EDAF30 — Programming in C4++

4. The standard library. Algorithms and containers.

Sven Gestegérd Robertz
Computer Science, LTH

2020

QOutline

@ More on constructors
o Copying objects

© Generic programming

© The standard library
@ Algorithms
o Containers
@ Sequences
@ Associative containers
@ Pairs and tuples

@ Container adapters

4. The standard library. Algorithms and containers. 2/1

User-defined types

Concrete classes

A concrete type
» “behaves just like a built-in type”

» the representation is part if the definition,
That allows us to
» place objects
» on the stack (i.e., in local variables)
» in other objects
» in statically allocated memory (e.g., global variables)
» copy objects
» assignment of a variable
» copy-constructing an object
» value parameter of a function
> refer to objects directly (not just using pointers or references)
» initialize objects directly and completely (with a constructor)

More on constructors : Copying objects 4. The standard library. Algorithms and containers. 3/49

Constructors

Copy Constructor

» s called when initializing an object
» s not called on assignment

» Can be defined, otherwise a standard copy constructor is
generated (=default, =delete)

void function(Bar); // by-value parameter

Bar b1(10, false?};

Bar b2{b1}; // the copy constructor is called
Bar b3(b2); // the copy constructor is called
Bar b4 = b2; // the copy constructor is called

function(b2); // the copy constructor is called

More on constructors : Copying objects 4. The standard library. Algorithms and containers. a/49

Copy Constructors

default

» Declaration:

class C {
public:
C(const C&) =default;
};
» default copy constructor
» Is automatically generated if not defined in the code
» exception: if there are members that cannot be copied

» shallow copy of each member

» Works for members variables with built-in types,

» or classes that behave like built-in types (RAll-types)

» Does not work for classes which manage resources “manually”
(More on this later)

More on constructors : Copying objects 4. The standard library. Algorithms and containers. 5/49

Constructors

Special cases: zero or one parameter

Copy Constructor

» Has a const & as parameter: Bar::Bar(const Bar& b);

Converting constructor

» A constructor with one parameter defines
an implicit type conversion from the type of the parameter

class ComplexNumber {
public:
ComplexNumber ():re{0},im{0} {3}
ComplexNumber (const ComplexNumber& k) :re{k.re},im{k.im} {3}
ComplexNumber (double x):re{x},im{0} {3}
/7. ..
private:
double re;
double im;
3

default constructor copy constructor converting constructor

More on constructors : Copying objects 4. The standard library. Algorithms and containers. 6/49

Converting constructor

Warning - implicit conversion

class Vector{
public:
Vector (int s); // create Vector with size s

int size() const; // return size of Vector

¥
void example_vector ()
{
Vector v = 7;
std::cout << "v.size(): " << v.size() << std::endl;
}

v.size(): 7

In std::vector the corresponding constructor is declared

explicit vector(size_type count);

More on constructors : Copying objects 4. The standard library. Algorithms and containers. 7/49

Converting constructor and explicit

explicit specifies that a constructor does not allow implicit type

conversion.
struct A struct B
{ {
A(int); explicit B(int);
VA //
3 3
A al(2); // 0K B b1(2); // OK
A a2 = 1; // 0K B b2 = 1; // Error! [2]
A a3 = (A)1; // OK B b3 = (B)1; // OK: explicit cast
a3 = 17; // OK [1] b3 = 17; // Error! [3]

[1]: construct an A(17), and then copy

[2]: conversion from ’int’ to non-scalar type ’'B’ requested
[31: no match for ’operator=’ (operand types are ’B’ and ’int’)

More on constructors : Copying objects 4. The standard library. Algorithms and containers. 8/49

Copying objects

Difference between construction and assignment

void function(Bar); // by-value parameter

Bar b1(10, false};

Bar b2{b1}; // the copy constructor is called
Bar b3(b2); // the copy constructor is called
Bar b4 = b2; // the copy constructor is called
function(b2); // the copy constructor is called
b4 = b3; // the copy constructor is not called

copy assignment — not construction

More on constructors : Copying objects 4. The standard library. Algorithms and containers. 9/49

Copying objects

the copy assignment operator: operator=

copy assignment operator is implicitly defined
with the type T& T::operator=(const T&)

if no operator= is declared for the type
if all member variables can be copied
» i.e., define a copy-assignment operator

If all members are of built-in (and RAII) types the default
variant works (same problems as with copy ctor).
More on copy control when we discuss resource management

ctors : Copying objects 4. The standard library. Algorithms and co:

Preventing copying

» Declaration:

class C {
public:

C(const C&) =delete;

C& operator=(const C&) =delete;
3

» A class without copy constructor and copy assignment
operator cannot be copied.

» C++-98: declare private and don't define

More on constructors : Copying objects 4. The standard library. Algorithms and containers. 11/49

Constructors

Initialization and assignment

An object is initialized before the body of the constructor is run

It is (often) possible to write like in Java, but
» it is less efficient

» the members must be assignable

Java-style: assignment in constructor

class Foo {
public:
Foo(const Bar& v) {
value = v; NB! assignment, not initialization
3
private:
Bar value; is default constructed before the body of the constructor

Bs

More on constructors : Copying objects 4. The standard library. Algorithms and containers. 12/49

Generic programming

Templates (mallar)

» Uses type parameters to write more generic classes and
functions

» No need to manually write a new class/function for each data
type to be handled
» static polymorphism
» A template is instantiated by the compiler for the type(s) it is
used for
» each instance is a separate class/function
» different from java: a java.util.ArrayList<T> holds
java.lang.Object references
» at compile-time: no runtime overhead
» increases code size

Generic programming 4. The standard library. Algorithms and containers. 13/49

Generic programming

Function templates

Example:
instead of

void print(int);
void print(double);
void print(const std::string&);

template <typename T> print(const T&);

Generic programming 4. The standard library. Algorithms and containers. 14/49

Templates

Template compilation

» The compiler instantiates the template at the call site
» The entire definition of the template is needed
» place template definitions in header files
» Duck typing: if it walks like a duck, and quacks like a duck,
it is a duck.
» cf. dynamically typed languages like python
» Requirements on the use of an object rather than its type
» instead of “class T must have a function foo(U)"
» ‘“for objects t and u, the expression t.foo(u) is well-formed.”
» operator overloading: a+b or a < b is well-formed
» a template can work for both built-in and user-defined types
» Independent of class hierarchies

» E.g., in Java: a class must implement Comparable
» in C++4, a < b must be well-formed

Generic programming 4. The standard library. Algorithms and cox

Generic programming

A class for a vector of doubles

class Vector{
public:
explicit Vector (int s);
~Vector () {delete[] elem;}
double& operator[](int i) {return elem[il;}
int size() const {return sz;}
private:
int sz;
doublex* elem;

};
can be generalized to hold any type:

template <typename T>
class Vector{
public:

T& operator[](int i) const {return elem[i];}

private:
int sz;
T*x elem;
};

Generic programming 4. The standard library. Algorithms and containers. 16/49

Generic programming

example: find an element in a Vector

template <typename T>
T& find(const Vector<T>& v, const T& val)

{
if(v.size() == @) throw std::invalid_argument("empty vector”);
for(int i=0; i < v.size(); ++i){
if(v[i] == val) return v[i];
3
throw std::runtime_error("not found");
}

» specific to Vector
» returning a reference is problematic: cannot return null

» special handling of empty vector
» special handling of element not found

Generic programming 4. The standard library. Algorithms and containers. 17/49

Generic programming

[terators

The standard library uses an abstraction for an element of a
collection — iterator

» “points to" an element
» can be dereferenced
» can be incremented (to point to the following element)
» can be compared to another iterator
and two functions
begin() get an iterator to the first element of a collection
end() get an one-past-end iterator

Generic programming 4. The standard library. Algorithms and containers. 18/49

Generic programming

example: find an element in an int array

int*x find(intx first, intx last, int val)

{
while(first != last && xfirst != val) ++first;
return first;

Generalize to any array (pointer to at type parameter T).

template <typename T>

Tx find(T* first, Tx last, const T& val)

{
while(first != last && *first != val) ++first;
return first;

Generic programming 4. The standard library. Algorithms and containers. 19/49

Generic programming
example: find an element in a collection

find using pair of pointers

template <typename T>
Tx find(T* first, Tx last, const T& val)

while(first != last && xfirst != val) ++first;
return first;

Pointers are iterators for built-in arrays.

Find for any iterator range

template <typename Iter, typename T>

Iter find(Iter first, Iter last, const T& val)

{
while(first != last && *first != val) ++first;
return first;

Generic programming 4. The standard library. Algorithms and containers. 20/49

Generic programming
A generic Vector class

Example implementation of begin() and end():

template <typename T>
class Vector{
public:

intx begin() {return sz > @ ? elem : nullptr;}

intx end() {return begin()+sz;}

const int* begin() const {return sz > @ ? elem : nullptr;}
const int* end() const {return begin()+sz;}

private:
int sz;
T* elem;
b8

The standard function std: :begin() has an overload for classes
with begin() and end() member functions.

Generic programming 4. The standard library. Algorithms and containers. 21/49

Generic programming

Generic code

using std::begin;
using std::end;
void examplel ()

{
int al] {1,2,3,4,5,6,73};
auto f5= find(begin(a), end(a), 5);
if(f5 != end(a)) *f5 = 10;

}

void example2()

{
Vector<int> a{1,2,3,4,5,6,7};
auto f5= find(begin(a), end(a), 5);
if(f5 != end(a)) *xf5 = 10;

}

Generic programming 4. The standard library. Algorithms and containers. 22/49

Algorithms

Standard libray algorithms

#include <algorithm>

Numeric algorithms:

#include <numeric>

Random number generation

#include <random>

Appendix A.2 in Lippman gives an overview

The standard library : Algorithms 4. The standard library. Algorithms and containers. 23/49

Standard algorithms

Main categories of algorithms

Search, count

Compare, iterate

Generate new data

Copying and moving elements
Changing and reordering elements
Sorting

Operations on sorted sequences

Operations on sets

Numeric algorithms

The standard library : Algorithms 4. The standard library. Algorithms and containers. 24/49

Standard algorithms

Algorithms operate on iterators.

Algorithm limitations

» Algorithms may modify container elements. E.g.,

» std::sort
» std::replace
» std::copy

» std::remove (sic!)
» No algorithm inserts or removes container elements.

» That requires operating on the actual container object
» or using an insert iterator that knows about the container
(cf. std::back_inserter)

The standard library : Algorithms 4. The standard library. Algorithms and containers. 25/49

Algorithms

Example: find

template <class Inputlterator, class T>
InputIterator find (Inputlterator first, Inputlterator last,
const T& val);

Example:

vector<std::string> s{"Kalle”, "Pelle”, "Lisa”, "Kim"};
auto it = std::find(s.begin(), s.end(), "Pelle");

if(it != s.end())

cout << "Found " << %it << endl;
else

cout << "Not found"<< endl;

Found Pelle

The standard library : Algorithms 4. The standard library. Algorithms and containers. 26/49

Standard containers

Sequences (homogeneous)
» vector<T>
» deque<T>
> list<T>

Associative containers (also unordered)
» map<K, V>, multimap<K,V>
P set<T>, multiset<T>

Heterogeneous sequences (not “containers’”)
» tuple<Tl, T2, ...>
» pair<T1,T2>

The standard library : Containers 4. The standard library. Algorithms and containers.

The classes vector and deque

The standard library has two main sequence data types
std::vector your default sequence type
» Contigous in memory
» Grows at the back
std::deque Double ended queue

» Piecewise contigous in memory
» Grows at front and back

The standard library : Sequences 4. The standard library. Algorithms and cox

The classes vector and deque

Operations in the class vector

.clear(), v.size(), v.empty()
.push_back (), v.pop_back()
.front(), v.back(), v.at(i), v[il
.assign(), v.insert(), v.emplace()
.resize(), v.reserve()

< < < < <

Additional operations in deque

d.push_front(), d.pop_front()

The standard library : Sequences 4. The standard library. Algorithms and containers. 20/49

The classes vector and deque

Constructors and the function assign

Constructors and assign have three overloads:
» il n elements with the same value
void assign (size_type n, const value_type& val);
» initializer list

void assign (initializer_list<value_type> il);

» range: copies the elements in the interval [first,last) (i.e.,
from first to last, excl. last)

template <class Inputlterator>
void assign (Inputlterator first, Inputlterator last);

Use () for sizes, and {3} for list of elements.

The standard library : Sequences 4. The standard library. Algorithms and containers. 30/49

The classes vector and deque

The member function assign, example

vector<int> v{3,3};
print_seq(v); length = 2: [3]1[3]

v.assign(3,3);

print_seq(v); length = 3: [31[3]1[3]

int alJl{0,1,2,3,4,5,6,7,8,9};

v.assign(a, a+5);

print_seq(v); length = 5: [@J[11[21[3]1[4]
std::deque<int> d;

d.assign(v.begin(), v.end());

print_seq(d); length = 5: [@J[1]1[2]1[3]1[4]

Examples of iterators

The standard library : Sequences 4. The standard library. Algorithms and containers. 31/49

The classes vector and deque

Member functions push and pop

push adds an element, increasing size
pop removes an element, decreasing size

front, back get a reference to the first (last) element

*_back operates at the end, available in both

void push_back (const value_type& val); //copy
void pop_back();

reference front();

reference back();

only in deque: *_front

void push_front (const value_type& val); //copy
void pop_front();

The standard library : Sequences 4. The standard library. Algorithms and containers. 32/49

pop_X(), front() and back ()

NB! The return type of pop_back() is void.

Why separate functions?
» Don't pay for what you don't need.

» A non-void pop() has to return by value (copy).
» front()/back() can return a reference.
» Let the caller decide if it wants a copy.

The standard library : Sequences 4. The standard library. Algorithms and cox

Growing a vector

Size and capacity

A container has a size and a capacity.

On a push_back, if size == capacity the vector grows
» New storage is allocated

» The elements are copied

If you know how many push_back calls you will make,
» first use reserve() to (at least) the expected final size.

» then do a series of push_back

The standard library : Sequences 4. The standard library. Algorithms and containers. 34/49

Sets and maps

Associative containers

map<Key,Value> Unique keys
multimap<Key,Value> Can contain duplicate keys
set<Key> Unique keys
multiset<Key> Can contain duplicate keys

set Is in principle a map without values.

» By default orders elements with operator<

template<class Key, class Compare = std::less<Key>>
class set{

explicit set(const Compare& comp = Compare());
};
» A custom comparator can be provided

The standard library : Associative containers 4. The standard library. Algorithms and containers. 35/49

Sets and maps

<set>: std::set

void test_set()

{
std::set<int> ints{1,3,73};
ints.insert(5);
for(auto x : ints) {
cout << x << " ",
¥
cout << endl;
auto has_one = ints.find(1);
if(has_one != ints.end()){
cout << "one is in the set\n";
} else {
cout << "one is not in the set\n";
¥
}
Or
1357
one is in the set if(ints.count (1))

The standard library : Associative containers 4. The standard library. Algorithms and containers. 36/49

Sets and maps

<map>: std::map

map<string, int> msi;
msi.insert(make_pair(”"Kalle"”, 1));
msi.emplace("Lisa", 2);
msi["Kim"]1= 5;
for(const auto& a: msi) {

cout << a.first << " : " << a.second << endl;

}

cout << "Lisa --> " << msi.at("Lisa") << endl;
cout << "Hasse --> " << msi["”Hasse”] << endl;

auto nisse = msi.find("Nisse”);

if(nisse != msi.end()) {
cout << "Nisse : " << nisse->second << endl;
} else {
cout << "Nisse not found\n”;
}
Kalle : 1
Kim : 5
Lisa : 2

Lisa --> 2
Hasse --> @
Nisse not found

The standard library : Associative containers 4. The standard library. Algorithms and containers. 37/49

A std::set is in principle a std: :map without values

Operations on std: :map

insert, emplace, [], at, find, count,
erase, clear, size, empty,
lower_bound, upper_bound, equal_range

Operations on std: :set
insert, emplace, find, count,

erase, clear, size, empty,
lower_bound, upper_bound, equal_range

Use the member functions, not algorithms like std::find()
(It works, but is less efficient — linear time complexity instead of logarithmic.)

The standard library : Associative containers 4. The standard library. Algorithms and containers. 38/49

Sets and maps
The return value of insert

insert() returns a pair

std::pair<iterator,bool> insert(const value_type& value);

The insert member function returns two things:
» An iterator to the inserted value

» or to the element that prevented insertion

» A bool: true if the element was inserted

insert() in multiset and multimap just returns an iterator.

Getting the result of an insert

auto result = set.insert(value);
bool inserted = result.second;

The standard library : Associative containers 4. The standard library. Algorithms and containers. 39/49

pair and tuple

» fixed-size heterogenous container
» can be used to return multiple values

std: :pair is defined in <utility>
std: : tuple is defined in <tuple>

The standard library : Pairs and tuples 4. The standard library. Algorithms and containers. 40/49

pairs

Example: explicit element access

Getting the elements of a pair

void examplel ()

{

auto t = std::make_pair (10, "Hello");

auto i = t.first;

auto s = t.second;

cout << "i: " << i << ", s: " << s << endl;
}

The standard library : Pairs and tuples 4. The standard library. Algorithms and containers. 41/49

tuples

Example: using std::get(std: : tuple)

Getting the elements of a tuple

void example2 ()

{
auto
auto
auto
auto
cout

}

NB! std

std::

std::
std::
std::

t =
i =
SH=
d =
<< "i:

make_tuple (1@, "Hello",4.2);
get<o>(t);
get<1>(t);
get<2>(t);

" << i << ", s: " << s << " d: " << d << endl;

::get(std:tuple) takes the index as a template parameter.

The standard library : Pairs and tuples

4. The standard library. Algorithms and containers.

a2/49

Queues and stacks

» adapter classes, providing a limited interface to one of the
standard containers: stack, queue, priority_queue
» fewer operations
» do not have iterators
Has a default underlying container. E.g., for stack:

template<
class T,
class Container = std::deque<T>
> class stack;

but stack can be instantiated with any class that has push_back(),
pop_back() and back().

Container adapters 4. The standard library. Algorithms and containers. 43/49

Queues and stacks

» Stack: LIFO queue (Last In First Out)
» Operations: push, pop, top, size and empty

‘ pop

push

top

4. The standard library. Algorithms and cox

Queues and stacks

» Queue: FIFO-queue (First In First Out)
» Operations: push, pop, front, back, size and empty

pop

front

back

push

4. The standard library. Algorithms and cox

Queues and stacks

» Priority queue: sorted queue. The element highest priority is

first in the queue.

» Operations: push, pop, top, size and empty

pop

largest value

push ——

top

Compares elements with std: :1ess<T> by default.
A custom comparator can be used. E.g., using std:.greater<T>
would cause the smallest element to be first.

4. The standard library. Algorithms and cox

Suggested reading

References to sections in Lippman
Iterators 3.4

Sequential containers 9.1 — 9.3
Algorithms 10.1

Associative containers chapter 11
Pairs 11.2.3

Tuples 17.1

4. The standard library. Algorithms and cox

Next lecture

References to sections in Lippman
Function templates 16.1.1
Algorithms 10 — 10.3.1, 10.5
Iterators 10.4

Function objects 14.8

Random numbers 17.4.1

4. The standard library. Algorithms and containers.

	More on constructors
	Copying objects

	Generic programming
	The standard library
	Algorithms
	Containers
	Sequences
	Associative containers
	Pairs and tuples

	Container adapters

