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@ Resource management
@ Memory allocation
@ Stack allocation
@ Heap allocation: new and delete

© Smart pointers

© Classes, resource management
@ Rule of three
@ copy assignment

@ Function calls
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Resource management

A resource is
» something that must be allocated

» and later released

Example:
» memory
» file handles
» sockets
» locks

6. Resource

management



Resource handles

Organize resource management with classes that own resources
» allocates resources in the constructor
» releases resources in the destructor
» RAIl User-defined types that behave like built-in types

6. Resource management



Memory Allocation

Two kinds of memory allocation:

» on the stack - automatic variables. Are destroyed when the
program exits the block where they are declared.

» on the heap - dynamically allocated objects. Live until
explicitly destroyed.

Resource management : Memory allocation 6. Resource management



Memory allocation

stack allocation

unsigned fac(unsigned n) main() ||
{ unsigned f:
if(n == 0) unsigned tmp0:
return 1;
else return n *x fac(n-1); fac()
3 unsigned n: 2

int main() unsigned tmp0:

{

unsigned f = fac(2); fac() unsigned n: 1
cout << f; ‘g .
return 0: unsigned tmp0:
}
fac()

unsigned n: 0

Resource management : Stack allocation 6. Resource management 6/43



Memory allocation

Dynamic memory, allocation “on the heap’, or “free store’

Dynamically allocated memory
» is allocated on the heap, with new (like in Java)
» does not belong to a scope
» unnamed object: access through pointer or reference
» new returns a pointer
» remains in memory until deallocated with delete (difference
from Java)

Resource management : Heap allocation: new and delete 6. Resource management



Memory Allocation
Dynamic memory, allocation “on the heap’, or “free store’

Space for dynamic objects is allocated with new

doublex pd = new double; // allocate a double

*pd = 3.141592654; // assign a value

float* px; // uninitialized pointers
floatx py; // (avoid when possible)
px = new float[20]; // allocate an array

py = new float[20] {1.1, 2.2, 3.3}; // allocate and initialize

Memory is released with delete

delete pd;
delete[] px; // [] is required for an array
delete[] py;

Resource management : Heap allocatior delete 6. Resource management



Memory Allocation
Warning! be careful with parentheses

Allocating an array: char[8e]

char* ¢ = new char[80];

Almost the same. ..

charx ¢ = new char(80);

Almost the same. ..

charx ¢ = new char{80};

The latter two allocate one byte
and initializes it with the value 80 (*P’).

charx ¢ = new char(’P’);

Resource management : Heap allocation: new and delete 6. Resource management



Memory Allocation

Mistake: not allocating memory

char name[80];

*name = ’Z’; // OK, name allocated on the stack. name[@]=’Z’

char *p; // Uninitialized pointer
// No compiler warning

*p = 77, // Error! ’Z’ written to an undefined memory address

cin.getline(p, 80); //(almost) certain error during execution
//("Segmentation fault") or memory corruption

modern C4+: auto is safer

auto g = new char[80]; // auto --> cannot be uninitialized

Resource management : Heap allocati 6. Resource management



Memory Allocation

Example: failed read_line function

charx read_line() {
char temp[80];
cin.getline(temp, 80);
return temp;

void exempel () {
cout << "Enter your name:
charx name = read_line();

",
’

cout << "Enter your town: ";
charx town = read_line();

cout << "Hello " << name << " from " << town << endl;

"Dangling pointer": pointer to object that no longer exists

Resource management : Heap allocati 6. Resource management



Memory Allocation

Partially corrected version of read_line

charx read_line() {
char temp[80];
cin.getline(temp, 80);
size_t len=strnlen(temp,80);
char *res = new char[len+1];
strncpy(res, temp, len+1);
return res; // dynamically allocated:
}
void exempel () {
cout << "Enter your name”;

charx name = read_line();
cout << "Enter your town";
charx town = read_line();

cout << "Hello " << name << " from "

Works, but memory leak !

Resource management : Heap allocatior

survives

<< town << endl;
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Memory Allocation

Fu corrected version of read_line

charx read_line() {
char temp[80];
cin.getline(temp, 80);
size_t len=strnlen(temp,80);
char *res = new char[len+1];
strncpy(res, temp, len+1);
return res; Dynamically allocated: survives
}
void exempel () {
cout << "Enter your name: ";

charx name = read_line(); NB! calling function takes ownership
cout << "Enter your town ";
charx town = read_line();

cout << "Hello " << name << " from " << town << endl;

delete[] name; Deallocate strings
delete[] town;

Resource management : Heap allocatior d 6. Resource management



Use std: :string

Simpler and safer wit

#include <iostream>
#include <string>

using std::cin; void example ()
using std::cout; {
using std::string; cout << "Name:";
string name = read_line();
string read_line() cout << "Town:";
{ string town = read_line();
string res;
getline(cin, res); cout << "Hello, " << name <<
return res; " from " << town << endl;
} ¥

» std::string is a resource handle
» RAIl

» Dynamic memory is rarely needed (in user code)

Resource management : Heap allocatior
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Memory Allocation

ownership of resources

For dynamically allocated objects, ownership is important
» An object or a function can own a resource
» The owner is responsible for deallocating the resource
» If you have a pointer, you must know who owns
the object it points to

» Ownership can be transferred by a function call
» but is often not
» be clear about owning semantics

Every time you write new you are responsible for
that someone will do a delete
when the object is no longer in use.

Resource management : Heap allocation: ne
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Classes

RAII

» RAIl Resource Acquisition Is Initialization

» An object is initialized by a constructor
» Allocates the resources needed (“resource handle”)

» When an object is destroyed, its destructor is executed
» Free the resources owned by the object
» Example: Vector: delete the array elem points to

class Vector{

private:
double elem*; // pointer to an array
int sz; // the size of the array
public:

Vector(int s) :elem{new double[s]}, sz{s} {} // ctor
~Vector () {delete[] elem;} // dtor, delete the array
3

Manual memory management
» Objects allocated with new must be dellocated with delete
» Objects allocated with new[] must be dellocated with delete[]
» otherwise the program will leak memory

Resource management : Heap allocation: new and delete 6. Resource management



Classes

Resource ma nagement, representation

struct Vector {
Vector (int s) :sz{s},elem{new double(sz)} {3}
~Vector () {delete[] elem;}
double& operator[](int i) {return elem[i];}
int sz;
doublex* elem;

3

void test()

{
Vector vec(5);
vec[2] = 7;

¥

Vector vec: |sz: b
elem ° 7

» Resource handle — Vector owns its double[]
» the object: pointer + size, the array is on the heap

Resource management : Heap allocation: delete 6. Resource management



Dynamic memory, example

Error handling

void f(int i, int j)

{
X* p=new X; // allocate new X
/7. ..
if(i<99) throw E{}; // may throw an exception
if(j<77) return; // may return "early”
//
p->do_something(); // may throw
//
delete p;
}

Will leak memory if delete p is not called

Smart pointers 6. Resource management 18/43



Memory allocation

C++: Smart pointers

The standard library <memory> has two “smart” pointer types
(C++11):

» std::unique_ptr<T> — a single owner
» std::shared_ptr<T> — shared ownership

that are resource handles:
» their destructor deallocates the object they point to.

» Other examples of resource handles:
> std::vector<T>
» std::string

shared_ptr contains a reference counter: when the last shared_ptr
to an object is destroyed, the object is destroyed. Cf. garbage
collection in Java.

6. Resource management



Smart pointer, example

void f(int i, int j)

{
unique_ptr<X> p{new X};// allocate new X and give to unique_ptr
/7. ..
if(i<99) throw E{}; // may throw an exception
if(j<77) return; // may return "early"”
//
p->do_something (); // may throw
}

The destructor of p is always executed: no leak

Smart pointers 6. Resource management 20/43



Smart pointer, example

Dynamic memory is rarely needed

void f(int i, int j)

{
X x{};
if(i<99) throw E{}; // may throw an exception
if(j<77) return; // may return "early”
x.do_something (); // may throw

}

Use local variables when possible

Smart pointers 6. Resource management 21/43



read_line With unique_ptr

unique_ptr<char[]> read_line()

{
char temp[80];
cin.getline(temp, 80);
int size = strlen(temp)+1;
charx res = new char[size];
strncpy(res, temp, size);
return unique_ptr<char[]>{res};

}

void example ()

{

cout << "Enter name: ";
unique_ptr<char[]l> name = read_line();
cout << "Enter town: ";

unique_ptr<char[]> town = read_line();
cout << "Hello " << name.get() << " from " << town.get() << endl;

» To get a charx we call unique_ptr<char[]>::get().

Smart pointers 6. Resource management 22/43



read_line With unique_ptr

with no explicit new and delete (c++14)

unique_ptr<char[]> read_line ()
{
char temp[80];
cin.getline(temp, 80);
int size = strlen(temp)+1;
auto res = std::make_unique<char[]> (size);
strncpy(res.get(), temp, size);
return res;

Smart pointers 6. Resource management 23/43



Smart pointers

Vector from previous examples

class Vector{

public:
Vector(int s) :elem{new double[s]}, sz{s} {}
double& operator[](int i) {return elem[i];}
int size() {return sz;}

private:
'std::unique_ptr<double[]> elem;
int sz;

3

» All member variables are of RAII types
» The default destructor works

» The object cannot be copied (no default functions generated)
» A unique_ptr cannot be copied — it is unique

Smart pointers 6. Resource management 24/43



Smart pointers

Vector from previous examples

>

Smart pointers

class Vector({

public:
Vector(int s) :elem{new double[s]}, sz{s} {}
double& operator[J(int i) {return elem[i];}
int size() {return sz;}

private:
std::unique_ptr<double[]> elem;
int sz;

};

To make the type possible to copy

» Define a copy constructor
» Define a copy assignment operator

6. Resource management 25/43



Memory allocation

C++: Smart pointers

Rules of thumb for pointer parameters to functions:

if ownership is not transferred

» Use “raw” pointers

» Use std: :unique_ptr<T> const &

if ownership is transferred

» Use by—va/ue std: :unique_pointer<T>
(then std::move() must be used)

» This is an orientation about smart pointers.

» “Raw’ pointers are common; you must master them.

Smart pointers 6. Resource management 26/43



C++: Smart pointers

Coarse summary

“Raw” (“naked”) pointers:
» The programmer takes all responsibility
» Risk of memory leaks

» Risk of dangling pointers

Smart pointers:
» No (less) risk of memory leaks

» (minor) Risk of dangling pointers if used incorrectly
(e.g., more than one unique_ptr to the same object)

6. Resource management



Common pitfall

Default copying

For classes containing owning pointers,
the default copying does not work.

Example: Vector
» call by value

» copying pointer values
(both objects point to the same resource)

» the destructor is executed on return
» dangling pointer
» double delete

s, resource management : Rule of three 6. Resource management



Classes

Example: Copying the Vector class

class Vector{

public:
Vector(int s) :elem{new double[s]}, sz{s} {3}
~Vector () {delete[] elem;}
double& operator[J(int i) {return elem[i];}
int size() {return sz;}

private:
doublex* elem;
int sz;

3

Vector vec: |sz: b

elem L

No copy constructor defined = default generated.

Classes, resource management : Rule of three 6. Resource management 20/43



Classes

Default copy construction: shallow copy

void f(Vector v);

void test()

{
Vector vec(5);
f(vec); // call by value -> copy
// ... other uses of vec
3
vec: [sz: 5
elem °
v: |sz: 5 - —
elem

» The parameter v is default copy constructed: the value of each
member variable is copied

» When f() returns, the destructor of v is executed:
(delete[] elem;)

» The array pointed to by both copies is deleted. Disaster!

Classes, resource management : Rule of three 6. Resource management 30/43



Copying objects

the copy assignment operator: operator=

The

v

copy assignment operator is implicitly defined
with the type T& T::operator=(const T&)
if no operator= is declared for the type

if all member variables can be copied
» i.e., define a copy-assignment operator

If all members are of built-in (and RAII) types the default
variant works (same problems as with copy ctor).

vec: |sz: 5
elem o
v: |sz: 5 - —
elem

For owning pointers, the copy member functions must be
implemented
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“Rule of three"

Canonical construction idiom

IF a class owns a resource, it shall implement a
@ Destructor
© Copy constructor

© Copy assignment operator

in order not to leak memory. E.g. the class Vector

If you define any of these, you should define all.

Classes, resource management : copy assignment 6. Resource management 32/43



Copy control
Example: Vector

Vector::Vector(const Vector& v) :elem{new double[v.sz]}, sz{v.sz}
{
for(int i=0; i < sz; ++i) {
elem[i] = v[i];
3
3

Or, use the standard library:

std::copy(v.elem, v.elem+v.sz, elem);

Classes, resource management : copy assignment 6. Resource management 33/43



Copy control

Example: Vector

Copy assignment

Vector& Vector::operator=(const Vector& v) {
if (this != &v) {
auto tmp = new double[v.sz];
for (int i=0; i<v.sz; i++)
tmp[i] = v.elem[i];

@ check “self assignment”

@ allocate new resources

sz = v.sz; © copy values

delete[] elem;

elem = tmp; Q free old resources
1eturn *this; Only delete if allocation succeeded.

3

Classes, resource management : copy assignment 6. Resource management 34/43



Function calls and results

Returning objects by value

» A function cannot return references to local variables
» the object is destroyed at return — dangling reference

» How (in)efficient is it to return objects by value (a copy)?
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return value optimization (RVO)

The compiler may optimize away copies of objects on return from
functions

» return by value often efficient, also for larger objects

» RVO allowed even if the copy-constructor or destructor
has side effects

» avoid such side effects to make code portable

6. Resource management



Rules of thumb for function parameters

» Return by value more often

» Do not over-use call-by-value

“reasonable defaults”

[ | cheap to copy | moderately cheap to copy | expensive to copy |
In fX) | f(const X&)

In/Out FOX&)
Out X fO | f (X&)

For results, if the cost of copying is

» small, or moderate (< 1k, contiguous): return by value
(modern copilers do RVO: return value optimization)

» large : call by reference as out parameter
» or maybe allocate with new and return pointer

Function calls 6. Resource management 37/43



Call by reference or by value?

Rules of thumb

For passing an object to a function when

» you may want to change the value of the object
» reference: void f(T&); or
» pointer: void f(T*);

» you will not change it, it is /arge (or impossible to copy)
» constant reference: void f(const T&);

» otherwise, call by value
» void f(T);

6. Resource management



reference or pointer?

» required parameter: pass reference

» optional parameter: pass pointer (can be nullptr)

void f(widget& w)
{
use(w); //required parameter

}

void g(widget* w)
{
if(w) use(w); //optional parameter

3

Function calls 6. Resource management 39/43



Call by reference or by value?

» How big is “large”?
» more than a few words

» When to use out parameters?
» prefer code that is obvious

Example: two functions: Use:
void incri1(int& x) int v = 0;
{
++X;
} incri(v);

int incr2(int x)
{

return x + 1; L v = incr2(v);
} Here it is much clearer

that v = incr2(v) changes v

» For multiple output values, consider returning a struct,
a std::pair or a std: :tuple

Function calls 6. Resource management 40/43



Next lecture: Error handling

References to sections in Lippman
Error handling, exceptions (5.6, 18.1.1)
static assert not in Lippman

assert 6.5.3
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Suggested reading

References to sections in Lippman
Dynamic memory and smart pointers 12.1
Dynamically allocated arrays 12.2.1

Classes, resource management 13.1, 13.2
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