
Call by value(värdeanrop)

In a ’normal’ function call, the values of the arguments are copied
to the formal parameters (which are local variables)

Example: swap two integer values

void swap(int a, int b)
{

int tmp=a;
a = b;
b = tmp;

}

. . . and use:
int x = 2;
int y = 10;

swap(x, y);

cout << x ", " << y << endl;

Function calls and parameter passing 2. Introduction. More on function calls and types. 7/46

2,10 x and y are not changed

Call by value and call by reference
Call by reference(referensanrop)

Use call by reference instead of call by value:

Example: swap two integer values

void swap(int& a, int& b)
{

int tmp=a;
a = b;
b = tmp;

}. . . and use:
int x = 2; int y = 10;

swap(x, y);

Here, references to the arguments are used , and the values are
actually swapped.

Function calls and parameter passing 2. Introduction. More on function calls and types. 8/46

References

▶ A reference is an alias for a variable

The call swap(x,15); gives the error message
invalid initialization of non -const reference of type "int&"
from an rvalue of type ’int ’

NB! The argument for a reference parameter must be an lvalue

Function calls and parameter passing 2. Introduction. More on function calls and types. 9/46

Data types
Pointers, Arrays and References

▶ References
▶ Pointers (similar to Java references)
▶ Arrays (“built-in arrays”). Similar to Java arrays of primitive

types

Pointers, arrays, and references : Pointers: Syntax and semantics 2. Introduction. More on function calls and types. 10/46

Pointers

Similar to references in Java, but
▶ a pointer is the memory address of an object
▶ a pointer is an object (a C++ reference is not)

▶ can be assigned and copied
▶ has an address
▶ can be declared without initialization, but then it gets an

undefined value , as do other variables
▶ four possible states

1 point to an object
2 point to the address immediately past the end of an object
3 point to nothing: nullptr. Before C++11: NULL
4 invalid

▶ can be used as an iteger value
▶ arithmetic, comparisons, etc.

Be very careful!
Pointers, arrays, and references : Pointers: Syntax and semantics 2. Introduction. More on function calls and types. 11/46

Pointers
Syntax, operatorers * and &

▶ In a declaration:
▶ prefix *: “pointer to”

int *p; : p is a pointer to an int
void swap(int*, int*); : function taking two pointers

▶ prefix &: “reference to”
int &r; : r is a reference to an int

▶ In an expression:
▶ prefix *: dereference, “contents of” (pointer → object)

*p = 17; the object that p points to is assigned 17
▶ prefix &: “address of”, “pointer to“ (object → pointer)

int x = 17;
int y = 42;

swap(&x, &y); Call swap(int*, int*) with pointers to x and y

Pointers, arrays, and references : Pointers: Syntax and semantics 2. Introduction. More on function calls and types. 12/46

Pointers
Be careful with declarations

Advice: One declaration per line

int *a; // pointer to int
int* b; // pointer to int
int c; // int

int* d, e; // d is a pointer , e is an int
int* f, *g; // f and g are both pointers

Choose a style, either int *a or int* b, and be consistent.

Pointers, arrays, and references : Pointers: Syntax and semantics 2. Introduction. More on function calls and types. 13/46

References

References are similar to pointers, but
▶ A reference is an alias to a variable

▶ must be initialized
▶ cannot be changed (reseated to refer to another variable)
▶ is not an object (has no address)

▶ Dereferencing does not use the operator *
▶ Using a reference is to use the referenced object.

Use a reference if you don’t have (a good reason) to use a pointer.
▶ E.g., if it may have the value nullptr (“no object”)
▶ or if you need to change(“reseat”) the pointer
▶ More on this later.

Pointers, arrays, and references : References 2. Introduction. More on function calls and types. 14/46

Pointers and references
Call by pointer

In some cases, a pointer is used instead of a reference to “call by
reference:

Example: swap two integers

void swap2(int* a, int* b)
{

if(a != nullptr && b != nullptr) {
int tmp=*a;
*a = *b;
*b = tmp;

}
} ... and use: int x, y;

...
swap2(&x, &y);

NB!:
▶ a pointer can be nullptr or uninitialized
▶ dereferencing such a pointer gives undefined behaviour

Pointers, arrays, and references : References 2. Introduction. More on function calls and types. 14/46

Pointers and references

Pointer and reference versions of swap

// References
void swap(int& a, int& b)
{

int tmp = a;
a = b;
b = tmp;

}

// Pointers
void swap(int* pa, int* pb)
{

if(pa != nullptr && pb != nullptr) {
int tmp = *pa;
*pa = *pb;
*pb = tmp;

}
}

int m=3, n=4;
swap(m,n); Reference version is called

swap(&m,&n); Pointer version is called

NB! Pointers are called by value: the address is copied

Pointers, arrays, and references : References 2. Introduction. More on function calls and types. 15/46

Arrays (“C-arrays”, “built-in arrays”)

▶ A sequence of values of the same type (homogeneous
sequence)

▶ Similar to Java for primitive types
▶ but no safety net – difference from Java
▶ an array does not know its size – the programmer’s

responsibility
▶ Can contain elements of any type

▶ Java arrays can only contain references (or primitive types)

▶ Can be a local (or member) variable (Difference from Java)
▶ Is declared T a[size]; (Difference from Java)

▶ The size must be a (compile-time) constant.
(Different from C99 which has VLAs)

Pointers, arrays, and references : Arrays 2. Introduction. More on function calls and types. 16/46

Arrays
Representation in memory

The elements of an array can be of any type
▶ Java: only primitive types or a reference to an object
▶ C++: an object or a pointer

Example: array of Point
class Point{

signed char x;
signed char y;

};

Point ps[3];

y:
x:

x:
y:
x:
y:

ps:
ps[0]

ps[1]

ps[2]

Important difference from Java: no fundamental difference
between built-in and user defined types.

Pointers, arrays, and references : Arrays 2. Introduction. More on function calls and types. 17/46

Data types
C strings

▶ C strings are char[] that are null terminated.
Example: char s[6] = "Hello";

s: ’H’ ’e’ ’l’ ’l’ ’o’ ’\0’

NB! A string literal is a C-style string (not a std::string)
The type of "Hello" is const char[6].

Pointers, arrays, and references : Arrays 2. Introduction. More on function calls and types. 18/46

Pointers and arrays

Arrays are accessed through pointers

float f[4]; // 4 floats
float* pf; // pointer to float

pf = f; // same as = &f[0]
float x = *(pf+3); // Alt. x = pf[3];
x = pf[3]; // Alt. x = *(pf+3);

Pointers, arrays, and references : Arrays 2. Introduction. More on function calls and types. 19/46

Pointers and arrays
What does array indexing really mean?

The expression a[b] is equivalent to *(a + b) (and, thus, to b[a])

Definition
For a pointer, T* p, and an integer i, the expression p + i is

defined as p + i * sizeof(T)

That is,
▶ p+1 points to the address after the object pointed to by p

▶ p+i is an address i objects of type T after p.

Example: confusing code (Don’t do this)

int a[] {1,4,5,7,9};

cout << a[2] << " == "<< 2[a] << endl;

5 == 5

Pointers, arrays, and references : Arrays 2. Introduction. More on function calls and types. 20/46

Pointers and arrays
Function calls

Function for zeroing an array
void zero(int* x, size_t n) {

for (int* p=x; p != x+n; ++p)
*p = 0;

}

...
int a[5];

zero(a,5);

▶ The name of an array variable in an expression
is interpreted as “a pointer to the first element”:
array decay

▶ a ⇔ &a[0]
▶ arrays cannot be copied (passed by value)

Array subscripting
void zero(int x[], size_t n) {

for (size_t i=0; i < n; ++i)
x[i] = 0;

}

▶ In function parameters T a[]
is equivalent to T* a.
(Syntactic sugar)

▶ T* is more common

▶ An array is passed as a pointer and a size.

Pointers, arrays, and references : Arrays 2. Introduction. More on function calls and types. 21/46

Two types from the standard library
Alternatives to C-style arrays

Do not use built-in arrays unless you have (a strong reason) to.
Instead of
▶ char[] – Strings – use std::string

▶ T[] – Sequences – use std::vector<T>

More like in Java:
▶ more functionality – “behaves like a built-in type”
▶ safety net

The standard library alternatives to C-style arrays 2. Introduction. More on function calls and types. 22/46

Strings: std::string

std::string has operations for
▶ assigning
▶ copying
▶ concatenation
▶ comparison
▶ input and output (<< >>)

and
▶ knows its size

Similar to java.lang.String but is mutable.

The standard library alternatives to C-style arrays : std::string 2. Introduction. More on function calls and types. 23/46

Sequences: std::vector<T>

A std::vector<T> is
▶ an ordered collection of objects (of the same type, T)
▶ every element has an index

which, in contrast to a built-in array
▶ knows its size

▶ vector<T>::operator[] does no bounds checking
▶ vector<T>::at(size_type) throws out_of_range

▶ can grow (and shrink)
▶ can be assigned, compared, etc.

Similar to java.util.ArrayList

Is a class template

The standard library alternatives to C-style arrays : std::vector 2. Introduction. More on function calls and types. 24/46

Example: std::string

#include <iostream >
#include <string >
using std:: string;
using std::cout;
using std::endl;

string make_email(string fname ,
string lname ,
const string& domain)

{
fname [0] = toupper(fname [0]);
lname [0] = toupper(lname [0]);
return fname + ’.’ + lname + ’@’ + domain;

}

void test_string ()
{

string sr = make_email("sven", "robertz", "cs.lth.se");

cout << sr << endl;
}

Sven.Robertz@cs.lth.se

The standard library alternatives to C-style arrays : std::vector 2. Introduction. More on function calls and types. 25/46

Example: std::vector<int>

initialisation

void print_vec(const std:: string& s, const std::vector <int >& v)
{

std::cout << s << " : " ;
for(int e : v) {

std::cout << e << " ";
}
std::cout << std::endl;

}
void test_vector_init ()
{

std::vector <int > x(7);
print_vec("x", x);

std::vector <int > y(7,5);
print_vec("y", y);

std::vector <int > z{1,2,3};
print_vec("z", z);

}

x: 0 0 0 0 0 0 0
y: 5 5 5 5 5 5 5
z: 1 2 3

The standard library alternatives to C-style arrays : std::vector 2. Introduction. More on function calls and types. 26/46

Example: std::vector<int>

assignment

void test_vector_assign ()
{

std::vector <int > x {1,2,3,4,5};
print_vec("x", x);
std::vector <int > y {10 ,20 ,30 ,40 ,50};
print_vec("y", y);
std::vector <int > z;
print_vec("z", z);
z = {1,2,3,4,5,6,7,8,9};
print_vec("z", z);
z = x;
print_vec("z", z);

}

x : 1 2 3 4 5
y : 10 20 30 40 50
z :
z : 1 2 3 4 5 6 7 8 9
z : 1 2 3 4 5

The standard library alternatives to C-style arrays : std::vector 2. Introduction. More on function calls and types. 27/46

Example: std::vector<int>

insertion and comparison

void test_vector_eq ()
{

std::vector <int > x {1,2,3};
std::vector <int > y;
y.push_back (1);
y.push_back (2);
y.push_back (3);

if(x == y) {
std::cout << "equal" << std::endl;

} else {
std::cout << "not equal" << std::endl;

}
}

equal

The standard library alternatives to C-style arrays : std::vector 2. Introduction. More on function calls and types. 28/46

User defined types

▶ Built-in types (e.g., char, int, double, pointers, . . .) and
operations
▶ Rich, but deliberately low-level
▶ Directly and efficiently reflect the capabilites of conventional

computer hardware

▶ User-defined types
▶ Built using the built-in types and abstraction mechanisms
▶ struct, class (cf. class i Java)
▶ Examples from the standard library

▶ std::string (cf. java.lang.String)
▶ std::vector, std::list . . . (cf. corresponding class in

java.util)
▶ enum class: enumeration (cf. enum in Java)

▶ A concrete type can behave “just like a built-in type”.

User defined types 2. Introduction. More on function calls and types. 29/46

Structures

The first step in building a new type is to organize the elements it
needs into a data structure, a struct.
Exempel: Person

struct Person{
string first_name;
string last_name;

};

A variable of the type Person is created with
Person p;

but now the member variables have default initialized values.
NB! that sometimes means undefined

More on object initialization later.

User defined types : Structures 2. Introduction. More on function calls and types. 30/46

Structures
Initialization

A function for initializing a Person:
void init_person(Person& p, const string& fn, const string& ln)

{
p.first_name = fn;
p.last_name = ln;

}

A variable of type Person, can be created and initialized with
Person sven;
init_person(sven, "Sven", "Robertz");

▶ call by reference: the object sven is changed
Use:

std::cout << sven.first_name << " " << sven.last_name << ’\n’.

User defined types : Structures 2. Introduction. More on function calls and types. 31/46

Structures
Use

Now we can use our type Person:
#include <iostream >
Person read_person ()
{

cout << "Enter first name:" << endl;
string fn;
cin >> fn;

cout << "Enter last name:" << endl;
string ln;
cin >> ln;

Person p;
init_person(p, fn, ln);
return p;

}

▶ >> is the input operator
▶ the standard library <iostream>

▶ std::cin is standard input

User defined types : Structures 2. Introduction. More on function calls and types. 32/46

Classes

Make a type behave like a built-in type
▶ Tight coupling of data and operations
▶ Often make the representation inaccessible to users

A class has
▶ data members (“attributes”)
▶ member functions (“methods”)
▶ members kan be

▶ public
▶ private
▶ protected
▶ like in Java

User defined types : Classes 2. Introduction. More on function calls and types. 33/46

Classes
Example

class Person{
public:

Person(string fn, string ln) :first_name{fn}, last_name{ln} {}
string get_name ();
string get_initials ();

private:
string first_name;
string last_name;

};

▶ constructor, like in Java
▶ Creates an object and initializes members

▶ the statements Person sven;
init_person(sven , "Sven", "Robertz");

become Person sven("Sven", "Robertz");

class and struct are (mostly) synonyms in C++.

User defined types : Classes 2. Introduction. More on function calls and types. 34/46

Classes
Example

Person read_person ()
{

cout << "Enter first name:" << endl;
string fn;
cin >> fn;
cout << "Enter last name:" << endl;
string ln;
cin >> ln;
return Person(fn, ln);

}

void test_read ()
{

Person p = read_person ();
cout << p.get_initials () << " : " << p.get_name () << endl;

}

User defined types : Classes 2. Introduction. More on function calls and types. 35/46

Class definitions
Declarations and definitions of member functions

Member functions (⇔ methods in Java)

Definition of a class

class Foo {
public:

int fun(int , int); // Declaration of member function

int times_two(int x) {return 2*x;} // ... incl definition
};

NB! Semicolon after class

Definition of member function (outside the class)

int Foo::fun(int x, int y) {
// ...

}

No semicolon after function
User defined types : Classes 2. Introduction. More on function calls and types. 36/46

File structure for classes

▶ The class definition is put in a header file (.h or .hpp)
▶ To avoid defining a class more than once, use include guards:

#ifndef FOO_H
#define FOO_H
//...
class Foo {
//...
};
#endif

▶ Member function definitions are put in a source file (.cc)

User defined types : Classes 2. Introduction. More on function calls and types. 37/46

Stream I/O

▶ The C++ standard library contains facilities for
▶ Structured I/O (“formatted I/O”)

▶ reading values of a certain type, T
▶ overload operator>>(istream&, T&) and
▶ operator<<(ostream&, const T&)

▶ Character I/O (“raw I/O”)
▶ istream& getline(istream&, string&)
▶ istream& istream::getline(char*, streamsize)
▶ int istream::get()
▶ istream& istream::ignore()
▶ . . .

▶ NB! getline() as free function and member of istream.
▶ std::getline() has an overload for using another delimiter

than newline.
▶ Choose raw or formatted I/O based on your application

I/O 2. Introduction. More on function calls and types. 38/46

Variables
Automatic type inference

auto: The compiler deduces the type from the initialization.

Declaration and initialization

auto x = 7; // int x
auto c = ’c’; // char c
auto b = true; // bool b
auto d = 7.8; // double d

std::vector <int > v;
auto it = v.begin (); // std::vector <int >:: iterator it

double calc_epsilon ();
auto ep = static_cast <float >(calc_epsilon ()); // float ep

In float ep = calc_epsilon(); the narrowing is not obvious NB!
with auto there is no risk of narrowing type conversion, so using = is safe.

I/O 2. Introduction. More on function calls and types. 39/46

Exception to ’almost always auto’

Don’t use auto if you need to be explicit about the declared type:
▶ if naming the type makes the code more readable.
▶ to specify the value range or precision

(e.g., int/ long or float/ double)
But that can also be achieved by using a cast to fix the type.

I/O 2. Introduction. More on function calls and types. 40/46

Data types
Two kinds of constants

▶ A variable declared const must not be changed(final in Java)
▶ Roughly:“I promise not to change this variable.”
▶ Is checked by the compiler
▶ Use when specifying function interfaces

▶ A function that does not change its (reference) argument
▶ A member function (“method”) that does not change the state

of the object.
▶ Important for function overloading

▶ T and const T are different types
▶ One can overload int f(T&) and int f(const T&)

(for some type T)
▶ A variable declared constexpr must have a value that can be

computed at compile time.
▶ Use to specify constants
▶ Functions can be constexpr
▶ Introduced in C++-11

Constants 2. Introduction. More on function calls and types. 41/46

char[], char* och const char*

const is important for C-strings

A string literal (e.g., "I am a string literal") is const.
▶ Can be stored in read-only memory

▶ char* str1 = "Hello"; — deprecated in C++ – gives a
warning

▶ const char* str2 = "Hello"; — OK, the string is const

▶ char str3[] = "Hello"; — str3 can be modified

Constants 2. Introduction. More on function calls and types. 42/46

const and pointers

const modifies everything to the left (exception: if const is first, it
modifies what is directly after)

Example

int* ptr;
const int* ptrToConst; //NB! (const int) *
int const* ptrToConst , // equivalent , clearer?

int* const constPtr; // the pointer is constant

const int* const constPtrToConst; // Both pointer and object
int const* const constPtrToConst; // equivalent , clearer?

Be careful when reading:

char *strcpy(char *dest , const char *src);

(const char)*, not const (char*)

Constants 2. Introduction. More on function calls and types. 43/46

const and pointers
Example:

void Exempel(int* ptr ,
int const * ptrToConst ,
int* const constPtr ,
int const * const constPtrToConst)

{
*ptr = 0; // OK: changes the value of the object pointed to
ptr = nullptr; // OK: changes the pointer

*ptrToConst = 0; // Error! cannot change the value
ptrToConst = nullptr; // OK: changes the pointer

*constPtr = 0; // OK: changes the value
constPtr = nullptr; // Error! cannot change the pointer

*constPtrToConst = 0; // Error! cannot change the value
constPtrToConst = nullptr; // Error! cannot change the pointer

}

Constants 2. Introduction. More on function calls and types. 43/46

Pointers

Pointers to constant and constant pointer

int k; // int that can be modified
int const c = 100;// constant int
int const * pc; // pointer to constant int
int *pi; // pointer to modifiable int

pc = &c; // OK
pc = &k; // OK , but k cannot be changed through *pc
pi = &c; // Error! pi may not point to a constant
*pc = 0; // Error! pc is a pointer to const int

int* const cp = &k; // Constant pointer
cp = nullptr; // Error! The pointer cannot be reseated
*cp = 123; // OK! Changes k to 123

Constants 2. Introduction. More on function calls and types. 43/46

Suggested reading

References to sections in Lippman
Literals 2.1.3
Pointers and references 2.3
std::string 3.2
std::vector 3.3
Arrays and pointers 3.5
Classes 2.6, 7.1.4, 7.1.5, 13.1.3
Scope and lifetimes 2.2.4, 6.1.1
I/O 1.2, 8.1–8.2, 17.5.2

Summary 2. Introduction. More on function calls and types. 45/46

Next lecture
Classes

References to sections in Lippman
Variable initialization 2.2.1
Classes 2.6, 7.1.4, 7.1.5
Constructors 7.5–7.5.4
(Aggregate classes) ("C structs" without constructors) 7.5.5
Operator overloading 14.1 – 14.3, 14.5 – 14.6
const, constexpr 2.4
this and const p 257–258
inline 6.5.2, p 273
friend 7.2.1
static members 7.6

Constants 2. Introduction. More on function calls and types. 46/46

	Function calls and parameter passing
	Pointers, arrays, and references
	Pointers: Syntax and semantics
	References
	Arrays

	The standard library alternatives to C-style arrays
	std::string
	std::vector

	User defined types
	Structures
	Classes

	I/O
	Constants
	Summary

