
EDAF30 – Programming in C++

6. Resource management

Sven Gestegård Robertz
Computer Science, LTH

2022

Outline

1 Resource management
Memory allocation
Stack allocation
Heap allocation: new and delete

2 Smart pointers

3 Classes, resource management
Rule of three
copy assignment
Move semantics (C++11)

6. Resource management 2/1

Resource management

A resource is
▶ something that must be allocated
▶ and later released

Example:
▶ memory
▶ file handles
▶ sockets
▶ locks
▶ . . .

Resource management 6. Resource management 3/51

Resource handles

Organize resource management with classes that own resources
▶ allocates resources in the constructor
▶ releases resources in the destructor
▶ RAII User-defined types that behave like built-in types

Resource management 6. Resource management 4/51

Memory Allocation

Two kinds of memory allocation:
▶ on the stack - automatic variables. Are destroyed when the

program exits the block where they are declared.
▶ on the heap - dynamically allocated objects. Live until

explicitly destroyed.

Resource management : Memory allocation 6. Resource management 5/51

Memory allocation
stack allocation

unsigned fac(unsigned n)
{

if(n == 0)
return 1;

else return n * fac(n-1);
}

int main()
{

unsigned f = fac (2);
cout << f;
return 0;

}

main() ...

unsigned f:
unsigned tmp0:

fac() ...

unsigned n: 2
unsigned tmp0:

fac() ...

unsigned n: 1
unsigned tmp0:

fac() ...

unsigned n: 0

Resource management : Stack allocation 6. Resource management 6/51

Memory allocation
Dynamic memory, allocation “on the heap”, or “free store”

Dynamically allocated memory
▶ is allocated on the heap, with new (like in Java)

▶ does not belong to a scope
▶ unnamed object: access through pointer or reference
▶ new returns a pointer

▶ remains in memory until deallocated with delete (difference
from Java)

▶ Objects allocated in dynamic memory can outlive the scope
they were allocated in

Resource management : Heap allocation: new and delete 6. Resource management 7/51

Memory Allocation
Dynamic memory, allocation “on the heap”, or “free store”

Space for dynamic objects is allocated with new

double* pd = new double; // allocate a double
*pd = 3.141592654; // assign a value
float* px; // uninitialized pointers
float* py; // (avoid when possible)
px = new float [20]; // allocate an array
py = new float [20] {1.1, 2.2, 3.3}; // allocate and initialize

Memory is released with delete

delete pd;
delete [] px; // [] is required for an array
delete [] py;

Resource management : Heap allocation: new and delete 6. Resource management 8/51

Memory Allocation
Warning! be careful with parentheses

Allocating an array: char[80]

char* c = new char [80];

Almost the same. . .

char* c = new char (80);

Almost the same. . .

char* c = new char {80};

The latter two allocate one byte
and initializes it with the value 80 (’P’).

char* c = new char(’P’);

Resource management : Heap allocation: new and delete 6. Resource management 9/51

Memory Allocation

Mistake: not allocating memory

char name [80];

*name = ’Z’; // OK , name allocated on the stack. name [0]=’Z’

char *p; // Uninitialized pointer
// No compiler warning

*p = ’Z’; // Error! ’Z’ written to an undefined memory address

cin.getline(p, 80); //(almost) certain error during execution
//(" Segmentation fault ") or memory corruption

modern C++: auto is safer

auto q = new char [80]; // auto --> cannot be uninitialized

Resource management : Heap allocation: new and delete 6. Resource management 10/51

Memory Allocation

Example: failed read_line function

constexpr auto bufsz = 80;
char* read_line () {

char temp[bufsz];
cin.getline(temp , bufsz);
return temp;

}

void exempel () {
cout << "Enter your name: ";
char* name = read_line ();

cout << "Enter your town: ";
char* town = read_line ();

cout << "Hello " << name << " from " << town << endl;
}

"Dangling pointer": pointer to object that no longer exists

Resource management : Heap allocation: new and delete 6. Resource management 11/51

Memory Allocation

Partially corrected version of read_line

constexpr auto bufsz = 80;
char* read_line () {

char temp[bufsz];
cin.getline(temp , bufsz);
size_t len=strnlen(temp ,bufsz);
char *res = new char[len +1];
strncpy(res , temp , len +1);
return res; // dynamically allocated: survives

}
void exempel () {

cout << "Enter your name";
char* name = read_line ();
cout << "Enter your town";
char* town = read_line ();
cout << "Hello " << name << " from " << town << endl;

}

Works , but memory leak !Resource management : Heap allocation: new and delete 6. Resource management 12/51

Memory Allocation

Further corrected version of read_line

constexpr auto bufsz = 80;
char* read_line () {

char temp[bufsz];
cin.getline(temp , bufsz);
size_t len=strnlen(temp ,bufsz);
char *res = new char[len +1];
strncpy(res , temp , len +1);
return res; Dynamically allocated: survives

}
void exempel () {

cout << "Enter your name: ";
char* name = read_line (); NB! calling function takes ownership
cout << "Enter your town ";
char* town = read_line ();
cout << "Hello " << name << " from " << town << endl;

delete [] name; Deallocate strings
delete [] town;

}

Resource management : Heap allocation: new and delete 6. Resource management 13/51

Use std::string

Simpler and safer with std::string

#include <iostream >
#include <string >

using std::cin; void example ()
using std::cout; {
using std:: string; cout << "Name:";

string name = read_line ();
string read_line () cout << "Town:";
{ string town = read_line ();

string res;
getline(cin , res); cout << "Hello , " << name <<
return res; " from " << town << endl;

} }

▶ std::string is a resource handle
▶ RAII
▶ Dynamic memory is rarely needed (in user code)

Resource management : Heap allocation: new and delete 6. Resource management 14/51

Memory Allocation
ownership of resources

For dynamically allocated objects, ownership is important
▶ An object or a function can own a resource
▶ The owner is responsible for deallocating the resource
▶ If you have a pointer, you must know who owns

the object it points to
▶ Ownership can be transferred by a function call

▶ but is often not
▶ be clear about owning semantics

Every time you write new you are responsible for
that someone will do a delete

when the object is no longer in use.

Resource management : Heap allocation: new and delete 6. Resource management 15/51

Classes
RAII

▶ RAII Resource Acquisition Is Initialization
▶ An object is initialized by a constructor

▶ Allocates the resources needed (“resource handle”)
▶ When an object is destroyed, its destructor is executed

▶ Free the resources owned by the object
▶ Example: Vector: delete the array elem points to

class Vector{
private:

double elem*; // pointer to an array
int sz; // the size of the array

public:
Vector(int s) :elem{new double[s]}, sz{s} {} // ctor
~Vector () {delete [] elem;} // dtor , delete the array

};

Manual memory management
▶ Objects allocated with new must be dellocated with delete
▶ Objects allocated with new[] must be dellocated with delete[]
▶ otherwise the program will leak memory

Resource management : Heap allocation: new and delete 6. Resource management 16/51

Classes
Resource management, representation

struct Vector {
Vector(int s) :sz{s},elem{new double(sz)} {}
~Vector () {delete [] elem;}
double& operator [](int i) {return elem[i];}
int sz;
double* elem;

};

void test()
{

Vector vec (5);
vec [2] = 7;

}

elem
sz: 5Vector vec:

7

▶ Resource handle – Vector owns its double[]

▶ the object: pointer + size, the array is on the heap

Resource management : Heap allocation: new and delete 6. Resource management 17/51

Dynamic memory, example
Error handling

void f(int i, int j)
{

X* p=new X; // allocate new X
//...
if(i<99) throw E{}; // may throw an exception
if(j<77) return; // may return "early"
//
p->do_something (); // may throw
//
delete p;

}

Will leak memory if delete p is not called

Smart pointers 6. Resource management 18/51

Memory allocation
C++: Smart pointers

The standard library <memory> has two “smart” pointer types
(C++11):

▶ std::unique_ptr<T> – a single owner
▶ std::shared_ptr<T> – shared ownership

that are resource handles:
▶ their destructor deallocates the object they point to.

▶ Other examples of resource handles:
▶ std::vector<T>
▶ std::string

shared_ptr contains a reference counter: when the last shared_ptr

to an object is destroyed, the object is destroyed. Cf. garbage
collection in Java.

Smart pointers 6. Resource management 19/51

Smart pointer, example

void f(int i, int j)
{

unique_ptr <X> p{new X};// allocate new X and give to unique_ptr
//...
if(i<99) throw E{}; // may throw an exception
if(j<77) return; // may return "early"
//
p->do_something (); // may throw

}

The destructor of p is always executed: no leak

Smart pointers 6. Resource management 20/51

Smart pointer, example
Dynamic memory is rarely needed

void f(int i, int j)
{

X x{};

if(i<99) throw E{}; // may throw an exception
if(j<77) return; // may return "early"

x.do_something (); // may throw
}

Use local variables when possible

Smart pointers 6. Resource management 21/51

read_line with unique_ptr

unique_ptr <char[]> read_line ()
{

char temp [80];
cin.getline(temp , 80);
int size = strlen(temp)+1;
char* res = new char[size];
strncpy(res , temp , size);
return unique_ptr <char[]>{res};

}

void example ()
{

cout << "Enter name: ";
unique_ptr <char[]> name = read_line ();
cout << "Enter town: ";
unique_ptr <char[]> town = read_line ();
cout << "Hello " << name.get() << " from " << town.get() << endl;

}

▶ To get a char* we call unique_ptr<char[]>::get().
▶ Needed here to get right overload for operator<<

Smart pointers 6. Resource management 22/51

read_line with unique_ptr

with no explicit new and delete (c++14)

unique_ptr <char[]> read_line ()
{

char temp [80];
cin.getline(temp , 80);
int size = strlen(temp)+1;
auto res = std:: make_unique <char[]> (size);
strncpy(res.get(), temp , size);
return res;

}

Smart pointers 6. Resource management 23/51

Smart pointers
Vector from previous examples

class Vector{
public:

Vector(int s) :elem{new double[s]}, sz{s} {}
double& operator [](int i) {return elem[i];}
int size() {return sz;}

private:
std:: unique_ptr <double[]> elem;
int sz;

};

▶ All member variables are of RAII types
▶ The default destructor works
▶ The object cannot be copied (no default functions generated)

▶ A unique_ptr cannot be copied – it is unique

Smart pointers 6. Resource management 24/51

Smart pointers
Vector from previous examples

class Vector{
public:

Vector(int s) :elem{new double[s]}, sz{s} {}
double& operator [](int i) {return elem[i];}
int size() {return sz;}

private:
std:: unique_ptr <double[]> elem;
int sz;

};

▶ To make the type possible to copy
▶ Define a copy constructor
▶ Define a copy assignment operator

Smart pointers 6. Resource management 25/51

Memory allocation
C++: Smart pointers

Rules of thumb for pointer parameters to functions:

if ownership is not transferred
▶ Use “raw” pointers
▶ Use std::unique_ptr<T> const &

if ownership is transferred
.
▶ Use by-value std::unique_ptr<T>

(then std::move() must be used)

▶ This is an orientation about smart pointers.
▶ “Raw” pointers are common; you must master them.

Smart pointers 6. Resource management 26/51

C++: Smart pointers
Coarse summary

“Raw” (“naked”) pointers:
▶ The programmer takes all responsibility
▶ Risk of memory leaks
▶ Risk of dangling pointers

Smart pointers:
▶ No (less) risk of memory leaks
▶ (minor) Risk of dangling pointers if used incorrectly

(e.g., more than one unique_ptr to the same object)

Smart pointers 6. Resource management 27/51

Common pitfall
Default copying

For classes containing owning pointers,
the default copying does not work.

Example: Vector

▶ call by value
▶ copying pointer values

(both objects point to the same resource)
▶ the destructor is executed on return

▶ dangling pointer
▶ double delete

Classes, resource management : Rule of three 6. Resource management 28/51

Classes
Example: Copying the Vector class

class Vector{
public:

Vector(int s) :elem{new double[s]}, sz{s} {}
~Vector () {delete [] elem;}
double& operator [](int i) {return elem[i];}
int size() {return sz;}

private:
double* elem;
int sz;

};

elem
sz: 5Vector vec:

No copy constructor defined ⇒ default generated.

Classes, resource management : Rule of three 6. Resource management 29/51

Classes
Default copy construction: shallow copy

void f(Vector v);

void test()
{

Vector vec (5);
f(vec); // call by value -> copy
// ... other uses of vec

}

elem
sz: 5vec:

sz: 5
elem

v:

▶ The parameter v is default copy constructed: the value of each
member variable is copied

▶ When f() returns, the destructor of v is executed:
(delete[] elem;)

▶ The array pointed to by both copies is deleted. Disaster!
Classes, resource management : Rule of three 6. Resource management 30/51

X

Copying objects
the copy assignment operator: operator=

The copy assignment operator is implicitly defined
▶ with the type T& T::operator=(const T&)

▶ if no operator= is declared for the type
▶ if all member variables can be copied

▶ i.e., define a copy-assignment operator

▶ If all members are of built-in (and RAII) types the default
variant works (same problems as with copy ctor).

elem
sz: 5vec:

sz: 5
elem

v:

▶ For owning pointers, the copy member functions must be
implemented

Classes, resource management : copy assignment 6. Resource management 31/51

“Rule of three”
Canonical construction idiom

IF a class owns a resource, it shall implement a
1 Destructor
2 Copy constructor
3 Copy assignment operator

in order not to leak memory. E.g. the class Vector

Rule:
If you define any of these, you should define all.

Alternative: “Rule of zero”;
C.20: If you can avoid defining default operations, do.
Reason: It’s the simplest and gives the cleanest semantics. [If all
members] have all the special functions, no further work is needed.

Classes, resource management : copy assignment 6. Resource management 32/51

Copy control
Example: Vector

Copy constructor

Vector :: Vector(const Vector& v) :elem{new double[v.sz]}, sz{v.sz}
{

for(int i=0; i < sz; ++i) {
elem[i] = v[i];

}
}

Or, use the standard library:
std::copy(v.elem , v.elem+v.sz , elem);

Classes, resource management : copy assignment 6. Resource management 33/51

Copy control
Example: Vector

Copy assignment
Vector& Vector :: operator=(const Vector& v) {

if (this != &v) {
auto tmp = new double[v.sz];
std::copy(v.elem , v.elem+v.sz,

tmp);
sz = v.sz;
delete [] elem;
elem = tmp;

}
return *this;

}

1 check “self assignment”
2 allocate new resources
3 copy values
4 free old resources

Only delete if allocation suc-

ceeded.

Classes, resource management : copy assignment 6. Resource management 34/51

Lvalues and rvalues
Object lifetimes

▶ Applies to expressions
▶ An lvalue is an expression identifying an object (that persists

beyond an expression)
▶ Examples:

▶ x
▶ *p
▶ arr[4]

▶ An rvalue is a temporary value
▶ Examples:

▶ 123
▶ a+b

▶ you can take the address of it ⇒ lvalue
▶ it has a name ⇒ lvalue
▶ Better rule than the old “Can it be the left hand side of an

assignment?” (because of const)
Classes, resource management : Move semantics (C++11) 6. Resource management 35/51

Lvalues and rvalues
references

▶ An lvalue reference can only refer to a modifiable object
▶ An const lvalue reference can also refer to a temporary

▶ Extends the lifetime of the temporary to the lifetime of the
reference

▶ An rvalue reference can only refer to a temporary
▶ Syntax:

(lvalue) reference: T&

rvalue reference: T&& (C++11)

Classes, resource management : Move semantics (C++11) 6. Resource management 36/51

Move semantics
Making value semantics efficient

▶ Copying is unnecessary if the source will not be used again
e.g. if
▶ it is a temporary value ,e.g.

▶ (implicitly) converted function arguments
▶ function return values
▶ a + b

▶ the programmer explicitly specifies it
std::move() is a type cast to rvalue-reference (T&&)
(include <utility>)

▶ Some objects may/can not be copied
▶ e.g., std::unique_ptr
▶ use std::move

▶ Better to “steal” the contents
▶ Makes resource handles even more efficient

Classes, resource management : Move semantics (C++11) 6. Resource management 37/51

Move semantics
Making value semantics efficient

Move operations:
class Foo {
public:

...
Foo(Foo &&); // move constructor
Foo& operator =(Foo &&); // move assignment

};

▶ look like copying, but
▶ “steals” owned resources instead of copying

Classes, resource management : Move semantics (C++11) 6. Resource management 38/51

“Rule of three five”
Canonical construction idiom, in C++11

If a class owns a resource, it should implement (or =default or
=delete)

1 Destructor
2 Copy constructor
3 Copy assignment operator
4 Move constructor
5 Move assignment operator

Classes, resource management : Move semantics (C++11) 6. Resource management 39/51

Move constructor
implicitly generated

An automatically generated move constructor is provided if
▶ there are no user-declared copy constructors;
▶ there are no user-declared copy assignment operators;
▶ there are no user-declared move assignment operators;
▶ there is no user-declared destructor.

Classes, resource management : Move semantics (C++11) 6. Resource management 40/51

Move constructor
Example: Vector

Move constructor (C++-11)

Vector :: Vector(Vector && v) : elem{v.elem}, sz{v.sz}
{

v.elem = nullptr;
v.sz = 0; // v has no elements

}

Classes, resource management : Move semantics (C++11) 6. Resource management 41/51

Copy control: (Move semantics – C++11)
Example: Vector

Move assignment
Vector& Vector :: operator =(Vector && v) {

if(this != &v) {
delete [] elem; // delete current array
elem = v.elem; // "move" the array from v
v.elem = nullptr; // mark v as an "empty hulk"
sz = v.sz;
v.sz = 0;

}
return *this;

}

Classes, resource management : Move semantics (C++11) 6. Resource management 42/51

Resource management
copy assignment: operator=

Declaration (in the class definition of Vector)

const Vector& operator =(const Vector& v);

Definition (outside the class definition)

Vector& Vector :: operator=(const Vector& v)
{

if (this != &v) {
auto tmp = new int[sz];
for (int i=0; i<sz; i++)

tmp[i] = v.elem[i];
sz = v.sz;
delete [] elem;
elem = tmp;

}
return *this;

}

1 check “self
assignment”

2 Allocate new
resources

3 Copy values
4 Free old resources

For error handling, better to allocate and copy first and only delete if copying

succeded.
Classes, resource management : Move semantics (C++11) 6. Resource management 43/51

Copy control: (Move semantics – C++11)
Example: Vector

Move assignment
Vector& Vector :: operator =(Vector && v) {

if(this != &v) {
delete [] elem; // delete current array
elem = v.elem; // "move" the array from v
v.elem = nullptr; // mark v as an "empty hulk"
sz = v.sz;
v.sz = 0;

}
return *this;

}

Classes, resource management : Move semantics (C++11) 6. Resource management 44/51

Copy/move assignment
We can (often) do better

▶ Code complexity
▶ Both copy and move assignment operators
▶ Code duplication
▶ Brittle, manual code

▶ self-assignment check
▶ copying
▶ memory management

alternative: The copy-and-swap idiom.

Classes, resource management : Move semantics (C++11) 6. Resource management 45/51

Copy assignment
The copy and swap idiom

Copy and move assignment
Vector& Vector :: operator =(Vector v) {

swap(*this , v);
return *this;

}

▶ Call by value
▶ let the compiler do the copy
▶ works for both copy assign and move assign

▶ called with lvalue ⇒ copy construction
▶ called with rvalue ⇒ move construction

▶ No code duplication
▶ Less error-prone
▶ May need an overloaded swap()

▶ Slightly less efficient (one additional assignment)

Classes, resource management : Move semantics (C++11) 6. Resource management 46/51

Swapping – std::swap

The standard library defines a function (template) for swapping the
values of two variables:
Example implementation (C++11)

template <typename T>
void swap(T& a, T& b)
{

T tmp = a;
a = b;
b = tmp;

}

template <typename T>
void swap(T& a, T& b)
{

T tmp = std::move(a);
a = std::move(b);
b = std::move(tmp);

}

The generic version may do unnecessary copying (especially pre
move semantics, or if members cannot be moved), for Vector we
can simply swap the members.

Overload for Vector (needs to be friend)
void swap(Vector& a, Vector& b) noexcept
{

using std::swap;
swap(a.sz, b.sz);
swap(a.elem , b.elem);

}

Classes, resource management : Move semantics (C++11) 6. Resource management 47/51

common idiom:
▶ use using to make std::swap visible
▶ call swap unqualified to allow ADL to find

an overloaded swap for the argument type

Swapping – std::swap

▶ The swap function can be both declared as a friend and
defined inside the class definition.

▶ Still a free function
▶ In the same namespace as the class

▶ Good for ADL

Overload for Vector (“inline” friend)
class Vector {

// declarations of members ...

friend void swap(Vector& a, Vector& b) noexcept
{

using std::swap;
swap(a.sz, b.sz);
swap(a.elem , b.elem);

}
};

Classes, resource management : Move semantics (C++11) 6. Resource management 48/51

Next lecture: Error handling

References to sections in Lippman
Error handling, exceptions (5.6, 18.1.1)
Namespaces 18.2
static assert not in Lippman
assert 6.5.3
Type casts 4.11
const_cast and const overloading 6.2 (p 232–233)
Multi-dimensional arrays 3.6

Summary 6. Resource management 50/51

Suggested reading

References to sections in Lippman
Dynamic memory and smart pointers 12.1
Dynamically allocated arrays 12.2.1
Classes, resource management 13.1, 13.2
swap 13.3
Copying and moving objects 13.4, 13.6

Summary 6. Resource management 51/51

	Resource management
	Memory allocation
	Stack allocation
	Heap allocation: new and delete

	Smart pointers
	Classes, resource management
	Rule of three
	copy assignment
	Move semantics (C++11)

	Summary

