
LUND INSTITUTE OF TECHNOLOGY EDAF30
Department of Computer Science 2018

Laboratory Exercises, C++ Programming
General information:

• The course has four compulsory laboratory exercises.

• You shall work in groups of two students. Sign up for the labs at sam.cs.lth.se/Labs.

• The labs require homework. Before each lab session, you must have done as much as you
can of the assignments (A1, A2, . . .) in the lab, written and tested the programs, and so on.
Use the scheduled lab sessions for getting answers to your questions.

• Extra labs are organized only for students who cannot attend a lab because of illness. Notify
Sven Gestegård Robertz (Sven.Robertz@cs.lth.se) if you fall ill, before the lab.

The labs are about:

1. Basic C++ programming, compiling, linking.

2. Introduction to the standard library.

3. Debugging

4. Strings and streams.

Practical information:

• You will use many half-written “program skeletons” during the lab. You must download the
necessary files from the course homepage before you start working on the lab assignments.

• The lab files are available in gzipped tar format. The archives can be unpacked from the
command line like this:

tar xzf lab1.tar.gz

That creates a directory lab1 in the current directory.

Good sources of information about C++:

• http://www.cppreference.com

• http://www.cplusplus.com

2 Godkända laborationsuppgifter

Programmering i C++, godkända laborationsuppgifter

Skriv ditt namn och din namnteckning nedan:

Namn: .

Namnteckning: .

Godkänd laboration Datum Laborationsledarens namnteckning

1

2

3

4

Basic C++ Programming, Compiling, Linking 3

1 Basic C++ Programming, Compiling, Linking
Objective: to introduce C++ programming in a Unix environment.

Read:

• Book: basic C++, variables and types including expressions, statements, functions, simple
classes, ifstream, ofstream.

• GCC manual: http://gcc.gnu.org/onlinedocs/

• GNU make: http://www.gnu.org/software/make/manual/

1 Introduction

Different C++ compilers are available in a Unix environment, for example g++ from GNU (see
http://gcc.gnu.org/) and clang++ from the Clang project (see http://clang.llvm.org/). The
GNU Compiler Collection, GCC, includes compilers for many languages, the Clang collection
only for “C-style” languages. g++ and clang++ are mostly compatible and used in the same way
(same compiler options, etc.). In the remainder of the lab we mention only g++, but everything
holds for clang++ as well.

Actually, g++ is not a compiler but a “driver” that invokes other programs:

Preprocessor (cpp): takes a C++ source file and handles preprocessor directives (#include files,
#define macros, conditional compilation with #ifdef).

Compiler: the actual compiler that translates the input file into assembly language.

Assembler (as): translates the assembly code into machine code, which is stored in object files.

Linker (ld): collects object files into an executable file.

A C++ source code file is recognized by its extension. The two commonly used extensions are
.cc (recommended by GNU) and .cpp . The source files contain definitions. To enable separate
compilation, declarations are collected in header files with the extension .h . To distinguish C++
headers from C headers other extensions are sometimes used, such as .hpp or .hh . We will use
the extension .h .

A C++ program normally consists of many classes that are defined in separate files. It must
be possible to compile the files separately. The program source code is usually organized like this
(a main program that uses a class Editor):

• Define the editor class in a file editor.h:

#ifndef EDITOR_H // include guard
#define EDITOR_H
// include necessary headers here

class Editor {
public:

/* Creates a text editor containing the text t */
Editor(const std::string& t) : text(t) {}
size_type find_left_par(size_type pos) const;

// ... functions to edit the text (insert and delete characters)
private:

std::string text;
};
#endif

4 Basic C++ Programming, Compiling, Linking

• Define the class member functions in a file editor.cc

#include "editor.h"
// include other necessary headers

size_type Editor::find_left_par(size_type pos) const { ... }
...

• Define the main function in a file test_editor.cc :

#include "editor.h"
// include other necessary headers

...
int main() {

Editor ed(...);
test_equals(ed.find_left_par(15), 11);
...

}

The include guard is necessary to prevent multiple definitions of names. Do not write function
definitions in a header file (except inline functions and function templates).

Compiling and running a program: When compiling from the command line, the g++ com-
mand line looks like this:

g++ [options] [-o outfile] infile1 [infile2 ...]

The .cc files are compiled separately. The resulting object files (.o files) are linked into an
executable file test_editor , which is then executed:

g++ -std=c++11 -c editor.cc
g++ -std=c++11 -c test_editor.cc
g++ -o test_editor test_editor.o editor.o
./test_editor

The -c option directs the driver to stop before the linking phase and produce an object file, named
as the source file but with the extension .o instead of .cc .

In order to reduce compilation times, separate compilation as in the above example is usually
desired, but gcc also supports giving multiple source files in the same command. Then, that
means to both compile and link. The three calls to g++ above can therefore also be written

g++ -std=c++11 -o test_editor test_editor.cc editor.cc

A1. Write a “Hello, world!” program in a file hello.cc , compile and test it.

Basic C++ Programming, Compiling, Linking 5

2 Options and messages

There are more options to the g++ command than were mentioned in section 1. Your source files
must compile correctly using the following command line:

g++ -c -O2 -Wall -Wextra -pedantic-errors -Wold-style-cast -std=c++11 file.cc

Short explanations (you can read more about these and other options in the gcc manual):

-c just produce object code, do not link
-O2 optimize the object code (perform nearly all supported optimiza-

tions)
-Wall print most warnings
-Wextra print extra warnings
-pedantic-errors treat “serious” warnings as errors
-Wold-style-cast warn for old-style casts, e.g., (int) instead of static_cast<int>
-std=c++11 follow the new C++ standard (use -std=c++0x on early versions

of g++)
-stdlib=libc++ Clang only — use Clang’s own standard library instead of GNU’s

libstdc++

Do not disregard warning messages. Even though the compiler chooses to “only” issue warnings,
your program is most likely erroneous or at least questionable. It is strongly recommended that
you add the option -Werror, which treats warnings as errors.

Some of the warning messages are produced by the optimizer and will therefore not be output
if the -O2 flag is not used. But you must be aware that optimization takes time, and on a slow
machine you may wish to remove this flag during development to save compilation time. Some
platforms define higher optimization levels, -O3, -O4, etc. You should not use these optimization
levels unless you know very well what their implications are.

It is important that you become used to reading and understanding the GCC error messages.
The messages are sometimes long and may be difficult to understand, especially when the errors
involve the standard library template classes (or any other complex template classes).

3 Introduction to make

You have to type a lot in order to compile and link C++ programs — the command lines are long,
and it is easy to forget an option or two. You also have to remember to recompile all files that
depend on a file that you have modified.

There are tools that make it easier to compile and link, “build”, programs. These may be
integrated development environments (Eclipse, Visual Studio, . . .) or separate command line
tools. In Unix, make is the most important tool. Make works like this:

• it reads a “makefile” when it is invoked. Usually, the makefile is named Makefile1.

• The makefile contains a description of dependencies between files (which files that must be
recompiled/relinked if a file is updated).

• The makefile also contains a description of how to perform the compilation/linking.

As an example, we take the program from section 1. The files editor.cc and test_editor.cc must
be compiled and then linked. Instead of typing the command lines, you just enter the command
make. Make reads the makefile and executes the necessary commands.

1 By default make uses Makefile in the current directory. The command line opion -f can be used to specify another
filename, e.g., make -f AnotherMakefile

6 Basic C++ Programming, Compiling, Linking

A minimal makefile, without all the compiler options, looks like this:

The following rule means: "if test_editor is older than test_editor.o
or editor.o, then link test_editor".
test_editor: test_editor.o editor.o

g++ -o test_editor test_editor.o editor.o

Rules to create the object files.
test_editor.o: test_editor.cc editor.h

g++ -std=c++11 -c test_editor.cc

editor_o: editor.cc editor.h
g++ -std=c++11 -c editor.cc

A rule specifies how a file (the target), which is to be generated, depends on other files (the
prerequisites). The line following the rule contains a shell command, a recipe, that generates the
target. The recipe is executed if any of the prerequisites are older than the target. It must be
preceded by a tab character, not eight spaces.

A2. The file Makefile in the lab1 directory contains the makefile described above. The files
editor.h , editor.cc , and test_editor.cc are in the same directory. Experiment:

Run make. Run make again. Delete the executable program and run make again.
Change one or more of the source files (it is sufficient to touch them) and see what
happens. Run make test_editor.o. Run make notarget. Read the manual 2and try
other options.

4 More Advanced Makefiles

4.1 Implicit Rules

Make has implicit rules for many common tasks, for example producing .o-files from .cc-files. The
recipe for this task is:

$(CXX) $(CPPFLAGS) $(CXXFLAGS) -c -o $@ $<

CXX, CPPFLAGS, and CXXFLAGS are variables that the user can define. The expression $(VARIABLE)

evaluates a variable, returning its value. CXX is the name of the C++ compiler, CPPFLAGS are the
options to the preprocessor, CXXFLAGS are the options to the compiler. $@ expands to the name of
the target, $< expands to the first of the prerequisites.

There is also an implicit rule for linking, where the recipe (after some variable expansions)
looks like this:

$(CC) $(LDFLAGS) $^ $(LOADLIBES) $(LDLIBS) -o $@

LDFLAGS are options to the linker, such as -Ldirectory. LOADLIBES and LDLIBS3 are variables
intended to contain libraries, such as -llab1. $� expands to all prerequisites. So this is a good
rule, except for one thing: it uses $(CC) to link, and CC is by default the C compiler gcc, not g++.
But if you change the definition of CC, the implicit rule works also for C++:

Define the linker
CC = $(CXX)

2 See section 9 (How to run make) of the manual. The options are summarized in section 9.7.
3 There doesn’t seem to be any difference between LOADLIBES and LDLIBS — they always appear together and are
concatenated. Use LDLIBS.

Basic C++ Programming, Compiling, Linking 7

4.2 Phony Targets

Make by default creates the first target that it finds in the makefile. By convention, the first target
should be named all , and it should make all the targets. But suppose that a file all is created
in the directory that contains the makefile. If that file is newer than the test_editor file, a make
invocation will do nothing but say make: Nothing to be done for `all'., which is not the
desired behavior. The solution is to specify the target all as a phony target, like this:

all: test_editor
.PHONY: all

Another common phony target is clean . Its purpose is to remove intermediate files, such as object
files, and it has no prerequisites. It typically looks like this:

.PHONY: clean
clean:

rm -f *.o test_editor

4.3 Generating Prerequisites Automatically

While you’re working with a project the prerequisites are often changed. New #include directives
are added and others are removed. In order for make to have correct information about the
dependencies, the makefile must be modified accordingly. This is a tedious task, and it is easy to
forget a dependency.

The C++ preprocessor can be used to generate prerequisites automatically. The option -MMD4

makes the preprocessor look at all #include directives and produce a file with the extension
.d which contains the corresponding prerequisite. Suppose the file test_editor.cc contains the
following #include directive:

#include "editor.h"

The compiler produces a file test_editor.d with the following contents:

test_editor.o: test_editor.cc editor.h

The .d files are included in the makefile, so it functions the same way as if we had written the
rules ourselves.

4 The option -MMD generates prerequisites as a side effect of compilation. If you only want the preprocessing but no
actual compilation, -MM can be used.

8 Basic C++ Programming, Compiling, Linking

4.4 Putting It All Together

The makefile below can be used as a template for makefiles in many (small) projects. To add a
new target you must:

1. add the name of the executable to the definition of PROGS,
2. add a rule which specifies the object files that are necessary to produce the executable.

Define the compiler and the linker. The linker must be defined since
the implicit rule for linking uses CC as the linker. g++ can be
changed to clang++.
CXX = g++
CC = $(CXX)

Generate dependencies in *.d files
DEPFLAGS = -MT $@ -MMD -MP -MF $*.d

Define preprocessor, compiler, and linker flags. Uncomment the # lines
if you use clang++ and wish to use libc++ instead of GNU's libstdc++.
-g is for debugging.
CPPFLAGS = -std=c++11 -I.
CXXFLAGS = -O2 -Wall -Wextra -pedantic-errors -Wold-style-cast
CXXFLAGS += -std=c++11
CXXFLAGS += -g
CXXFLAGS += $(DEPFLAGS)
LDFLAGS = -g
#CPPFLAGS += -stdlib=libc++
#CXXFLAGS += -stdlib=libc++
#LDFLAGS += -stdlib=libc++

Targets
PROGS = test_editor print_argv

all: $(PROGS)

Targets rely on implicit rules for compiling and linking
test_editor: test_editor.o editor.o
print_argv: print_argv.o

Phony targets
.PHONY: all clean

Standard clean
clean:

rm -f *.o $(PROGS)

Include the *.d files
SRC = $(wildcard *.cc)
include $(SRC:.cc=.d)

A3. The makefile with automatic dependencies is in the file MakefileWithDeps . Rename this
file to Makefile , and experiment. The compiler will warn about unused parameters. These
warnings will disappear when you implement the member functions.
Look at the generated .d files. Use the makefile to build your “Hello world!” program.

Basic C++ Programming, Compiling, Linking 9

5 Writing small programs

A4. Editors for program text usually help with matching of parentheses: when you type a right
parenthesis,),] or } the editor highlights the corresponding left parenthesis.

Example with matching parentheses marked (the dots ... represent a sequence of
characters except parentheses):

...(...(...[...]...)...)...{...}...

|---| |---|

|-----------|

|-------------------|

Implement the function find_left_par in the class Editor, test with editortest.cc.

A5. Implement two functions for encoding and decoding:

/* For any character c, encode(c) is a character different from c */
unsigned char encode(unsigned char c);

/* For any character c, decode(encode(c)) == c */
unsigned char decode(unsigned char c);

Use a simple method for coding and decoding. Test your encoding and decoding routines
with test_coding.cc.

Then write a program, encode, that reads a text file5, encodes it, and writes the encoded
text to another file. The program can ask for a filename as in the following execution

./encode
enter filename.
myfile

and write the encoded contents to myfile.enc.
Alternatively, you can give the file name on the command line, like this:
./encode myfile

Command-line parameters are passed to main in an array of C-strings. The prototype
to use is int main(int argc, const char** argv). See print_argv.cc for an example
of how to use command line arguments.

Write another program, decode, that reads an encoded file, decodes it, and writes the
decoded text to another file FILENAME.dec . Add rules to the makefile for building the
programs.

Test your programs and check that a file that is first encoded and then decoded is
identical to the original. Use the Unix diff command.

Note: the programs will work also for files that are UTF-8 encoded. In UTF-8 characters
outside the “ASCII range” are encoded in two bytes, and the encode and decode functions
will be called twice for each such character.

6 Finding Errors

With the GNU debugger, gdb, you can control a running program (step through the program,
set breakpoints, inspect variable values, etc.). Debug information is inserted into the executable
program when you compile and link with the option -g. Preferably you should also turn off
optimization (no -O2 option). From g++ version 4.8 there is a new option -Og, which turns on all
optimizations that do not conflict with debugging.

5 Note that you cannot use while (infile � ch) to read all characters in infile, since � skips whitespace (why?). Use
infile.get(ch) instead. Output with outfile � ch should be ok, but outfile.put(ch) looks more symmetric.

10 Basic C++ Programming, Compiling, Linking

A program is executed under control of gdb like this:

gdb ./program

Some useful commands:

help [command] Get help about gdb commands.
run [args...] Run the program (with arguments).
start [args...] Set a temporary breakpoint at main and run the program
continue Continue execution.
next Step to the next line over function calls.
step Step to the next line into function calls.
finish Continue until just after the current function returns.
where Print the call stack.
list [nbr] List 10 lines around the current line or around line nbr (the

following lines if repeated).
break func Set a breakpoint on the first line of a function func.
break nbr Set a breakpoint at line nbr in the current file.
print expr Print the value of the expression expr.
watch var Set a watchpoint, i.e., watch all modifications of a variable. Can

be very slow but can be the best solution to find some bugs.

gdb also has a mode (called “text user interface”) which splits the window into one window for
the source code and one for the command prompt. This mode is toggled with the key sequence
ctrl-x a (i.e., first type ctrl-x and then type an a). In the code window, the arrow keys scroll
the source code, in the command window the arrow keys move in the command history. The key
sequence ctrl-x o jumps to the other windows.

A6. Run the test programs under control of gdb, try the commands.

6.1 Memory-Related Errors

This section is for information only, and the valgrind tool is not available under Windows. If you use a
Mac or a Linux box, you are strongly encouraged to use valgrind.

In Java, many errors are caught by the compiler (use of uninitialized variables) or by the runtime
system (addressing outside array bounds, dereferencing null pointers, etc.). In C++, errors of this
kind are not caught, instead they result in erroneous results or faults during program execution.
Furthermore, you get no information about where in the program the error occurred. Since
deallocation of dynamic memory in C++ is manual, you also have a whole new class of errors
(dangling pointers, double delete, memory leaks).

Valgrind is a tool (available under Linux and Mac OS X) that helps you find memory-related
errors at the precise locations at which they occur. It does this by emulating an x86 processor
and supplying each data bit with information about the usage of the bit. This results in slower
program execution, but this is more than compensated for by the reduced time spent in searching
for bugs.

Valgrind is easy to use. Compile and link as usual, then execute like this:

valgrind ./program

When an error occurs, you get an error message and a stack trace (and a lot of other information).
At the end of execution, valgrind prints a “leak summary” which indicates the amount of dynamic
memory that hasn’t been properly freed.

Basic C++ Programming, Compiling, Linking 11

7 Object Code Libraries

A lot of software is shipped in the form of libraries, e.g., class packages. In order to use a library, a
developer does not need the source code, only the object files and the headers. Object file libraries
may contain thousands of files and cannot reasonably be shipped as separate files. Instead, the
files are collected into library files that are directly usable by the linker.

7.1 Static Libraries

The simplest kind of library is a static library. The linker treats the object files in a static library in
the same way as other object files, i.e., all code is linked into the executable files. In Unix, a static
library is an archive file, lib<name>.a . In addition to the object files, an archive contains an index
of the symbols that are defined in the object files.

A collection of object files f1.o , f2.o , f3.o , . . . , are collected into a library libfoo.a using the ar

command:

ar crv libfoo.a f1.o f2.o f3.o ...

(Some Unix versions require that you also create the symbol table with ranlib libfoo.a.) In
order to link a program main.o with the object files obj1.o , obj2.o and with object files from the
library libfoo.a , you use the following command line:

g++ -o main main.o obj1.o obj2.o -L. -lfoo

The linker searches for libraries in certain system directories. The -L. option makes the linker
search also in the current directory.6 The library name (without lib and .a) is given after -l.

For debugging, it can sometimes be interesting to look at the symbols defined in an object file or
library. For this, the utility nm can be used. The symbols in an object file foo.o is listed with the
command

nm foo.o

By default, nm lists all symbols in a file. To restrict it to just defined or undefined symbols,
the options �defined-only and �undefined-only can be used. If you run it, you see that c++
function names are mangled to avoid name clashes for overloaded functions and member functions.
With GNU nm, the option �demangle makes the names more readable. If that option is not
available, the utility c++filt can be used to demangle symbol names, as in the command line

nm �undefined-only main.o | c++filt

A7. Collect the object files editor.o and coding.o in a library liblab1.a . Change the makefile
so the programs (test_editor , encode , decode) are linked with the library. The -L option
belongs in LDFLAGS, the -l option in LDLIBS.

7.2 Shared Libraries

Since most programs use large amounts of code from libraries, executable files can grow very
large. Instead of linking library code into each executable that needs it the code can be loaded at
runtime. The object files should then be in shared libraries. When linking programs with shared
libraries, the files from the library are not actually linked into the executable. Instead a “pointer”
is established from the program to the library.

6 You may have several -L and -l options on a command line. Example, where the current directory and the directory
/usr/local/mylib are searched for the libraries libfoo1.a and libfoo2.a :

g++ -o main main.o obj1.o obj2.o -L. -L/usr/local/mylib -lfoo1 -lfoo2

12 Basic C++ Programming, Compiling, Linking

In Unix shared library files are named lib<name>.so[.x.y.z] (.so for shared objects, .x.y.z is
an optional version number). The linker uses the environment variable LD_LIBRARY_PATH as the
search path for shared libraries. In Microsoft Windows shared libraries are known as DLL files
(dynamically loadable libraries).

A8. (Advanced, optional) Create a shared library with the object files editor.o and coding.o .
Link the executables using the shared library. Make sure they run correctly. Compare the
sizes of the dynamically linked executables to the statically linked (there will not be a big
difference, since the library files are small).

Use the command ldd (list dynamic dependencies) to inspect the linkage of your
programs. Shared libraries are created by the linker, not the ar archiver. Use the gcc

and ld manpages (and, if needed, other manpages) to explain the following sequence of
operations:

g++ -fPIC -std=c++11 -c *.cc
g++ -shared -Wl,-soname,liblab1.so.1 -o liblab1.so.1.0 list.o coding.o
ln -s liblab1.so.1.0 liblab1.so.1
ln -s liblab1.so.1 liblab1.so

You then link with -L. -llab1 as before. The linker merely checks that all referenced
symbols are in the shared library. Before you execute the program, you must define
LD_LIBRARY_PATH so it includes the current directory. You do this with the following
command (on the command line):

export LD_LIBRARY_PATH=.:$LD_LIBRARY_PATH

Introduction to the Standard Library 13

2 Introduction to the Standard Library
Objective: to solve a moderately large problem using C++. Some parts of the standard library that
haven’t yet been introduced in the course will be used. They are introduced in section 3.

1 Spelling Correction

Most word processors can check the spelling of a document and suggest corrections to misspelled
words. Often, a dictionary is used — words that aren’t in the dictionary are considered to be
misspelled. The suggested corrections are the words in the dictionary that are “similar” to the
misspelled word.

Your task is to write a class Dictionary which can be used as in the following example:

void check_word(const string& word, const Dictionary& dict)
{

if (dict.contains(word)) {
cout << "Correct." << endl;

} else {
vector<string> suggestions = dict.get_suggestions(word);
if (suggestions.empty()) {

cout << "Wrong, no suggestions." << endl;
} else {

cout << "Wrong. Suggestions:" << endl;
for (const auto& w : suggestions) {

cout << " " << w << endl;
}

}
}

}
int main() {

Dictionary dict;
string word;
while (cin >> word) {

transform(word.begin(), word.end(), word.begin(), ::tolower);
check_word(word, dict);

}
}

Examples:

expertise
Correct.
seperate
Wrong. Suggestions:

separate
desperate
federate
generate
imperate

Notes:

• The function contains (section 2.2) must be efficient (fast).
• In get_suggestions you can spend time on finding good suggestions for corrections.
• It can be advantageous to “preprocess” the file which contains the dictionary (section 2.1).
• It is not certain that the data structures which you shall use are optimal (or even necessary),

but you shall solve the assignments as they are given. You are encouraged to improve the
program, but do that as a separate project.

14 Introduction to the Standard Library

The following shall be done in get_suggestions:

1. Search the dictionary and find candidates for corrections (section 2.3). To begin with, the
words in the dictionary which have approximately the same number of letters (plus/minus
one letter) as the misspelled word should be considered. Of these candidates, the words
which contain at least half of the “trigrams” of the misspelled word should be kept. A
trigram is three adjacent letters — for example, the word summer contains the trigrams sum
umm mme mer.

2. Sort the candidate list so the “best” candidates are first in the list (section 2.4). The sort key
is the cost to change the misspelled word to one of the candidate words.

3. Keep the first 5 candidates in the list (section 2.5).

Expressed in program code:

vector<string> Dictionary::get_suggestions(const string& word) const {
vector<string> suggestions;
add_trigram_suggestions(suggestions, word);
rank_suggestions(suggestions, word);
trim_suggestions(suggestions);
return suggestions;

}

2 Assignments

2.1 Preprocess the Dictionary

A1. The file /usr/share/dict/words contains a large number of words (one word per line).
The file is UTF-8 encoded; ignore this and treat all characters as 8-bit. Write a program
which reads the file and creates a new file words.txt in the current directory. Each line in
the file shall contain a word, the number of trigrams in the word, and the trigrams.7 The
trigrams shall be sorted in alphabetical order; upper case letters shall be changed to lower
case. Example:

...
hand 2 and han
handbag 5 and bag dba han ndb
handbook 6 and boo dbo han ndb ook
...

Copy the Makefile from the lab1 directory, modify it to build the program, build, test.

2.2 Determine If a Word is Correct

A2. Implement the constructor and the function contains in Dictionary. The preprocessed list
of words is in the file words.txt . The words shall be stored in an unordered_set<string>.
Wait with the trigrams until assignment A4.

Modify the makefile (the main program shown in section 1 is in spell.cc), build, test.

2.3 Use Trigrams to Find Candidates

A3. The words together with their trigrams must be stored in the dictionary. Each word shall
be stored in an object of the following class:

7 Note that there are short words with zero trigrams.

Introduction to the Standard Library 15

class Word {
public:

/* Creates a word w with the sorted trigrams t */
Word(const std::string& w, const std::vector<std::string>& t);

/* Returns the word */
std::string get_word() const;

/* Returns how many of the trigrams in t that are present
in this word's trigram vector */

unsigned int get_matches(const std::vector<std::string>& t) const;
};

Implement this class. The trigram vector given to the constructor is sorted in alphabetical
order (see assignment A1). The function get_matches counts how many of the trigrams in
the parameter vector that are present in the word’s trigram vector.8 You may assume that
the trigrams in the parameter vector also are sorted in alphabetical order. Use this fact to
write an efficient implementation of get_matches.

A4. The class Dictionary shall have a member variable that contains all words with their
trigrams. It must be possible to quickly find words which have approximately the same
length as the misspelled word. Therefore, the words shall be stored in the following array:

vector<Word> words[25]; // words[i] = the words with i letters,
// ignore words longer than 25 letters

Modify the Dictionary constructor so the Word objects are created and stored in words,
implement the function add_trigram_suggestions. Use a constant instead of the number
25.

2.4 Sort the Candidate List

After add_trigram_suggestions the suggestion list can contain a large number of candidate
words. Some of the candidates are “better” than others. The list shall be sorted so the best
candidates appear first. The sorting condition shall be the “edit distance” (also called “Levenshtein
distance”) from the misspelled word to the candidate word.

The cost d(i, j) to change the i first characters in a word p to the j first characters in another
word q can be computed with the following formula (i and j start from 1):

d(i, 0) = i

d(0, j) = j

d(i, j) = minimum of

if pi = qj then d(i − 1, j − 1) else d(i − 1, j − 1) + 1,

d(i − 1, j) + 1,

d(i, j − 1) + 1.

The minimum computation considers the cost for replacing a character, inserting a character and
deleting a character. The cost to change p to q, that is the edit distance, is d(p.length, q.length).

A5. Implement the function rank_suggestions. Do not write a recursive function, it would be
very inefficient. Instead, let d be a matrix (with d(i, 0) = i and d(0, j) = j) and compute the
elements in row order (dynamic programming). Declare d with the type int[26][26] to
avoid problems with a dynamically allocated matrix.

8 You don’t have to consider multiple occurrences of the same trigram.

16 Introduction to the Standard Library

2.5 Keep the Best Candidates

A6. Implement the function trim_suggestions.

3 More Information About the Assignments

• In the main program in spell.cc , the call to transform applies the function tolower to all
the characters in a string (between begin() and end()), and stores the function result in
the same place. tolower converts a character from upper case to lower case. The scope
operator :: is necessary to get the right version of the overloaded tolower function.

• To sort a vector v, call sort(v.begin(), v.end()).

• The standard library class unordered_set is in header <unordered_set>. An element is
inserted in a set with the function insert(element). The function count(element) returns
the number of occurrences of an element (0 or 1).

• Here’s one way to sort the suggested candidates in edit distance order (another way is to
use a map):

– Define a vector with elements that are pairs with the first component an int, the
second a string: vector<pair<int, string�.

– Compute the edit distance for each candidate word, insert the distance and the word
in the vector: push_back(make_pair(dist, word)).

– Sort the vector (pairs have an operator< that first compares the first component, so
the elements will be sorted according to increasing edit distance).

– For a pair p, p.first is the first component, p.second the second component.

• Read more about computing edit distance on the web. You may also consider using the
Damerau–Levenshtein distance.

• A vector can be resized to size n with resize(n).

Debugging 17

3 Debugging
Objective: to practice debugging a C++ program

1 A (broken) system for access control

A company has created a system for controlling access to its facilities. To open a door, an
employee inserts a card in a card-reader. The system looks up the card number in a table. If
the card number is found, the name of the employee is presented on a display and the door is
unlocked. Otherwise the door remains locked.

The class UserTable is used to check who a certain card number belongs to. The access
control system includes the following code:

UserTable t;
...
int cardNbr = sensor.getCardNbr();

User u = t.find(cardNbr); // Find the owner of the card

if (u == UserTable::user_not_found) {
display.showText("** access denied **");

} else {
display.showText("Welcome, " + u.getName());
door.unlock();

}

The interesting line is marked with a comment. Given a card number (an integer) the system
looks up a user. The variables sensor, display, and door refer to objects outside the scope of
this task. Can you understand the general operation of the above code?

The class UserTable is unfortunately broken. Your task is to find and correct the mistakes.
Present your solution according to the table at the end of this section, together with a working
test program.

2 Tasks

1. Study the source code in the files User.h , User.cc , UserTable.h och UserTable.cc . There is also
a text file, users.txt , containing all users and their card numbers. Look at the file and see how it
is organized. In the class UserTable the user database is read from the text file and stored in an
array.

2. We will now debug the class UserTable. To test the class, it is impractical to try a lot of cards
in the card reader. A better option is to create a simple test-program that creates a UserTable

object and calls the function find in the same way the card-reader does. Then you can simply
make up and test different card numbers yourself.

Create such a test program (including a main function) that

• creates a UserTable object,

• calls the function find(int) to find the user with card number 21330,

• calls the function find(int) to find the user with card number 21331 and

• calls the function find(std::string) to find the user named ”Jens Holmgren”.

What is the result of the program? What did you expect? (Compare with the file users.txt .)

18 Debugging

3. The class UserTable has a member function for printing the contents of the table. Extend
your test program with a call to this function and see what is printed.

Study the constructor for the class UserTable. Here, the user database is read from a file and
stored in an array. Either the reading from the file is not working, or the read lines are not stored
correctly in the array.

Add some lines to your test program so that a new (made up) user with card number 1234 is
added, and then print the contents of the table. Run your test program. How many users are
now in the table? How many did you expect?

4. Find and fix the mistake that you identified in the previous task. To get further clues you can
ask yourself the following questions:

• The function add inserts a User object at the right position in the array. What positions
are the objects put in? That is, what value does the variable pos get? (You can either use
debug printouts, or run it in the debugger and use breakpoints. Remember to build without
optimization when using the debugger.)

• Does the function getNbrUsers return the correct result? (Test.)

When you have corrected the mistake, check if searching for a card number works. Verify
that your test program calls find(int) with a card number, and that the result is the same card
number and the correct user name. Compare with the corresponding line in users.txt . Always
compile with warnings enabled (the option -Wall to g++).

5. It has been reported that find(std::string name) does not work. The function is imple-
mented with linear search: starting at the first position, go through the array until a person with
the name name is found. Study the implementation of the function to find the bug.

When the function is corrected, the search for Jens Holmgren should work.

6. Verify that searching works. There is function testFindNumber() that can be used to test
the member function UserTable::find(int). Let your test program call that test function and
verify that all users (card numbers) now can be found.

7. Check the test function. It has been reported that testFindNumber() performs the tests
correctly, but that the tested UserTable object is left in an unusable state afterwards. Investigate
what happens when testFindNumber() is called.

Note. The names in the table have been generated from the 100 most common swedish family
names and male and female names9 (excluding names containing åäö). They do not refer to
actual persons.

9 Source: SCB, http://www.scb.se/namnstatistik/.

Debugging 19

Solution

To pass the task you have to show a working program, according to the above instructions. In
addition you must be prepared to account for your debugging work. Record information about
each bug so that you remember them when you present your solution.

Bug (what function?, what line?) Describe the problem. How did you find the bug?

Strings and Streams. Testing. 21

4 Strings and Streams. Testing.
Objective: to practice using the standard library string and stream classes.

Read:

• Book: strings, streams, function templates, exceptions.

1 Unit testing

When writing code, testing is important and a common methodology in modern agile software
development methodologies is test driven design or “test first”. One major benefit of writing
tests before writing the code is that this helps with understanding the problem and structuring
the code, starting from the desired result and working ones way towards the solution. That
is an application of the principle of programming by intention (or “wishful thinking”) and helps
designing functions with suitable parameters and return types.

In the strict formulation, you are only allowed to write new code if there is a unit test that
doesn’t pass. So to add new functionality you first write a unit test and make the test call the
desired new function. In doing so, you specify both what the arguments to the function will be,
and what type and value the function should return for the given arguments. This also includes
defining any new types that you need to express the desired functionality. At this stage, your test
will not compile, so now you add an empty function (with return 0;, return false; or what is
suitable). Run the tests and make sure that they fail — if not, either the functionality is already
supported or the test case is wrong. Then, implement the function to make the test case pass.

Another good testing principle is to write unit tests, that tests “the smallest testable unit” (e.g.,
functions, classes) in addition to large-scale tests that verifies the funciton of the entire system.
Unit tests are valuable during development as they make it easy to check if additions to the
system have affected the behaviour of the old (apparently unrelated) functionality. If the unit
tests ran successfully before a modification to the code, they should also run successfully after it.

It is also often a good idea to write test programs that do not require manual user input
or manually checking the output. For two small examples of such test programs, study the
examples given in lab1: test_coding and test_editor.

A0. Read through the assignments of this lab (A1 – A5), and write test programs for each
assignment. For instance, for the first assignment (A1), create a file (or string) where you
have manually removed the HTML tags from the given HTML file and write a program
that calls your tag removal function and compares its result with the manually created file
(string). Start with smaller unit tests, e.g. for testing the removal of HTML tags and the
replacement of special characters. For those, write small test cases that test just one thing
(“unit of functionality”).

For the second assignment (A2), you can translate the example with the numbers 0–35
into code, tetsting that your functions returns both the correct strings ("CCPPC..." and the
corresponding prime number sequence).

For the third assignment (A3), there is a main program (that requires user input) given.
You can base your test program on that. A good option here is to give the streams to
use as parameters instead of hard-coding std::cin and std::cout. Then, one can use
std::stringstream to automate both the input and checking the results. (See section 3.2
of this lab for info on stringstreams.)

For the last assignment (A5), remember to also test that your function throws exceptions
correctly.

22 Strings and Streams. Testing.

2 Class string

2.1 Introduction

In C, a string is a null-terminated array of characters. This representation is the cause of many
errors: overwriting array bounds, trying to access arrays through uninitialized or incorrect
pointers, and leaving dangling pointers after an array has been deallocated. The <cstring>

library contains operations on C-style strings, such as copying and comparing strings.
C++ strings hide the physical representation of the sequence of characters. The exact imple-

mentation of the string class is not defined by the C++ standard.
The string identifier is not actually a class, but a type alias for a specialized template:
using string = std::basic_string<char>;

This means that string is a string containing characters of type char. There are other string
specializations for strings containing “wide characters”. We will ignore all “internationalization”
issues and assume that all characters fit in one byte.

string::size_type is a type used for indexing in a string. string::npos (“no position”) is a
value indicating a position beyond the end of the string; it is returned by functions that search for
characters when the characters aren’t found.

2.2 Operations on Strings

The following class specification shows most of the operations on strings:
class string {
public:

/*** construction ***/
string(); // creates an empty string
string(const string& s); // creates a copy, also has move constructor
string(const char* cs); // creates a string with the characters from cs
string(size_type n, char ch); // creates a string with n copies of ch

/*** information ***/
size_type size(); // number of characters

/*** character access ***/
const char& operator[](size_type pos) const;
char& operator[](size_type pos);

/*** substrings */
string substr(size_type start, size_type n = npos); // the substring starting

// at position start containing n characters

/*** inserting, replacing, and removing ***/
string& insert(size_type pos, const string& s); // inserts s at position pos
string& append(const string& s); // appends s at the end
string& replace(size_type start, size_type n, const string& s); // replaces n

// characters starting at pos with s
void erase(size_type start = 0, size_type n = npos); // removes n

// characters starting at pos

/*** assignment and concatenation ***/
string& operator=(const string& s); // also move assignment
string& operator=(const char* cs);
string& operator=(char ch);
string& operator+=(const string& s); // also const char* and char

/*** access to C-style string representation ***/
const char* c_str();
/*** finding things (see below) ***/

}

Strings and Streams. Testing. 23

• Note that there is no constructor string(char). Use string(1, char) instead.

• The subscript functions (operator[]) do not check for a valid index. There are similar at()
functions that do check, and that throw out_of_range if the index is not valid.

• The substr() member function takes a starting position as its first argument and the number
of characters as the second argument. This is different from the substring() method in
java.lang.String, where the second argument is the end position of the substring.

• There are overloads of most of the functions. You can use C-style strings or characters as
parameters instead of strings.

• Strings have iterators like the standard library collections (e.g., std::vector).

• There is a bewildering variety of member functions for finding strings, C-style strings
or characters. They all return npos if the search fails. The functions have the following
signature (the string parameter may also be a C-style string or a character):

size_type FIND_VARIANT(const string& s, size_type pos = 0) const;

s is the string to search for, pos is the starting position. (The default value for pos is npos,
not 0, in the functions that search backwards).

The “find variants” are find (find a string, forwards), rfind (find a string, backwards),
find_first_of and find_last_of (find one of the characters in a string, forwards or
backwards), find_first_not_of and find_last_not_of (find a character that is not one
of the characters in a string, forwards or backwards).

Example:
void f() {

string s = "accdcde";
auto i1 = s.find("cd"); // i1 = 2 (s[2]=='c' && s[3]=='d')
auto i2 = s.rfind("cd"); // i2 = 4 (s[4]=='c' && s[5]=='d')
auto i3 = s.find_first_of("cd"); // i3 = 1 (s[1]=='c')
auto i4 = s.find_last_of("cd"); // i4 = 5 (s[5]=='d')
auto i5 = s.find_first_not_of("cd"); // i5 = 0 (s[0]!='c' && s[0]!='d')
auto i6 = s.find_last_not_of("cd"); // i6 = 6 (s[6]!='c' && s[6]!='d')

}

There are global overloaded operator functions for concatenation (operator+) and for comparison
(operator==, operator<, etc.). They all have the expected meaning. Note that you cannot use +

to concatenate a string with a number, only with another string, C-style string or character (this
is unlike Java). In the new standard, there are functions that convert strings to numbers and vice
versa: stod("123.45") => double, to_string(123) => "123".

A1. Write a class that reads a file and removes HTML tags and translates HTML-encoded
special characters. The class should be used like this:

int main() {
TagRemover tr(std::cin); // read from cin
tr.print(std::cout); // print on cout

}

• All tags should be removed from the output. A tag starts with a < and ends with a >.

• You can assume that there are no nested tags.

• Tags may start on one line and end on another line.

• Line separators should be kept in the output.

• You don’t have to handle all special characters, only <, >, , &

(corresponding to < > space &).

• Assignments like this should be a good fit for regular expressions. Study and use the
C++ regex library if you’re interested.

Copy the makefile from one of the previous labs, modify it, build and test.

24 Strings and Streams. Testing.

A2. The Sieve of Eratosthenes is an ancient method for finding all prime numbers less than
some fixed number M. It starts by enumerating all numbers in the interval [0, M] and
assuming they are all primes. The first two numbers, 0 and 1 are marked, as they are not
primes. The algorithm then starts with the number 2, marks all subsequent multiples of 2
as composites, finds the next prime, marks all multiples, . . . When the initial sequence is
exhausted, the numbers not marked as composites are the primes in [0, M].

In this assignment you shall use a string for the enumeration. Initialize a string of
appropriate length to PPPPP...PPP. The characters at positions that are not prime numbers
should be changed to C. Write a program that prints the prime numbers between 1 and 200
and also the largest prime that is less than 100,000.

Example with the numbers 0–35:

1 2 3
012345678901234567890123456789012345

Initial: CCPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
Find 2, mark 4,6,8,...: CCPPCPCPCPCPCPCPCPCPCPCPCPCPCPCPCPCP
Find 3, mark 6,9,12,...: CCPPCPCPCCCPCPCCCPCPCCCPCPCCCPCPCCCP
Find 5, mark 10,15,20,...: CCPPCPCPCCCPCPCCCPCPCCCPCCCCCPCPCCCC
Find 7, mark 14,21,28,35: CCPPCPCPCCCPCPCCCPCPCCCPCCCCCPCPCCCC
Find 11, mark 22,33: CCPPCPCPCCCPCPCCCPCPCCCPCCCCCPCPCCCC
...

3 The iostream Library

3.1 Input/Output of User-Defined Objects

In addition to the stream classes for input or output there are iostream’s that allow both reading
and writing. The stream classes are organized in the following (simplified) hierarchy:

ios

istream ostream

ios_base

iostream

ifstream istringstream fstream stringstream ofstream ostringstream

The classes ios_base and ios contain, among other things, information about the stream state.
There are, for example, functions bool good() (the state is ok) and bool eof() (end-of-file has
been reached). There is also a conversion operator operator bool() that returns true if the state
is good, and a bool operator!() that returns true if the state is not good. We have used these
operators with input files, writing for example while (infile >> ch) and if (!infile).

To do formatted stream input and output of objects of user-defined classes, operator>> and
operator<< must be overloaded.

Strings and Streams. Testing. 25

A3. The files date.h , date.cc , and date_test.cc describe a simple date class. Implement the class
and add operators for input and output of dates (operator>> and operator<<). Dates
should be output in the form 2015-01-10. The input operator should accept dates in the
same format. (You may consider dates written like 2015-1-10 and 2015 -001 - 10 as
legal, if you wish.)

The input operator should set the stream state appropriately, for example
is.setstate (ios_base::failbit) when a format error is encountered.

3.2 String Streams

The string stream classes (istringstream and ostringstream) function as their “file” counter-
parts (ifstream and ofstream). The only difference is that characters are read from/written to a
string instead of a file. In the following assignments you will use string streams to convert objects
to and from a string representation (in the new standard, this can be performed with functions
like to_string and stod, but only for numbers).

A4. In Java, the class Object defines a method toString() that is supposed to produce a
“readable representation” of an object. This method can be overridden in subclasses.

Write a template function toString for the same purpose. Also write a test program.
Example:

double d = 1.234;
Date today;
std::string sd = toString(d);
std::string st = toString(today);

You may assume that the argument object can be output with <<.

A5. Type casting in C++ can be performed with, for example, the static_cast operator.
Casting from a string to a numeric value is not supported, since this involves executing
code that converts a sequence of characters to a number.

Write a function template string_cast that can be used to cast a string to an object of
another type. Examples of usage:

try {
int i = string_cast<int>("123");
double d = string_cast<double>("12.34");
Date date = string_cast<Date>("2015-01-10");

} catch (std::invalid_argument& e) {
cout << "Error: " << e.what() << endl;

}

You may assume that the argument object can be read from a stream with >>. The function
should throw std::invalid_argument (defined in header <stdexcept>) if the string could
not be converted.

