EDAF30 — Programming in C4++

6. Resource management

Sven Gestegérd Robertz
Computer Science, LTH

2019

QOutline

@ Resource management
@ Memory allocation
@ Stack allocation
@ Heap allocation: new and delete

© Smart pointers

© Classes, resource management
@ Rule of three
@ copy assignment

@ Function calls

6. Resource management

Resource management

A resource is
» something that must be allocated

» and later released

Example:
» memory
» file handles
» sockets
» locks

6. Resource

management

Resource handles

Organize resource management with classes that own resources
» allocates resources in the constructor
» releases resources in the destructor
» RAIl User-defined types that behave like built-in types

6. Resource management

Memory Allocation

Two kinds of memory allocation:

» on the stack - automatic variables. Are destroyed when the
program exits the block where they are declared.

» on the heap - dynamically allocated objects. Live until
explicitly destroyed.

Resource management : Memory allocation 6. Resource management

Memory allocation

stack allocation

unsigned fac(unsigned n) main() ||
{ unsigned f:
if(n == 0) unsigned tmp0:
return 1;
else return n *x fac(n-1); fac()
3 unsigned n: 2

int main() unsigned tmp0:

{

unsigned f = fac(2); fac() unsigned n: 1
cout << f; ‘g .
return 0: unsigned tmp0:
}
fac()

unsigned n: 0

Resource management : Stack allocation 6. Resource management 6/43

Memory allocation

Dynamic memory, allocation “on the heap’, or “free store’

Dynamically allocated memory
» is allocated on the heap, with new (like in Java)
» does not belong to a scope
» unnamed object: access through pointer or reference
» new returns a pointer
» remains in memory until deallocated with delete (difference
from Java)

Resource management : Heap allocation: new and delete 6. Resource management

Memory Allocation
Dynamic memory, allocation “on the heap’, or “free store’

Space for dynamic objects is allocated with new

doublex pd = new double; // allocate a double

*pd = 3.141592654; // assign a value

float* px; // uninitialized pointers
floatx py; // (avoid when possible)
px = new float[20]; // allocate an array

py = new float[20] {1.1, 2.2, 3.3}; // allocate and initialize

Memory is released with delete

delete pd;
delete[] px; // [] is required for an array
delete[] py;

Resource management : Heap allocatior delete 6. Resource management

Memory Allocation
Warning! be careful with parentheses

Allocating an array: char[8e]

char* ¢ = new char[80];

Almost the same. ..

charx ¢ = new char(80);

Almost the same. ..

charx ¢ = new char{80};

The latter two allocate one byte
and initializes it with the value 80 (*P’).

charx ¢ = new char(’P’);

Resource management : Heap allocation: new and delete 6. Resource management

Memory Allocation

Mistake: not allocating memory

char name[80];

*name = ’Z’; // OK, name allocated on the stack. name[@]=’Z’

char *p; // Uninitialized pointer
// No compiler warning

*p = 77, // Error! ’Z’ written to an undefined memory address

cin.getline(p, 80); //(almost) certain error during execution
//("Segmentation fault") or memory corruption

modern C4+: auto is safer

auto g = new char[80]; // auto --> cannot be uninitialized

Resource management : Heap allocati 6. Resource management

Memory Allocation

Example: failed read_line function

charx read_line() {
char temp[80];
cin.getline(temp, 80);
return temp;

void exempel () {
cout << "Enter your name:
charx name = read_line();

",
’

cout << "Enter your town: ";
charx town = read_line();

cout << "Hello " << name << " from " << town << endl;

"Dangling pointer": pointer to object that no longer exists

Resource management : Heap allocati 6. Resource management

Memory Allocation

Partially corrected version of read_line

charx read_line() {
char temp[80];
cin.getline(temp, 80);
size_t len=strnlen(temp,80);
char *res = new char[len+1];
strncpy(res, temp, len+1);
return res; // dynamically allocated:
}
void exempel () {
cout << "Enter your name”;

charx name = read_line();
cout << "Enter your town";
charx town = read_line();

cout << "Hello " << name << " from "

Works, but memory leak !

Resource management : Heap allocatior

survives

<< town << endl;

6. Resource management

Memory Allocation

Fu corrected version of read_line

charx read_line() {
char temp[80];
cin.getline(temp, 80);
size_t len=strnlen(temp,80);
char *res = new char[len+1];
strncpy(res, temp, len+1);
return res; Dynamically allocated: survives
}
void exempel () {
cout << "Enter your name: ";

charx name = read_line(); NB! calling function takes ownership
cout << "Enter your town ";
charx town = read_line();

cout << "Hello " << name << " from " << town << endl;

delete[] name; Deallocate strings
delete[] town;

Resource management : Heap allocatior d 6. Resource management

Use std: :string

Simpler and safer wit

#include <iostream>
#include <string>

using std::cin; void example ()
using std::cout; {
using std::string; cout << "Name:";
string name = read_line();
string read_line() cout << "Town:";
{ string town = read_line();
string res;
getline(cin, res); cout << "Hello, " << name <<
return res; " from " << town << endl;
} ¥

» std::string is a resource handle
» RAIl

» Dynamic memory is rarely needed (in user code)

Resource management : Heap allocatior

6. Resource management

Memory Allocation

ownership of resources

For dynamically allocated objects, ownership is important
» An object or a function can own a resource
» The owner is responsible for deallocating the resource
» If you have a pointer, you must know who owns
the object it points to

» Ownership can be transferred by a function call
» but is often not
» be clear about owning semantics

Every time you write new you are responsible for
that someone will do a delete
when the object is no longer in use.

Resource management : Heap allocation: ne

6. Resource management

Classes

RAII

» RAIl Resource Acquisition Is Initialization

» An object is initialized by a constructor
» Allocates the resources needed (“resource handle”)

» When an object is destroyed, its destructor is executed
» Free the resources owned by the object
» Example: Vector: delete the array elem points to

class Vector{

private:
double elem*; // pointer to an array
int sz; // the size of the array
public:

Vector(int s) :elem{new double[s]}, sz{s} {} // ctor
~Vector () {delete[] elem;} // dtor, delete the array
3

Manual memory management
» Objects allocated with new must be dellocated with delete
» Objects allocated with new[] must be dellocated with delete[]
» otherwise the program will leak memory

Resource management : Heap allocation: new and delete 6. Resource management

Classes

Resource ma nagement, representation

struct Vector {
Vector (int s) :sz{s},elem{new double(sz)} {3}
~Vector () {delete[] elem;}
double& operator[](int i) {return elem[i];}
int sz;
doublex* elem;

3

void test()

{
Vector vec(5);
vec[2] = 7;

¥

Vector vec: |sz: b
elem ° 7

» Resource handle — Vector owns its double[]
» the object: pointer + size, the array is on the heap

Resource management : Heap allocation: delete 6. Resource management

Dynamic memory, example

Error handling

void f(int i, int j)

{
X* p=new X; // allocate new X
/7. ..
if(i<99) throw E{}; // may throw an exception
if(j<77) return; // may return "early”
//
p->do_something(); // may throw
//
delete p;
}

Will leak memory if delete p is not called

Smart pointers 6. Resource management 18/43

Memory allocation

C++: Smart pointers

The standard library <memory> has two “smart” pointer types
(C++11):

» std::unique_ptr<T> — a single owner
» std::shared_ptr<T> — shared ownership

that are resource handles:
» their destructor deallocates the object they point to.

» Other examples of resource handles:
> std::vector<T>
» std::string

shared_ptr contains a reference counter: when the last shared_ptr
to an object is destroyed, the object is destroyed. Cf. garbage
collection in Java.

6. Resource management

Smart pointer, example

void f(int i, int j)

{
unique_ptr<X> p{new X};// allocate new X and give to unique_ptr
/7. ..
if(i<99) throw E{}; // may throw an exception
if(j<77) return; // may return "early"”
//
p->do_something (); // may throw
}

The destructor of p is always executed: no leak

Smart pointers 6. Resource management 20/43

Smart pointer, example

Dynamic memory is rarely needed

void f(int i, int j)

{
X x{};
if(i<99) throw E{}; // may throw an exception
if(j<77) return; // may return "early”
x.do_something (); // may throw

}

Use local variables when possible

Smart pointers 6. Resource management 21/43

read_line With unique_ptr

unique_ptr<char[]> read_line()

{
char temp[80];
cin.getline(temp, 80);
int size = strlen(temp)+1;
charx res = new char[size];
strncpy(res, temp, size);
return unique_ptr<char[]>{res};

}

void example ()

{

cout << "Enter name: ";
unique_ptr<char[]l> name = read_line();
cout << "Enter town: ";

unique_ptr<char[]> town = read_line();
cout << "Hello " << name.get() << " from " << town.get() << endl;

» To get a charx we call unique_ptr<char[]>::get().

Smart pointers 6. Resource management 22/43

read_line With unique_ptr

with no explicit new and delete (c++14)

unique_ptr<char[]> read_line ()
{
char temp[80];
cin.getline(temp, 80);
int size = strlen(temp)+1;
auto res = std::make_unique<char[]> (size);
strncpy(res.get(), temp, size);
return res;

Smart pointers 6. Resource management 23/43

Smart pointers

Vector from previous examples

class Vector{

public:
Vector(int s) :elem{new double[s]}, sz{s} {}
double& operator[](int i) {return elem[i];}
int size() {return sz;}

private:
'std::unique_ptr<double[]> elem;
int sz;

3

» All member variables are of RAII types
» The default destructor works

» The object cannot be copied (no default functions generated)
» A unique_ptr cannot be copied — it is unique

Smart pointers 6. Resource management 24/43

Smart pointers

Vector from previous examples

>

Smart pointers

class Vector({

public:
Vector(int s) :elem{new double[s]}, sz{s} {}
double& operator[J(int i) {return elem[i];}
int size() {return sz;}

private:
std::unique_ptr<double[]> elem;
int sz;

};

To make the type possible to copy

» Define a copy constructor
» Define a copy assignment operator

6. Resource management 25/43

Memory allocation

C++: Smart pointers

Rules of thumb for pointer parameters to functions:

if ownership is not transferred

» Use “raw” pointers

» Use std: :unique_ptr<T> const &

if ownership is transferred

» Use by—va/ue std: :unique_pointer<T>
(then std::move() must be used)

» This is an orientation about smart pointers.

» “Raw’ pointers are common; you must master them.

Smart pointers 6. Resource management 26/43

C++: Smart pointers

Coarse summary

“Raw” (“naked”) pointers:
» The programmer takes all responsibility
» Risk of memory leaks

» Risk of dangling pointers

Smart pointers:
» No (less) risk of memory leaks

» (minor) Risk of dangling pointers if used incorrectly
(e.g., more than one unique_ptr to the same object)

6. Resource management

Common pitfall

Default copying

For classes containing owning pointers,
the default copying does not work.

Example: Vector
» call by value

» copying pointer values
(both objects point to the same resource)

» the destructor is executed on return
» dangling pointer
» double delete

s, resource management : Rule of three 6. Resource management

Classes

Example: Copying the Vector class

class Vector{

public:
Vector(int s) :elem{new double[s]}, sz{s} {3}
~Vector () {delete[] elem;}
double& operator[J(int i) {return elem[i];}
int size() {return sz;}

private:
doublex* elem;
int sz;

3

Vector vec: |sz: b

elem L

No copy constructor defined = default generated.

Classes, resource management : Rule of three 6. Resource management 20/43

Classes

Default copy construction: shallow copy

void f(Vector v);

void test()

{
Vector vec(5);
f(vec); // call by value -> copy
// ... other uses of vec
3
vec: [sz: 5
elem °
v: |sz: 5 - —
elem

» The parameter v is default copy constructed: the value of each
member variable is copied

» When f() returns, the destructor of v is executed:
(delete[] elem;)

» The array pointed to by both copies is deleted. Disaster!

Classes, resource management : Rule of three 6. Resource management 30/43

Copying objects

the copy assignment operator: operator=

The

v

copy assignment operator is implicitly defined
with the type T& T::operator=(const T&)
if no operator= is declared for the type

if all member variables can be copied
» i.e., define a copy-assignment operator

If all members are of built-in (and RAII) types the default
variant works (same problems as with copy ctor).

vec: |sz: 5
elem o
v: |sz: 5 - —
elem

For owning pointers, the copy member functions must be
implemented

6. Resource management

“Rule of three"

Canonical construction idiom

IF a class owns a resource, it shall implement a
@ Destructor
© Copy constructor

© Copy assignment operator

in order not to leak memory. E.g. the class Vector

If you define any of these, you should define all.

Classes, resource management : copy assignment 6. Resource management 32/43

Copy control
Example: Vector

Vector::Vector(const Vector& v) :elem{new double[v.sz]}, sz{v.sz}
{
for(int i=0; i < sz; ++i) {
elem[i] = v[i];
3
3

Or, use the standard library:

std::copy(v.elem, v.elem+v.sz, elem);

Classes, resource management : copy assignment 6. Resource management 33/43

Copy control

Example: Vector

Copy assignment

Vector& Vector::operator=(const Vector& v) {
if (this != &v) {
auto tmp = new double[v.sz];
for (int i=0; i<v.sz; i++)
tmp[i] = v.elem[i];

@ check “self assignment”

@ allocate new resources

sz = v.sz; © copy values

delete[] elem;

elem = tmp; Q free old resources
1eturn *this; Only delete if allocation succeeded.

3

Classes, resource management : copy assignment 6. Resource management 34/43

Function calls and results

Returning objects by value

» A function cannot return references to local variables
» the object is destroyed at return — dangling reference

» How (in)efficient is it to return objects by value (a copy)?

6. Resource management

return value optimization (RVO)

The compiler may optimize away copies of objects on return from
functions

» return by value often efficient, also for larger objects

» RVO allowed even if the copy-constructor or destructor
has side effects

» avoid such side effects to make code portable

6. Resource management

Rules of thumb for function parameters

» Return by value more often

» Do not over-use call-by-value

“reasonable defaults”

[| cheap to copy | moderately cheap to copy | expensive to copy |
In fX) | f(const X&)

In/Out FOX&)
Out X fO | f (X&)

For results, if the cost of copying is

» small, or moderate (< 1k, contiguous): return by value
(modern copilers do RVO: return value optimization)

» large : call by reference as out parameter
» or maybe allocate with new and return pointer

Function calls 6. Resource management 37/43

Call by reference or by value?

Rules of thumb

For passing an object to a function when

» you may want to change the value of the object
» reference: void f(T&); or
» pointer: void f(T*);

» you will not change it, it is /arge (or impossible to copy)
» constant reference: void f(const T&);

» otherwise, call by value
» void f(T);

6. Resource management

reference or pointer?

» required parameter: pass reference

» optional parameter: pass pointer (can be nullptr)

void f(widget& w)
{
use(w); //required parameter

}

void g(widget* w)
{
if(w) use(w); //optional parameter

3

Function calls 6. Resource management 39/43

Call by reference or by value?

» How big is “large”?
» more than a few words

» When to use out parameters?
» prefer code that is obvious

Example: two functions: Use:
void incri1(int& x) int v = 0;
{
++X;
} incri(v);

int incr2(int x)
{

return x + 1; L v = incr2(v);
} Here it is much clearer

that v = incr2(v) changes v

» For multiple output values, consider returning a struct,
a std::pair or a std: :tuple

Function calls 6. Resource management 40/43

Next lecture: Error handling

References to sections in Lippman
Error handling, exceptions (5.6, 18.1.1)
static assert not in Lippman

assert 6.5.3

6. Resource management

Suggested reading

References to sections in Lippman
Dynamic memory and smart pointers 12.1
Dynamically allocated arrays 12.2.1

Classes, resource management 13.1, 13.2

6. Resource management

	Resource management
	Memory allocation
	Stack allocation
	Heap allocation: new and delete

	Smart pointers
	Classes, resource management
	Rule of three
	copy assignment

	Function calls
	Summary

