
EDAF30 – Programming in C++

1. Introduction

Sven Gestegård Robertz
Computer Science, LTH

2023

Outline

1 About the course

2 Presentation of C++
History
Introduction
Statements and operators
Functions

3 Data types and variables

1. Introduction 2/1

EDAF30: Programmering i C++, 7.5 hp
Syfte och mål

Kursens syfte är att ge kunskaper i
objektorienterad programmering i C++.

Kunskap och förståelse:

▶ känna till och kunna beskriva skillnaderna mellan C++ och Java

▶ vara förtrogen med språket C++ och standardbiblioteket STL

▶ kunna förklara grundläggande begrepp inom objektorienterad
C++-programmering

▶ förstå och kunna förklara de olika typerna av funktionsanrop

▶ kunna tolka, analysera och förklara befintlig C++-kod.

Färdighet och förmåga:

▶ kunna utveckla ett fungerande C++-program från en given
specifikation

▶ kunna felsöka metodiskt i C++-kod.

About the course 1. Introduction 3/27

EDAF30: programming in C++ , 7.5 hp
Important differences to Java

New or extended concepts in C++
(compared to Java / introductory courses):

▶ Pointers and memory management
▶ Functions: call-by-value and call-by-reference
▶ Polymorphism: both static and dynamic

(compare templates to generics)
▶ Operator overloading

And also
▶ The tool chain

About the course 1. Introduction 4/27

EDAF30: programming in C++ , 7.5 hp
Examination details

The compulsory course items are
▶ laborations
▶ project
▶ written examination

The final grade is based on the result of the written examination.

About the course 1. Introduction 5/27

EDAF30: programming in C++ , 7.5 hp
Administration

▶ Course plan
▶ Registration
▶ Sign up for labs

▶ On the web - link from the course web page
▶ Work in pairs
▶ Sign up for a group – same time all weeks

▶ Resources
▶ Course web page

▶ News
▶ Assignments
▶ Lecture slides

▶ Canvas
▶ Lectures: short videos to watch as preparation for lectures
▶ Labs: reflection question quizzes

▶ Slack

About the course 1. Introduction 6/27

History
C++ is a descendent of Simula and C.

1967: Simula (Dahl & Nygaard)
1972: C (Dennis Ritchie)
1978: K&R C (Kernighan & Ritchie)
1980: C with Classes (Bjarne Stroustrup)
1985: C++ (Bjarne Stroustrup)
▶ ISO standard 1998

Other relatives:

1995: Java (James Gosling et al.)
2000: C# (Anders Hejlsberg)
▶ virtual machine
▶ automatic memory management
▶ safe languages

Presentation of C++ : History 1. Introduction 7/27

C++ is not a pure extension of C

▶ both ISO C and ISO C++ are
descendants of K&R C, and are
“siblings”

▶ some details are incompatible
between ISO C och C++

▶ Areas are not to scale

In general: Don’t write C++ as if it were C

Presentation of C++ : History 1. Introduction 8/27

What is C++?

The ISO standard for C++ defines two things
▶ Core language features, e.g.,

▶ data types (e.g., char, int)
▶ control flow mechanisms (e.g., if and while statements).
▶ rules for declarations
▶ templates
▶ exceptions

▶ Standard-library components, e.g.,
▶ Data structures (e.g., string, vector, and map)
▶ Operations for in- and output (e.g., << and getline())
▶ Algorithms (e.g., find() and sort())

The standard library is written in C++
▶ Example of what is possible

Presentation of C++ : History 1. Introduction 9/27

A minimal program in C++

empty.cc

int main() { }

▶ has no parameters
▶ does nothing
▶ the return value of main() is interpreted by the system as an

error code
▶ non-zero means error
▶ no explicit return value is interpreted as zero (NB! only in

main())
▶ rarely used in Windows
▶ often used on Linux/Mac

Presentation of C++ : Introduction 1. Introduction 10/27

The first C++ program
Hello, World!

hello.cc

#include <iostream >
int main()
{

std::cout << "Hello , World!" << std::endl;
return 0;

}

hello.cc

#include <iostream >
using std::cout;
using std::endl;

int main()
{

cout << "Hello , World!" << endl;
return 0;

}

Presentation of C++ : Introduction 1. Introduction 11/27

Statements

Mostly the same syntax as in Java:
▶ if, switch
▶ for, while, do while

▶ break, continue
but goto is spelled differently:
▶ No break to a label
▶ goto (used in C, rarely used in C++)

Presentation of C++ : Statements and operators 1. Introduction 12/27

Operators

Operators and expressions quite similar to Java

The same as in Java
E.g., + - * / % ++ -- += -= *= && || & | etc., and [] . ?:

The trinary operator ?:(like in Java)

z = (x>y) ? x : y; if (x>y)
z=x;

else
z=y;

Many more, including
Pointer operators: * & ->

Input and output: << >> (overloaded shift operators)
sizeof, decltype (compile-time)

Presentation of C++ : Statements and operators 1. Introduction 13/27

Functions
Declaration and definition

The main way of getting sonething done in C++:
▶ call a function

▶ Declare before use
A function must have been declared before it can be called

▶ A function declaration specifices
▶ name
▶ return type
▶ types of the parameters

▶ Example: function declarations
int random ();
void exit(int);
double square(double);
int pow(int x, int exponent);

▶ A function definition contains the implementation
▶ Must not occur more than once (One Definition Rule)

Presentation of C++ : Functions 1. Introduction 14/27

▶ The compiler ignores parameter names
▶ Give names if it increases readability

Difference from Java
Function and variable declarations

▶ In Java functions and variables
can only be declared inside a class.

▶ In C++, functions and variables
can exist independently of classes.

▶ free functions do not belong to a class
▶ member functions in a class

▶ global variables
▶ member variables

Presentation of C++ : Functions 1. Introduction 15/27

Function declaration
Example

▶ Declaration and definition

Example: Mean value – variant 1

double mean(double x1 , double x2) // Declaration and definition
{

return (x1+x2)/2;
}

int main()
{

double a=2.3;
double b=3.9;
cout << mean(a, b) << endl;

}

Presentation of C++ : Functions 1. Introduction 17/27

Function definition
With previous declaration

▶ Forward declaration
▶ Fuction definition after main()

Example: mean – variant 2

double mean(double , double); // declaration (prototype)

int main()
{

double a=2.3;
double b=3.9;
cout << mean(a, b) << endl; // use

}

double mean(double x1 , double x2) // definition
{

return (x1+x2)/2;
}

Presentation of C++ : Functions 1. Introduction 18/27

Function declaration and definition
in separate files

Header file with declaration (mean.h)

double mean(double , double); // declaration (prototype)

Main source file

#include "mean.h"
int main()
{

double a=2.3;
double b=3.9;
cout << mean(a, b) << endl; // use

}

Library source file (mean.cc)

double mean(double x1 , double x2) // definition
{

return (x1+x2)/2;
}

Presentation of C++ : Functions 1. Introduction 19/27

What is a program?

C++ is a compiled language
▶ Source code
▶ Object file(s)
▶ Executable file

Source file 1

Source file 2

Compilation

Compilation

Object file 1

Object file 2

Linking Executable

Presentation of C++ : Functions 1. Introduction 20/27

Data types and variables

▶ Every name and every expression has a type
▶ some concepts:

▶ a declaration introduces a name (and gives it a type)
▶ a type defines the set of possible values and operations

(for an object)
▶ an object is a place in memory that holds a value
▶ a value is a sequence of bits interpreted according to a type.
▶ a variable is a named object

An object has
▶ a value and
▶ a representation

Unnamed objects
Unnamed objects include
▶ temporary values
▶ objects on the heap

(allocated with new)

Data types and variables 1. Introduction 21/27

Data types
Primitive types

▶ Integral types: char, short, int, long, long long

▶ signed (as in Java)
▶ unsigned (modulo 2N “non-negative” numbers, not in Java)

▶ Floting point types: float, double, long double

▶ bool (boolean in Java)
▶ integer values are implicitly converted to bool
▶ zero is false, non-zero is true

▶ The type char is “the natural size to hold a character” on a
given machine (often 8 bits). Its size (in C/C++) is called
“a byte” regardless of the number of bits.

▶ sizeof(char) ≡ 1 (1 byte)
▶ The sizes of all other data types are multiples of sizeof(char).

▶ sizes are implementation defined
▶ sizeof(int) is commonly 4.

Data types and variables 1. Introduction 22/27

Variables
Declaration and initialization

Declaration without initialization (avoid)

int x; // x has an undefined value (if local)
// (as local variables in Java)

Declaration and initialization

int x{7}; // C++ style (recommended if unsure)
int y = {7}; // C++ with extra =
int z = 7; // C style

vector <int > v{1,2,3,4,5};

C style: Beware of implicit type conversion

int x = 7.8; // x == 7. No warning
int y {7.8}; // Gives a warning (or error with -pedantic -errors)

Data types and variables 1. Introduction 23/27

The usual arithmetic conversions

The compiler tries really hard to compile your program.

Example

Do not mix signed and unsigned values!

Data types and variables 1. Introduction 24/27

Suggested reading

References to sections in Lippman
Functions 6.1 (p 201–207)
Types, variables 2.1,2.2,2.5.2 (p 31–37, 41–47, 69)
Type aliases 2.5.1
Arithmetic 4.1-4.5, 4.11
Constants 2.4 2.4.4 (p 59–60, 65–66)
Pointers and references 2.3 (p 50–59)

Summary 1. Introduction 25/27

Next lecture
Function calls. Pointers. User-defined types

References to sections in Lippman
Literals 2.1.3
Pointers and references 2.3
std::string 3.2
std::vector 3.3
Arrays and pointers 3.5
Classes 2.6, 7.1.4, 7.1.5, 13.1.3
Scope and lifetimes 2.2.4, 6.1.1
I/O 1.2, 8.1–8.2, 17.5.2

Summary 1. Introduction 27/27

	About the course
	Presentation of C++
	History
	Introduction
	Statements and operators
	Functions

	Data types and variables
	Summary

