
EDAF30 – Programming in C++

3. Classes

Sven Gestegård Robertz
Computer Science, LTH

2021

Outline

1 Constants
const for objects and members

2 Classes
Constructors
the pointer this
Operator overloading
friend
Const overloading

3. Classes 2/1

Data types
Two kinds of constants

I A variable declared const must not be changed(final in Java)
I Roughly:“I promise not to change this variable.”
I Is checked by the compiler
I Use when specifying function interfaces

I A function that does not change its (reference) argument
I A member function (“method”) that does not change the state

of the object.
I Important for function overloading

I T and const T are different types
I One can overload int f(T&) and int f(const T&)

(for some type T)
I A variable declared constexpr must have a value that can be

computed at compile time.
I Use to specify constants
I Functions can be constexpr
I Introduced in C++-11

Constants 3. Classes 3/34

Constant objects

I const means “I promise not to change this”

I Objects (variables) can be declared const
I “I promise not to change the variable”

I References can be declared const
I “I promise not to change the referenced object”
I a const& can refer to a non-const object
I common for function parameters

I Member functions can be declared const
I “I promise that the function does not change the state of the

object”
I technically: implicit declaration const T* const this;

Constants : const for objects and members 3. Classes 4/34

Constant objects
Example

const references and const functions
class Point{
public:

Point(int xi , int yi) :x{xi},y{yi}{}
int get_x () const {return x;}
int get_y () const {return y;}
void set_x(int xi) {x = xi;}
void set_y(int yi) {y = yi;}

private:
int x;
int y;

};
void example(Point& p, const Point& o) {

p.set_y (10);
cout << "p: "<< p.get_x() << "," << p.get_y() << endl;

o.set_y (10);
cout << "o: "<< o.get_x() << "," << o.get_y() << endl;

}
passing ’const Point ’ as ’this ’ argument discards qualifiers

Constants : const for objects and members 3. Classes 5/34

User-defined types
Concrete classes

A concrete type
I “behaves just like a built-in type”
I its representation is part of its definition,

That allows us to
I place objects

I on the stack (i.e., in local variables)
I in other objects
I in statically allocated memory (e.g., global variables)

I copy objects
I assignment of a variable
I copy-constructing an object
I value parameter of a function

I refer to objects directly (not just using pointers or references)
I initialize objects directly and completely (with a constructor)

Classes 3. Classes 6/34

Constructors

Default constructor
I A constructor that can be called without arguments

I May have parameters that all have default values

I Automatically defined if no constructor is defined
(in declaration: =default, cannot be called if =delete)

I If not defined, the type is not default constructible

Default constructor with member initializer list.

class Bar {
public:

Bar(int v=100, bool b=false) :value{v},flag{b} {}
private:

int value;
bool flag;

};

Classes : Constructors 3. Classes 7/34

Constructors
Default constructor

Default arguments
I If a constructor can be called without arguments, it is a

default constructor.

class KomplextTal {
public:

KomplextTal(float x=1):re(x),im(0) {}
//...

};

gives the same default constructor as the explicit
KomplextTal ():re{1},im{0} {}

Classes : Constructors 3. Classes 8/34

Constructors
Two ways of initializing members

With member initializer list in constructor
class Bar {
public:

Bar(int v, bool b) :value{v},flag{b} {}
private:

int value;
bool flag;

};

Members can have a default initializer, in C++11:
class Foo {
public:

Foo() =default;
private:

int value {0};
bool flag {false };

};

I prefer default initializer to overloaded constructors or
default arguments

Classes : Constructors 3. Classes 9/34

Constructors
Initialization and assignment

It is (often) possible to write like in Java, but
I it is less efficient
I the members must be assignable

Java-style: assignment in constructor

class Foo {
public:

Foo(const Bar& v) {
value = v; NB! assignment, not initialization

}
private:

Bar value; is default constructed before the body of the constructor
};

An object is initialized before the body of the constructor is run

Classes : Constructors 3. Classes 10/34

Constructors
Member initialization rules

class Bar {
public:

Bar() =default;
Bar(int v, bool b) :value{v},flag{b} {}

private:
int value {0};
bool flag {true};

};

I If a member has both default initializer and a member
initializer in the constructor, the constructor is used.

I Members are initialized in declaration order. (Compiler
warning if member initializers are in different order.)

I Bar() =default; is necessary to make the compiler generate a
default constructor (as another constructor is defined)
.

Classes : Constructors 3. Classes 11/34

Constructors
Prefer default member initializers

Use default member initializers if class member variables have
default values.

Default argument values and overloaded ctors: risk of
inconsistency

class Simple {
public:

Simple () :a(1), b(2), c(3) {}
Simple(int aa) :a(aa), b(0), c(0) {}
Simple(int aa , int bb , int cc=-1) :a(aa), b(bb), c(cc) {}

private:
int a;
int b;
int c;

};

Classes : Constructors 3. Classes 12/34

Constructors
Prefer default member initializers

Use default member initializers if class member variables have
default values.

With default initializers: consistent

class Simple {
public:

Simple () =default;
Simple(int aa) :a(aa) {}
Simple(int aa , int bb) :a(aa), b(bb) {}
Simple(int aa , int bb , int cc) :a(aa), b(bb), c(cc) {}

private:
int a {-1};
int b {-1};
int c {-1};

};

Classes : Constructors 3. Classes 13/34

Constructors
Default constructor and parentheses

In a variable declaration, the default constructor
cannot be called with empty parentheses.

Bar b1;
Bar b2{};
Bar be(); // Not a variable declaration! "most vexing parse"
Bar b3 (25); // OK

Bar* bp1 = new Bar;
Bar* bp2 = new Bar {};
Bar* bp3 = new Bar (); //OK

NB! The compiler error will be at the use of be e.g.,
be.fun ();

request for member ’fun ’ in ’be’, which is of non -class type ’Bar()’

Classes : Constructors 3. Classes 14/34

Default constructor and initialization

I automatically generated default constructor (=default)
does not always initialize members
I global variables are initialized to 0 (or corresponding)
I local variables are not initialized (different meaning from Java)

struct A { int x; };

int i; // i is initialized to 0 (global variable)
A a; // a.x is initialized to 0 (global variable)

int main() {
int j; // j is uninitialized
int k = int(); // k is initialized to 0
int l{}; // l is initialized to 0

A b; // b.x is uninitialized
A c = A(); // c.x is initialized to 0
A d{}; // d.x is initialized to 0

}

Classes : Constructors 3. Classes 15/34

Default constructor and initialization
Advice

I The automatically generated default constructor (=default)
does not always initialize members

I To be on the safe side:
I always initialize variables
I always implement default constructor (or =delete)

(incl. giving all members default initializers and use =default)

Classes : Constructors 3. Classes 16/34

Constructors
Delegating constructors (C++11)

In C++11 a constructor can call another (like this(...) in Java).

struct Test{
int val;

Test(int v) :val{v} {}

Test(int v, int scale) :Test(v*scale) {}; // delegation

Test(int a, int b, int c) :Test(a+b+c) {}; // delegation
};

A delegating constructor call shall be the only member-initializer.
(A constructor initializes an object completely.)

Classes : Constructors 3. Classes 17/34

Declarations
Scope

A declaration introduces a name in a scope
Local scope: A name declared in a function is visible

I From the declaration
I To the end of the block (delimited by{ })
I Parameters to functions are local names

Class scope: A name is called a member if it is declared in a class∗.
It is visible in the entire class.

Namespace scope: A named is called a namespace member if it is
defined in a namespace∗. E.g, std::cout.

A name declared outside of the above is called a global name and is
in the global namespace.

∗ outside a function, class or enum class.

Classes : Constructors 3. Classes 18/34

Declarations
lifetimes

I The lifetime of an object is determined by its scope:

I An object
I must be initialized (constructed) before it can be used
I is destroyed at the end of its scope.

I a local variable only exists until the function returns

I namespace objects are destroyed when the program terminates

I an object allocated with new lives until destroyed with delete.
(different from Java)
I Manual memory management
I new is not used as in Java
I Avoid new except in special cases
I more on this later

Classes : Constructors 3. Classes 19/34

Classes
Resource management

I RAII Resource Acquisition Is Initialization
I An object is initialized by a constructor

I Allocates the needed resources
I When an object is destroyed, its destructor is executed

I Free resources owned by the object
class Vector{

public:
Vector(int s) :elem{new double[s]}, sz{s} {} // constructor
~Vector () {delete [] elem;} // destructor , delete the array
...

};

Manual memory management
I Objects allocated with new must be freed with delete
I Objects allocated with new[] must be freed with delete[]
I otherwise, the program has a memory leak
I (much) more on this later

Classes : Constructors 3. Classes 20/34

The pointer this

Self reference

In a member function, there is an implicit pointer this, pointing to
the object the function was called on. (cf. this in Java).

I typical use: return *this for operations returning a reference
to the object itself

Classes : the pointer this 3. Classes 21/34

Operator overloading

A user-defined type can behave like a built-in type

I Operators can be overloaded
I as member functions (sometimes)
I as free functions

Syntax: return_type operator⊗ (parameters...)

for an operator ⊗ e.g. == or +

E.g, bool operator==(const Foo&, const Foo&);

Classes : Operator overloading 3. Classes 22/34

Operator overloading

Most operators can be overloaded, except
sizeof . .* :: ?:

E.g., these operators can be overloaded
=
+ - * / %
^ & | ~
<< >>
&& || !
!= == < >
++ -- += *=
() []
-> ->*
&
new delete new[] delete []

Classes : Operator overloading 3. Classes 23/34

Operator overloading

For classes, two possibilities:
I as a member function

I for binary operators, if the order of operands is suitable
I a binary operator takes one argument
I *this is the left operand,
I the function argument is the right operand

I as a free function
I if the public interface is enough, or
I if the function is declared friend

Classes : Operator overloading 3. Classes 24/34

friend

Functions or classes with access to all members in a class without
being members themselves

Friend declaration in the class ComplexNumber
class ComplexNumber{

//...
private:

int re;
int im;
friend ostream& operator <<(ostream&, const ComplexNumber &);

};

Definition of the free function operator<<

ostream& operator <<(ostream& o, const ComplexNumber& c) {
return o << c.re << "+" c.im << "i";

}

The free function operator<<(ostream&, const ComplexNumber&)

can access private members in ComplexNumber.
Classes : friend 3. Classes 25/34

friend

Functions or classes with full access to all members in a class
without being members themselves

I Free functions,
I member functions of other classes, or
I entire classes can be friends.
I cf. package visibility in Java
I A friend declaration is not part of the class interface, and can

be placed anywhere in the class definition.

Classes : friend 3. Classes 26/34

Operator overloading
as member function and as free function

Example: declaration as member functions

class Komplex {
public:

Komplex(double r, double i) : re(r), im(i) {}
Komplex operator +(const Komplex& rhs) const;
Komplex operator *(const Komplex& rhs) const;
// ...

private:
double re , im;

};

Example: declaration of operator+ as friend

Declaration inside the class definition of Komplex:
friend Komplex operator +(const Komplex& l, const Komplex& r);

Note the number of parameters

Classes : friend 3. Classes 27/34

Operator overloading

Defining operator+ in two ways:
I As member function (one parameter)

Komplex Komplex :: operator +(const Komplex& rhs)const{
return Komplex(re + rhs.re, im + rhs.im);

}

I As a free function (two parameters)
Komplex operator +(const Komplex& lhs , const Komplex& rhs){

return Komplex(lhs.re + rhs.re, lhs.im + rhs.im);
}

NB! the friend declaration is only in the class definition

Classes : friend 3. Classes 28/34

Operator overloading

Defining operator+ in two ways:
I As member function

Komplex Komplex :: operator +(const Komplex& rhs)const{
return Komplex(re + rhs.re, im + rhs.im);

} the right operand
cannot be changed

the left operand
cannot be changedI As a free function

Komplex operator +(const Komplex& lhs , const Komplex& rhs){
return Komplex(lhs.re + rhs.re, lhs.im + rhs.im);

}

NB! the friend declaration is only in the class definition

Classes : friend 3. Classes 28/34

Operator overloading
Another implementation of +, using +=

Class definition

class Komplex {
public:

Komplex& operator +=(const Komplex& z) {
re += z.re;
im += z.im;
return *this;

}
// ...

};

Free function, does not need to be friend

Komplex operator +(Komplex a, const Komplex& b) {
return a+=b;

}

NB! call by value: we want to return a copy.

Classes : friend 3. Classes 29/34

Conversion and increment operators
Exempel: Counter

Conversion to int

struct Counter{
Counter(int c=0) :cnt{c} {};
operator int() const {return cnt;}
Counter& operator ++() {++cnt; return *this;}
Counter operator ++(int) {Counter res(cnt ++); return res;}

private:
int cnt;

};

Note: operator T().
I no return type in declaration (must obviously be T)
I can be declared explicit

I two overloads for operator++. Dummy int parameter for
postincrement.

Classes : friend 3. Classes 30/34

Constant objects
Example

Note const in the declaration (and definition!) of the member
function operator[](int) const: (“const is part of the name”)
class Vector {
public:

//...
double operator [](int i) const; // function declaration
//...

private:
double* elem;
//...

};

double Vector :: operator [](int i) const // function definition
{

return elem[i];
}

Classes : Const overloading 3. Classes 31/34

Constant objects
Example: const overloading

The functions operator[](int) and operator[](int) const

are different functions.

Example

class Vector {
double& operator [](int i) {return elem[i];}
double operator [](int i) const {return elem[i];}

private:
double* elem;
//...

};

I If operator[] is called on a
I non-const object, a reference is returned
I const object, a copy is returned

I The assignment v[2] = 10; only works on a non-const v.

Classes : Const overloading 3. Classes 32/34

Suggested reading

References to sections in Lippman
Variable initialization 2.2.1
Classes 2.6, 7.1.4, 7.1.5
Constructors 7.5–7.5.4
(Aggregate classes) ("C structs" without constructors) 7.5.5
Operator overloading 14.1 – 14.3, 14.5 – 14.6
const, constexpr 2.4
this and const p 257–258
inline 6.5.2, p 273
friend 7.2.1
static members 7.6

Classes : Const overloading 3. Classes 33/34

Next lecture

References to sections in Lippman
Iterators 3.4
Sequential containers 9.1 – 9.3
Algorithms 10.1
Associative containers chapter 11
Pairs 11.2.3
Tuples 17.1

Classes : Const overloading 3. Classes 34/34

	Constants
	const for objects and members

	Classes
	Constructors
	the pointer this
	Operator overloading
	friend
	Const overloading

