
EDAF30 – Programming in C++

4. The standard library. Algorithms and containers.

Sven Gestegård Robertz
Computer Science, LTH

2021

Outline

1 More on constructors
Copying objects

2 Generic programming

3 The standard library
Algorithms
Containers
Sequences
Associative containers
Pairs and tuples

4 Container adapters

4. The standard library. Algorithms and containers. 2/1

User-defined types
Concrete classes

A concrete type
I “behaves just like a built-in type”
I the representation is part if the definition,

That allows us to
I place objects

I on the stack (i.e., in local variables)
I in other objects
I in statically allocated memory (e.g., global variables)

I copy objects
I assignment of a variable
I copy-constructing an object
I value parameter of a function

I refer to objects directly (not just using pointers or references)
I initialize objects directly and completely (with a constructor)

More on constructors : Copying objects 4. The standard library. Algorithms and containers. 3/51

Constructors

Copy Constructor
I Is called when initializing an object
I Is not called on assignment
I Can be defined, otherwise a standard copy constructor is

generated (=default, =delete)

void function(Bar); // by-value parameter

Bar b1(10, false };

Bar b2{b1}; // the copy constructor is called
Bar b3(b2); // the copy constructor is called
Bar b4 = b2; // the copy constructor is called

function(b2); // the copy constructor is called

More on constructors : Copying objects 4. The standard library. Algorithms and containers. 4/51

Copy Constructors
default

I Declaration:

class C {
public:

C(const C&) =default;
};

I default copy constructor
I Is automatically generated if not defined in the code

I exception: if there are members that cannot be copied
I But do declare it =default when you want it.
I shallow copy of each member

I Works for member variables of built-in types,
I or classes that behave like built-in types (RAII-types)
I Does not work for classes which manage resources “manually”

(More on this later)

More on constructors : Copying objects 4. The standard library. Algorithms and containers. 5/51

Classes
Example: Copying the Vector class

class Vector{
public:

Vector(int s) :sz{s},elem{new double[s]} {}
~Vector () {delete [] elem;}
double& operator [](int i) {return elem[i];}
int size() {return sz;}

private:
int sz;
double* elem;

};

elem
sz: 5Vector vec:

No copy constructor defined ⇒ default generated.

More on constructors : Copying objects 4. The standard library. Algorithms and containers. 6/51

Classes
Default copy construction: shallow copy

void f(Vector v);

void test()
{

Vector vec (5);
f(vec); // call by value -> copy
// ... other uses of vec

}

elem
sz: 5vec:

sz: 5
elem

v:

I The parameter v is default copy constructed: the value of each
member variable is copied

I When f() returns, the destructor of v is executed:
delete[] elem;

I The array pointed to by both copies is deleted. Disaster!
More on constructors : Copying objects 4. The standard library. Algorithms and containers. 7/51

X

Constructors
Special cases: zero or one argument

Copy Constructor
I Has the same class as parameter: Bar::Bar(const Bar& b);

Converting constructor
I A constructor that can be called with one argument defines

an implicit type conversion from the type of the parameter

class ComplexNumber {
public:

ComplexNumber ():re{0},im{0} {}
ComplexNumber(const ComplexNumber& k) :re{k.re},im{k.im} {}
ComplexNumber(double x, double i=0):re{x},im{i} {}
//...

private:
double re;
double im;

};

default constructor copy constructor converting constructor
More on constructors : Copying objects 4. The standard library. Algorithms and containers. 8/51

Converting constructor
Warning - implicit conversion

class Vector{
public:

Vector(int s); // create Vector with size s
...
int size() const; // return size of Vector
...

};

void example_vector ()
{

Vector v = 7;

std::cout << "v.size (): " << v.size() << std::endl;

}

v.size (): 7

In std::vector the corresponding constructor is declared
explicit vector(size_type count);

More on constructors : Copying objects 4. The standard library. Algorithms and containers. 9/51

Converting constructor and explicit

explicit specifies that a constructor does not allow implicit type
conversion.

struct A
{

A(int);
// ...

};

A a1(2); // OK
A a2 = 1; // OK
A a3 = (A)1; // OK

a3 = 17; // OK [1]

struct B
{

explicit B(int);
// ...

};

B b1(2); // OK
B b2 = 1; // Error! [2]
B b3 = (B)1; // OK: explicit cast

b3 = 17; // Error! [3]

[1]: construct an A(17), and then copy

[2]: conversion from ’int ’ to non -scalar type ’B’ requested
[3]: no match for ’operator=’ (operand types are ’B’ and ’int ’)

More on constructors : Copying objects 4. The standard library. Algorithms and containers. 10/51

Copying objects
Difference between construction and assignment

void function(Bar); // by-value parameter

Bar b1(10, false };

Bar b2{b1}; // the copy constructor is called
Bar b3(b2); // the copy constructor is called
Bar b4 = b2; // the copy constructor is called

function(b2); // the copy constructor is called

b4 = b3; // the copy constructor is not called

copy assignment – not construction

More on constructors : Copying objects 4. The standard library. Algorithms and containers. 11/51

Copying objects
the copy assignment operator: operator=

The copy assignment operator is implicitly defined
I with the type T& T::operator=(const T&)

I if no copy assignment operator is declared for the type
I if all member variables can be copied

I i.e., define a copy-assignment operator

I If all members are of built-in (and RAII) types the default
variant works (same problems as with copy ctor).

I More on copy control when we discuss resource management

More on constructors : Copying objects 4. The standard library. Algorithms and containers. 12/51

Preventing copying

I Declaration:

class C {
public:

C(const C&) =delete;
C& operator =(const C&) =delete;

};

I A class without copy constructor and copy assignment
operator cannot be copied.
I C++-98: declare private and don’t define

More on constructors : Copying objects 4. The standard library. Algorithms and containers. 13/51

Generic programming
Templates (mallar)

I Uses type parameters to write more generic classes and
functions

I No need to manually write a new class/function for each data
type to be handled

I static polymorphism
I A template is instantiated by the compiler for the type(s) it is

used for
I each instance is a separate class/function

I different from java: a java.util.ArrayList<T> holds
java.lang.Object references

I at compile-time: no runtime overhead
I increases code size

Generic programming 4. The standard library. Algorithms and containers. 14/51

Generic programming
Function templates

Example:
instead of
void print(int);
void print(double);
void print(const std:: string &);

template <typename T> print(const T&);

Generic programming 4. The standard library. Algorithms and containers. 15/51

Templates
Template compilation

I The compiler instantiates the template at the call site
I The entire definition of the template is needed

I place template definitions in header files

I Duck typing: if it walks like a duck, and quacks like a duck,
it is a duck.
I cf. dynamically typed languages like python

I Requirements on the use of an object rather than its type
I instead of “class T must have a function foo(U)”
I “for objects t and u, the expression t.foo(u) is well-formed.”
I operator overloading: a+b or a < b is well-formed
I a template can work for both built-in and user-defined types

I Independent of class hierarchies
I E.g., in Java: a class must implement Comparable
I in C++, a < b must be well-formed

Generic programming 4. The standard library. Algorithms and containers. 16/51

Generic programming
A class for a vector of doubles

class Vector{
public:

explicit Vector(int s);
~Vector () {delete [] elem;}
double& operator [](int i) {return elem[i];}
int size() const {return sz;}

private:
int sz;
double* elem;

};

can be generalized to hold any type:
template <typename T>
class Vector{
public:

...
T& operator [](int i) const {return elem[i];}

private:
int sz;
T* elem;

};

Generic programming 4. The standard library. Algorithms and containers. 17/51

Generic programming
example: find an element in a Vector

template <typename T>
T& find(const Vector <T>& v, const T& val)
{

if(v.size() == 0) throw std:: invalid_argument("empty vector");
for(int i=0; i < v.size (); ++i){

if(v[i] == val) return v[i];
}
throw std:: runtime_error("not found");

}

I specific to Vector

I returning a reference is problematic: cannot return null
I special handling of empty vector
I special handling of element not found

I returning by value not a solution:
I most types do not have a “not found” value
I sometimes we need a reference to the actual found element,

and not a copy.

Generic programming 4. The standard library. Algorithms and containers. 18/51

Generic programming
example: find an element in an int array

int* find(int* first , int* last , int val)
{

while(first != last && *first != val) ++ first;
return first;

}

Generalize to any array (pointer to int type parameter T).

template <typename T>
T* find(T* first , T* last , const T& val)
{

while(first != last && *first != val) ++ first;
return first;

}

Generic programming 4. The standard library. Algorithms and containers. 19/51

Generic programming
Iterators

The standard library uses an abstraction for an element of a
collection – iterator
I “points to” an element
I can be dereferenced
I can be incremented (to point to the following element)
I can be compared to another iterator

and two functions
begin() get an iterator to the first element of a collection
end() get an one-past-end iterator

Generic programming 4. The standard library. Algorithms and containers. 20/51

Generic programming
example: find an element in a collection

find using pair of pointers

template <typename T>
T* find(T* first , T* last , const T& val)
{

while(first != last && *first != val) ++ first;
return first;

}

Pointers are iterators for built-in arrays.

Find for any iterator range

template <typename Iter , typename T>
Iter find(Iter first , Iter last , const T& val)
{

while(first != last && *first != val) ++first;
return first;

}

(Here we can use std::iterator_traits to find the value type of IterGeneric programming 4. The standard library. Algorithms and containers. 21/51

Generic programming
A generic Vector class

Example implementation of begin() and end():

template <typename T>
class Vector{
public:

...
T* begin () {return sz > 0 ? elem : nullptr ;}
T* end() {return begin ()+sz;}
const T* begin () const {return sz > 0 ? elem : nullptr ;}
const T* end() const {return begin ()+sz;}

private:
int sz;
T* elem;

};

The standard function template std::begin() has an overload for
classes with begin() and end() member functions.

Generic programming 4. The standard library. Algorithms and containers. 22/51

Generic programming

Generic user code

using std:: begin;
using std::end;
void example1 ()
{

int a[] {1,2,3,4,5,6,7};

auto f5= find(begin(a), end(a), 5);
if(f5 != end(a)) *f5 = 10;

}

void example2 ()
{

Vector <int > a{1,2,3,4,5,6,7};

auto f5= find(begin(a), end(a), 5);
if(f5 != end(a)) *f5 = 10;

}

Generic programming 4. The standard library. Algorithms and containers. 23/51

Generic programming

Generic user code
template <typename Iter >
void change_five_to_ten(Iter first , Iter last)
{

auto f5= find(first , last , 5);
if(f5 != last) *f5 = 10;

}

using std:: begin;
using std::end;
void example1 ()
{

int a[] {1,2,3,4,5,6,7};
change_five_to_ten(begin(a), end(a));

}

void example2 ()
{

Vector <int > a{1,2,3,4,5,6,7};
change_five_to_ten(begin(a), end(a));

}

Generic programming 4. The standard library. Algorithms and containers. 24/51

Algorithms

Standard libray algorithms

#include <algorithm >

Numeric algorithms:

#include <numeric >

Random number generation

#include <random >

Appendix A.2 in Lippman gives an overview

The standard library : Algorithms 4. The standard library. Algorithms and containers. 25/51

Standard algorithms

Main categories of algorithms
1 Search, count
2 Compare, iterate
3 Generate new data
4 Copying and moving elements
5 Changing and reordering elements
6 Sorting
7 Operations on sorted sequences
8 Operations on sets
9 Numeric algorithms

The standard library : Algorithms 4. The standard library. Algorithms and containers. 26/51

Standard algorithms

Algorithms operate on iterators.

Algorithm limitations
I Algorithms may modify container elements. E.g.,

I std::sort
I std::replace
I std::copy
I std::remove (sic!)

I No algorithm inserts or removes container elements.
I That requires operating on the actual container object
I or using an insert iterator that knows about the container

(cf. std::back_inserter)

The standard library : Algorithms 4. The standard library. Algorithms and containers. 27/51

Algorithms
Example: find

template <class InputIterator , class T>
InputIterator find (InputIterator first , InputIterator last ,

const T& val);

Example:

vector <std::string > s{"Kalle", "Pelle", "Lisa", "Kim"};

auto it = std::find(s.begin(), s.end(), "Pelle");

if(it != s.end ())
cout << "Found " << *it << endl;

else
cout << "Not found"<< endl;

Found Pelle

The standard library : Algorithms 4. The standard library. Algorithms and containers. 28/51

Standard containers

Sequences (homogeneous)
I vector<T>

I deque<T>

I list<T>

Associative containers (also unordered)
I map<K,V>, multimap<K,V>
I set<T>, multiset<T>

Heterogeneous sequences (not “containers”)
I tuple<T1, T2, ...>

I pair<T1,T2>

The standard library : Containers 4. The standard library. Algorithms and containers. 29/51

The classes vector and deque

The standard library has two main sequence data types
std::vector your default sequence type

I Contigous in memory
I Grows at the back

std::deque Double ended queue
I Piecewise contigous in memory
I Grows at front and back

The standard library : Sequences 4. The standard library. Algorithms and containers. 30/51

The classes vector and deque

Operations in the class vector

v.clear(), v.size(), v.empty()
v.push_back (), v.pop_back(), v.emplace_back ()
v.front(), v.back(), v.at(i), v[i]
v.assign(), v.insert(), v.emplace ()
v.resize(), v.reserve ()

Additional operations in deque

d.push_front (), d.pop_front (), d.emplace_front ()

The standard library : Sequences 4. The standard library. Algorithms and containers. 31/51

The classes vector and deque

Constructors and the function assign

Constructors and assign have three overloads:
I fill: n elements with the same value

void assign (size_type n, const value_type& val);

I initializer list
void assign (initializer_list <value_type > il);

I range: copies the elements in the interval [first, last) (i.e.,
from first to last, excl. last)

template <class InputIterator >
void assign (InputIterator first , InputIterator last);

Use () for ctor arguments (e.g., sizes), and {} for list of elements.

The standard library : Sequences 4. The standard library. Algorithms and containers. 32/51

The classes vector and deque

The member function assign, example

vector <int > v{3 ,4};
print_seq(v);

v.assign (3,4);
print_seq(v);

int a[]{0,1,2,3,4,5,6,7,8,9};

v.assign(a, a+5);
print_seq(v);

std::deque <int > d;
d.assign(v.begin(), v.end());
print_seq(d);

length = 2: [3][4]

length = 3: [4][4][4]

length = 5: [0][1][2][3][4]

length = 5: [0][1][2][3][4]

Examples of iterators

The standard library : Sequences 4. The standard library. Algorithms and containers. 33/51

The classes vector and deque

Member functions push and pop

push adds an element, increasing size
pop removes an element, decreasing size

front, back get a reference to the first (last) element

*_back operates at the end, available in both

void push_back (const value_type& val); //copy
void pop_back ();
reference front ();
reference back ();

only in deque: *_front

void push_front (const value_type& val); //copy
void pop_front ();

The standard library : Sequences 4. The standard library. Algorithms and containers. 34/51

pop_X(), front() and back()

NB! The return type of pop_back() is void.

auto val = v.back ();
v.pop_back ();

Why separate functions?
I Don’t pay for what you don’t need.

I A non-void pop() has to return by value (copy).
I front()/back() can return a reference.
I Let the caller decide if it wants a copy.

The standard library : Sequences 4. The standard library. Algorithms and containers. 35/51

Growing a vector
Size and capacity

A container has a size and a capacity.

On a push_back, if size == capacity the vector grows
I New storage is allocated
I The elements are copied

If you know how many push_back calls you will make,
I first use reserve() to (at least) the expected final size.
I then do a series of push_back

The standard library : Sequences 4. The standard library. Algorithms and containers. 36/51

Sets and maps

Associative containers

map<Key,Value> Unique keys
multimap<Key,Value> Can contain duplicate keys
set<Key> Unique keys
multiset<Key> Can contain duplicate keys

set is in principle a map without values.

I By default orders elements with operator<

template <class Key , class Compare = std::less <Key >>
class set{

explicit set(const Compare& comp = Compare ());
...

};

I A custom comparator can be provided

The standard library : Associative containers 4. The standard library. Algorithms and containers. 37/51

Sets and maps
<set>: std::set

void test_set ()
{

std::set <int > ints {1,3,7};

ints.insert (5);

for(auto x : ints) {
cout << x << " ";

}
cout << endl;

auto has_one = ints.find (1);

if(has_one != ints.end ()){
cout << "one is in the set\n";

} else {
cout << "one is not in the set\n";

}
}

1 3 5 7
one is in the set

Or
if(ints.count (1))

The standard library : Associative containers 4. The standard library. Algorithms and containers. 38/51

Sets and maps
<map>: std::map

map <string , int > msi;
msi.insert(make_pair("Kalle", 1));
msi.emplace("Lisa", 2);
msi["Kim"]= 5;

for(const auto& a: msi) {
cout << a.first << " : " << a.second << endl;

}

cout << "Lisa --> " << msi.at("Lisa") << endl;
cout << "Hasse --> " << msi["Hasse"] << endl;

auto nisse = msi.find("Nisse");
if(nisse != msi.end ()) {

cout << "Nisse : " << nisse ->second << endl;
} else {

cout << "Nisse not found\n";
}

Kalle : 1
Kim : 5
Lisa : 2
Lisa --> 2
Hasse --> 0 NB! operator[] default constructs values for new keys
Nisse not found

The standard library : Associative containers 4. The standard library. Algorithms and containers. 39/51

Sets and maps

A std::set is in principle a std::map without values

Operations on std::map

insert , emplace , [], at , find , count ,
erase , clear , size , empty ,
lower_bound , upper_bound , equal_range

Operations on std::set

insert , emplace , find , count ,
erase , clear , size , empty ,
lower_bound , upper_bound , equal_range

Use the member functions, not algorithms like std::find()
(It works, but is less efficient – linear time complexity instead of logarithmic.)

The standard library : Associative containers 4. The standard library. Algorithms and containers. 40/51

Sets and maps
The return value of insert

insert() returns a pair

std::pair <iterator ,bool > insert(const value_type& value);

The insert member function returns two things:
I An iterator to the inserted value

I or to the element that prevented insertion

I A bool: true if the element was inserted

insert() in multiset and multimap just returns an iterator.

Getting the result of an insert

auto result = set.insert(value);
bool inserted = result.second;

The standard library : Associative containers 4. The standard library. Algorithms and containers. 41/51

pair and tuple

I fixed-size heterogenous container
I can be used to return multiple values

std::pair is defined in <utility>

std::tuple is defined in <tuple>

The standard library : Pairs and tuples 4. The standard library. Algorithms and containers. 42/51

pairs
Example: explicit element access

Getting the elements of a pair

void example1 ()
{

auto t = std:: make_pair (10, "Hello");

auto i = t.first;
auto s = t.second;

cout << "i: " << i << ", s: " << s << endl;
}

The standard library : Pairs and tuples 4. The standard library. Algorithms and containers. 43/51

tuples
Example: using std::get(std::tuple)

Getting the elements of a tuple

void example2 ()
{

auto t = std:: make_tuple (10, "Hello" ,4.2);

auto i = std::get <0>(t);
auto s = std::get <1>(t);
auto d = std::get <2>(t);

cout << "i: " << i << ", s: " << s << ", d: " << d << endl;
}

NB! std::get(std:tuple) takes the index as a template parameter.

The standard library : Pairs and tuples 4. The standard library. Algorithms and containers. 44/51

Queues and stacks

I adapter classes, providing a limited interface to one of the
standard containers: stack, queue, priority_queue

I fewer operations
I do not have iterators

Has a default underlying container. E.g., for stack:
template <

class T,
class Container = std::deque <T>

> class stack;

but stack can be instantiated with any class that has push_back(),
pop_back() and back().

Container adapters 4. The standard library. Algorithms and containers. 45/51

Queues and stacks

I Stack: LIFO queue (Last In First Out)
I Operations: push, pop, top, size and empty

top

push pop

Container adapters 4. The standard library. Algorithms and containers. 46/51

Queues and stacks

I Queue: FIFO-queue (First In First Out)
I Operations: push, pop, front, back, size and empty

front

back

push

pop

Container adapters 4. The standard library. Algorithms and containers. 47/51

Queues and stacks

I Priority queue: sorted queue. The element highest priority is
first in the queue.

I Operations: push, pop, top, size and empty

largest value top

push

pop

Compares elements with std::less<T> by default.
A custom comparator can be used. E.g., using std::greater<T>

would cause the smallest element to be first.
Container adapters 4. The standard library. Algorithms and containers. 48/51

Suggested reading

References to sections in Lippman
Iterators 3.4
Sequential containers 9.1 – 9.3
Algorithms 10.1
Associative containers chapter 11
Pairs 11.2.3
Tuples 17.1

The standard library : Associative containers 4. The standard library. Algorithms and containers. 50/51

Next lecture

References to sections in Lippman
Function templates 16.1.1
Algorithms 10 – 10.3.1, 10.5
Iterators 10.4
Function objects 14.8
Random numbers 17.4.1

The standard library : Associative containers 4. The standard library. Algorithms and containers. 51/51

	More on constructors
	Copying objects

	Generic programming
	The standard library
	Algorithms
	Containers
	Sequences
	Associative containers
	Pairs and tuples

	Container adapters

