
EDAF30 – Programming in C++

12. Recap.

Sven Gestegård Robertz
Computer Science, LTH

2021



Outline

1 Classes and inheritance
Scope
const for objects and members

2 Rules of thumb

3 Syntax

4 More about polymorphic types

5 Object slicing example

12. Recap. 2/1



Inheritance and scope

I The scope of a derived class is nested inside the base class
I Names in the base class are visible in derived classes
I if not hidden by the same name in the derived class

I Use the scope operator :: to access hidden names
I Name lookup happens at compile-time

I static type of a pointer or reference determines which names
are visible (like in Java)

I Virtual functions must have the same parameter types in
derived classes.

Classes and inheritance : Scope 12. Recap. 3/33



Function overloading and inheritance

No function overloading between levels in a class hierarchy

struct Base{
virtual void f(int x) {cout << "Base::f(int): " << x << endl;}

};
struct Derived :Base{

void f(double d) {cout << "Derived ::f(double ): " << d << endl;}
};

void example () {
Base b;
b.f(2); Base::f(int): 2
b.f(2.5); Base::f(int): 2 (as expected)
Derived d;
d.f(2); Derived::f(double): 2
d.f(2.5); Derived::f(double): 2.5

Base& dr = d;
dr.f(2.5); Base::f(int): 2
dr.f(2); Base::f(int): 2

}

Classes and inheritance : Scope 12. Recap. 4/33



Function overloading and inheritance

Make functions visible using using

struct Base{
virtual void f(int x) {cout << "Base::f(int): " << x << endl;}

};
struct Derived :Base{

using Base::f;
void f(double d) {cout << "Derived ::f(double ): " << d << endl;}

};

void example () {
Base b;
b.f(2); Base::f(int): 2
b.f(2.5); Base::f(int): 2

Derived d;
d.f(2); Base::f(int): 2
d.f(2.5); Derived::f(double): 2.5

}

Classes and inheritance : Scope 12. Recap. 5/33



Constructors
Member initialization rules

class Vector {
public:

Vector () =default;
Vector(int s) :size{s},elem{new T[size]} {}
T* begin () {return elem.get ();}
T* end() {return begin ()+ size;}
// functionality for growing ...

private:
std:: unique_ptr <T[]> elem{nullptr };
int size {0};

};

Error! size is uninitialized when used to create the array.

I If a member has both default initializer and a member
initializer in the constructor, the constructor is used.

I Vector() =default; is necessary to make the compiler
generate a default constructor.

I Members are initialized in declaration order. (Compiler
warning if member initializers are in different order.)

Classes and inheritance : Scope 12. Recap. 6/33



Constructors
Special cases: zero or one parameter

class KomplextTal {
public:

KomplextTal ():re{0},im{0} {}
KomplextTal(const KomplextTal& k) :re{k.re},im{k.im} {}
KomplextTal(double x):re{x},im{0} {}
//...

private:
double re;
double im;

};

default constructor copy constructor converting constructor

Classes and inheritance : Scope 12. Recap. 7/33



Constructors
Implicit conversion

struct Foo{
Foo(int i) :x{i} {cout << "Foo(" << i << ")\n";}
Foo(const Foo& f) :x(f.x) {cout << "Copying Foo(" << f.x << ")\n";}
Foo& operator =(const Foo& f) {cout << "Foo = Foo(" << f.x << ")\n";

x=f.x;
return *this;

}
int x;

};

void example ()
{

int i=10;

Foo f = i; Foo(10) (an optimized away copy(move) construction)

f = 20; Foo(20)
Foo = Foo(20) (would move if operator=(Foo&&) defined)

Foo g = f; Copying Foo(20)

Classes and inheritance : Scope 12. Recap. 8/33



Constructors
Default constructor

Default constructor
I A constructor that can be called without arguments

I May have parameters with default values

I Automatically defined if no constructor is defined
(in declaration: =default, cannot be called if =delete)

I If not defined, the type is not default constructible

Classes and inheritance : Scope 12. Recap. 9/33



Constructors
Copy constructor

I Is called when initializing an object
I Is not called on assignment
I Can be defined, otherwise a standard copy constructor is

generated (=default, =delete)

I default copy constructor
I Is automatically generated if not defined in the code

I exception: if there are members that cannot be copied
I shallow copy of each member

Classes and inheritance : Scope 12. Recap. 10/33



Classes
Default copy construction: shallow copy

void f(Vector v);

void test()
{

Vector vec (5);
f(vec); // call by value -> copy

}

elem
sz: 5vec:

sz: 5
elem

v:

I The parameter v is default copy constructed: the value of each
member variable is copied

I When f() returns, the destructor of v is executed:
(delete[] elem;)

I The array pointed to by both copies is deleted. Disaster!
Classes and inheritance : Scope 12. Recap. 11/33

X



“Rule of three”
Canonical construction idiom

If a class implements any of these:
1 Destructor
2 Copy constructor
3 Copy assignment operator

it (quite probably) should implement (or =delete) all three.

If one of the automatically generated does not fit,
the other ones probably won’t either.

Classes and inheritance : Scope 12. Recap. 12/33



“Rule of three five”
Canonical construction idiom, from C++11

If a class implements any of these:
1 Destructor
2 Copy constructor
3 Copy assignment operator
4 Move constructor
5 Move assignment operator

it (quite probably) should implement (or =delete) all five.

and possibly an overloaded swap function.

Classes and inheritance : Scope 12. Recap. 13/33



Constant objects

I const means “I promise not to change this”

I Objects (variables) can be declared const
I “I promise not to change the variable”

I References can be declared const
I “I promise not to change the referenced object”
I a const& can refer to a non-const object
I common for function parameters

I Member functions can be declared const
I “I promise that the function does not change the object”
I A const member function may not call non-const

member functions
I Functions can be overloaded on const

Classes and inheritance : const for objects and members 12. Recap. 14/33



Operator overloading

Operator overloading syntax:

return_type operator⊗ (parameters...)

for an operator ⊗ e.g. == or +

For classes, two possibilities:
I as a member function

I if the order of operands is suitable
E.g., ostream& operator<<(ostream&, const T&)
cannot be a member of T

I as a free function
I if the public interface is enough, or
I if the function is declared friend

Classes and inheritance : const for objects and members 12. Recap. 15/33



Conversion operators
Exempel: Counter

Conversion to int

struct Counter {
Counter(int c=0) :cnt{c} {};
Counter& inc() {++cnt; return *this;}
Counter inc() const {return Counter(cnt +1);}
int get() const {return cnt;}
operator int() const {return cnt;}

private:
int cnt {0};

};

Note: operator T().
I no return type in declaration (must obviously be T)
I can be declared explicit

Classes and inheritance : const for objects and members 12. Recap. 16/33



rules of thumb, “defaults”

I Iteration, range for
I return value optimization
I call by value or reference?
I reference or pointer parameters? (without transfer of

ownership)
I default constructor and initialization
I resource management: RAII and rule of three (five)
I be careful with type casts. Use named casts

Rules of thumb 12. Recap. 17/33



use range for

for(auto e : collection) { or (const) reference
// ...

}

Use range for for iteration over an entire collection:
I safer and more obvious code
I no risk of accidentally assigning

I the iterator
I the loop variable

I no pointer arithmetic

Works on any type T that has
I member functions T::begin() and T::end(), or
I free functions begin(T) and end(T)

I with proper const overloads

Rules of thumb 12. Recap. 18/33



return value optimization (RVO)

The compiler may optimize away copies of an object when
returning a value from a function.

I return by value often efficient, also for larger objects
I RVO allowed even if the copy constructorn or the destructor

has side effects
I avoid such side effects to make code portable

Rules of thumb 12. Recap. 19/33



Rules of thumb for function parameters

parameters and return values, “reasonable defaults”
I return by value if not very expensive to copy
I pass by reference if not very cheap to copy

(Don’t force the compiler to make copies.)
I input parameters: const T&
I in/out or output parameters: T&

Rules of thumb 12. Recap. 20/33



parameters: reference or pointer?

I required parameter: pass reference
I optional parameter: pass pointer (can be nullptr)

void f(widget& w)
{

use(w); // required parameter
}

void g(widget* w)
{

if(w) use(w); // optional parameter
}

Rules of thumb 12. Recap. 21/33



Default constructor and initialization

I (automatically generated) default constructor (=default) does
not always initialize members
I global variables are initialized to 0 (or corresponding)
I local variables are not initialized

struct A { int x; };

int a; // a is initialized to 0
A b; // b.x is initialized to 0

int main() {
int c; // c is not initialized
int d = int(); // d is initialized to 0

A e; // e.x is not initialized
A f = A(); // f.x is initialized to 0
A g{}; // g.x is initialized to 0

}

I always initialize variables (with value or empty {})
I always implement default constructor (or =delete)

Rules of thumb 12. Recap. 22/33



RAII: Resource aquisition is initialization

I Allocate resources for an object in the constructor
I Release resources in the destructor
I Simpler resource management, no naked new and delete

I Exception safety: destructors are run when an object goes out
of scope

I Resource-handle
I The object itself is small
I Pointer to larger data on the heap
I Example, our Vector class: pointer + size
I Utilize move semantics

I unique_ptr is a handle to a specific object. Use
if you need an owning pointer, e.g., for polymorph types.

I Prefer specific resource handles to smart pointers.

Rules of thumb 12. Recap. 23/33



Smart pointers: unique_ptr

Example

struct Foo {
int i;
Foo(int ii=0) :i{ii} { std::cout << "Foo(" << i <<")\n"; }
~Foo() { std::cout << "~Foo("<<i<<")\n"; }

};
void test_move_unique_ptr ()
{

std:: unique_ptr <Foo > p1(new Foo (1));
{

std:: unique_ptr <Foo > p2(new Foo (2));
std:: unique_ptr <Foo > p3(new Foo (3));
// p1 = p2; // error! cannot copy unique_ptr
std::cout << "Assigning pointer\n";
p1 = std::move(p2);
std::cout << "Leaving inner block ...\n";

}
std::cout << "Leaving program ...\n";

}

Foo(2) survives the inner block
as p1 takes over ownership.

Foo(1)
Foo(2)
Foo(3)
Assigning pointer
~Foo(1)
Leaving inner block ...
~Foo(3)
Leaving program ...
~Foo(2)

Rules of thumb 12. Recap. 24/33



Rules of thumb for function parameters

“reasonable defaults”
cheap to copy moderately cheap to copy expensive to copy

In f(X) f(const X&)
Out X f() f(X&)

In/Out f(X&)

Rules of thumb 12. Recap. 25/33



Declarations and parentheses

I Parentheses matter in declarations of pointers
to arrays and functions
I int *a[10] declares a as an array of int*
I int (*a)[10] declares a as a pointer to int[10]
I int (*f)(int) declares f as a pointer to function int → int

I BUT may be used anywhere

struct Foo;

Foo test;
Foo(f); // Foo f;

int x;
int(y); // int y;
int(z){17}; // int z{17};
int(q){}: // int q{};

Syntax 12. Recap. 26/33



Example: A class hierarchy

class Animal{
public:

void speak () const { cout << get_sound () << endl;}
virtual string get_sound () const =0;
virtual ~Animal () =default;

};

class Dog :public Animal{
public:

string get_sound () const override {return "Woof!";}
};
class Cat :public Animal{
public:

string get_sound () const override {return "Meow!";}
};
class Bird :public Animal{
public:

string get_sound () const override {return "Tweet!";}
};
class Cow :public Animal{
public:

string get_sound () const override {return "Moo!";}
};More about polymorphic types 12. Recap. 27/33



Example
Use (not polymorphic)

int main()
{

Dog d;
Cat c;
Bird b;
Cow w;

d.speak (); Woof!
c.speak (); Meow!
b.speak (); Tweet!
w.speak (); Moo!

}

More about polymorphic types 12. Recap. 28/33



Example
Call by reference

void test_polymorph(const Animal& a)
{

a.speak ();
}

int main()
{

Dog d;
Cat c;
Bird b;
Cow w;

test_polymorph(d); Woof!
test_polymorph(c); Meow!
test_polymorph(b); Tweet!
test_polymorph(w); Moo!

}

More about polymorphic types 12. Recap. 29/33



Example
Container with polymorph objects

int main()
{

Dog d;
Cat c;
Bird b;
Cow w;

std::vector <Animal > zoo{d,c,b,w};

for(auto x : zoo){
x.speak ();

};

}

error: cannot allocate an object of abstract type ’Animal ’

More about polymorphic types 12. Recap. 30/33



Example
Must use container of pointers

int main()
{

Dog d;
Cat c;
Bird b;
Cow w;

std::vector <Animal*> zoo{&d,&c,&b,&w};

for(auto x : zoo){
x->speak (); Woof!

}; Meow!
Tweet!

} Moo!

More about polymorphic types 12. Recap. 31/33



Example
A class hierarchy

struct Foo{
virtual void print() const {cout << "Foo" << endl;}

};

struct Bar :Foo{
void print () const override {cout << "Bar" << endl;}

};

struct Qux :Bar{
void print () const override {cout << "Qux" << endl;}

};

Object slicing example 12. Recap. 32/33



Polymorph class
example, object slicing

What is printed?

void print1(const Foo* f)
{

f->print ();
}
void print2(const Foo& f)
{

f.print ();
}
void print3(Foo f)
{

f.print ();
}

void test()
{

Foo* a = new Bar;
Bar& b = *new Qux;
Bar c = *new Qux;

print1(a); Bar
print1 (&b); Qux
print1 (&c); Bar

print2 (*a); Bar
print2(b); Qux
print2(c); Bar

print3 (*a); Foo
print3(b); Foo
print3(c); Foo

}

Object slicing example 12. Recap. 33/33


	Classes and inheritance
	Scope
	const for objects and members

	Rules of thumb
	Syntax
	More about polymorphic types
	Object slicing example

