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Polymorphism and dynamic binding

Polymorphism

Overloading Static binding
Generic programming (templates) Static binding
Virtual functions Dynamic binding

Static binding: The meaning of a construct is decided
at compile-time

Dynamic binding: The meaning of a construct is decided
at run-time
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Polymorphism

Static

void foo(int);
void foo(double );

int x;
foo(x);

std::vector <int > v;

std::sort(begin(v), end(v));

Dynamic

struct Animal{
virtual void speak ();

};

struct Dog :public Animal{
void speak ();

};

struct Cat :public Animal{
void speak ();

};

void use(Animal& a)
{

a.speak ();
}
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Concrete and abstract types

A concrete type behaves “just like built-in-types”:
I The representation is part of the definition 1

I Can be placed on the stack, and in other objects
I can be directly refererred to
I Can be copied
I User code must be recompiled if the type is changed

An Abstract types isolates the user from implementation details
I Decouples the interface from the representation:
I The representation of objects (incl. the size!) is not known
I Can only be accessed through pointers or references
I Cannot be instantiated (only concrete subclasses)
I Code using the abstract type does not need to be recompiled if

the concrete subclasses are changed
1can be private, but is known
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Concrete and abstract types
A concrete type: Vector

class Vector {
public:

Vector(int l = 0) :p{new int[l]},sz{l} {}
~Vector () {delete [] elem;}
int size() const {return sz;}
int& operator []( int i) {return elem[i];}

private:
int *elem;
int sz;

};

Generalize: extract interface

class Container {
public:

int size() const;
int& operator []( int o);

};
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Concrete and abstract types
Generalization: an abstract type, Container

class Container {
public:

virtual int size() const =0;
virtual int& operator [](int o) =0;
virtual ~Container () {}

};

I pure virtual function
I Abstract class
I or interface in Java

class Vector :public Container {
public:

Vector(int l = 0) :p{new int[l]},sz{l} {}
~Vector () {delete [] elem;}
int size() const override {return sz;}
int& operator []( int i) override {return elem[i];}

private:
int *elem;
int sz;

}; I extends (or implements) Container in Java
I override ⇔ @Override in Java (C++11)
I A polymorph type needs a virtual destructor

Polymorphism and inheritance : Virtual functions 9. Classes and polymorphism. 7/46

Concrete and abstract types
Use of an abstract class

void fill(Container& c, int v)
{

for(int i=0; i!=c.size (); ++i){
c[i] = v;

}
}
void print(Container& c)
{

for(int i=0; i!=c.size (); ++i){
cout << c[i] << " " ;

}
cout << endl;

}
void test_container ()
{

Vector v(10);

print(v);
fill(v,3);
print(v);

}
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Concrete and abstract types
Use of an abstract class

Assume that we have two other subclasses to Container

class MyArray : public Container { ...};
class List : public Container { ...};

void test_container ()
{

Vector v(10);
print(v);
fill(v,7);
print(v);

MyArray a(5);
fill(a,0);
print(a);

List l{1,2,3,4,5,6,7};
print(l);

}

I Dynamic binding of Container::size() and
Container::operator[]()
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Concrete and abstract types
Variant, without changing Vector

Instead of changing Vector we can use it in a new class:
class Vector_container :public Container {
public:

Vector_container(int l = 0) :v{l} {}
~Vector_container () =default;
int size() const override {return v.size ();}
int& operator [](int i) override {return v[i];}

private:
Vector v;

};

I Vector is a concrete class
I Note that v is a Vector object, not a reference

I Different from Java

I The destructor of a member variable (here, v) is implicitly
called by the default destructor
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Dynamic binding

I virtual function table (vtbl)
I contains pointers to the virtual functions of the object
I each class with virtual member function(s) has a vtbl
I each object of such a class has a pointer to the vtbl of the class
I calling a virtual function (typically) < 25% more expensive

int example(Container& c)
{

return c.size ();
}

v.sz
v.elem

Vector_container object: vtbl:
Vector_container::size()

Vector_container::operator[]()

Vector_container::˜Vector_container

...

List object: vtbl:
List::size()

List::operator[]()

List::˜List
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Constructors and inheritance
Rules for the base class constructor

I The default constructor of the base class is implicitly called
I if it exists!

I Arguments to the base class constructor
I are given in the member initializer list in the derived class

constructor.
I the name of the base class must be used.

(super() like in Java does not exist due to multiple
inheritance.)
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Constructors and inheritance

Order of initialization in a constructor (for a derived class)
1 The base class is initialized: The base class ctor is called
2 The derived class is initialized: Data members (in the derived

class) is initialized
3 The constructor body of the derived class is executed

Explicit call of base class constructor in the member initializer list
D::D(param ...) :B(param ...), ... {...}

Note:
I Constructors are not inherited
I Do not call virtual functions in a constructor.:

In the base class B, this is of type B*.

B

D
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Constructors and inheritance

Constructors are not inherited

class Base{
public:

Base(int i) :x{i} {}
virtual void print() {cout << "Base: " << x << endl;}

private:
int x;

};

class Derived :public Base {
};

void test_ctors ()
{

Derived b(5); //no matching function for call to
// Derived :: Derived(int)

Derived b2; //use of deleted function Derived :: Derived ()
}
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Constructors and inheritance

using: make the base class constructor visible (C++11)

class Base{
public:

Base(int i) :x{i} {}
virtual void print() {cout << "Base: " << x << endl;}

private:
int x;

};

class Derived :public Base {
using Base::Base;

};

void test_ctors ()
{

Derived b(5); // OK!
Derived b2; //use of deleted function Derived :: Derived ()
b.print ();

}
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Constructors and inheritance

Now with a default constructor

class Base{
public:

Base(int i=0) :x{i} {}
virtual void print() {cout << "Base: " << x << endl;}

private:
int x;

};

class Derived :public Base {
using Base::Base;

};

void test_ctors ()
{

Derived b; // OK!
b.print ();
Derived b2(5); // OK!
b2.print ();

}
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Inherited constructors
rules

I using makes all base class constructors inherited, except
I those hidden by the derived class (with the same parameters)
I default, copy, and move constructors

⇒ if not defined, synthesized as usual

I default arguments in the super class gives multiple inherited
constructors
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Copying and inheritance

I The copy constructor shall copy the entire object
I typically: call the base class copy-constructor

I The same applies to operator=
I Different from the destructor

I A destructor shall only deallocate what has been allocated in
the class itself. The base class destructior is implicitly called.

I The synthesized special member functions are
deleted in a derived class if the corresponding function is
deleted in the base class.
(i.e., private or =delete)
I default constructor,
I copy constructor,
I copy assignment operator
I (destructor, but avoid classes without a destructor)

I Base classes should define these =default
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Destructors and inheritance

Destruction is done in reverse order:

Execution order in a destructor
1 The function body of the derived class destructor is executed
2 The members of the derived class are destroyed
3 The base class destructor is called

The base class destructor must be virtual
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Accessibility

The different levels of accessibility

class C {
public:

// Members accessible from any function
protected:

// Members accessible from member functions
// in the class or a derived class

private:
// Members accessible only from member functions
// in the class

};
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Accessibility

Accessibility and inheritance

class D1 : public B { // Public inheritance
// ...

};

class D2 : protected B { // Protected inheritance
// ...

};

class D3 : private B { // Private inheritance
// ...

};
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Accessibility

Accessibility and inheritance

Accessibility i B Accessibility through D

public public

Public inheritance protected protected

private private

public protected

Protected inheritance protected protected

private private

public private

Private inheritance protected private

private private

The accessibility inside D is not affected by the type of inheritance
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Function overloading and inheritance

Function overloading does not work as usual
between levels in a class hierarchy

class C1 {
public:

void f(int) {cout << "C1::f(int)\n";}
};

class C2 : public C1 {
public:

void f(); {cout << "C2::f(void)\n";}
};

C1 a;
C2 b;
a.f(5); // Ok, calls C1::f(int)
b.f(); // Ok, calls C2::f(void)
b.f(2) // Error! C1::f is hidden!
b.C1::f(10); // Ok
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Function overloading and inheritance
Make base class names visible with using

Function overloading between levels of a class hierarchy

class C1 {
public:

void f(int); {cout << "C1::f(int)\n";}
};

class C2 : public C1 {
public:

using C1::f;
void f(); {cout << "C2::f(void)\n";}

};

//...
C1 a;
C2 b;
a.f(5); // Ok, calls C1::f(int)
b.f(); // Ok, calls C2::f(void)
b.f(2) // Ok, calls C1::f(int)

Polymorphism and inheritance : Accessibility 9. Classes and polymorphism. 24/46



Inheritance and scope

I The scope of a derived class is nested inside the base class
I Names in the base class are visible in derived classes
I if not hidden by the same name in the derived class

I Use the scope operator :: to access hidden names
I Name lookup happens at compile-time

I static type of a pointer or reference determines which names
are visible (like in Java)

I Virtual functions must have the same parameter types in
derived classes.

I Use override to get help from the compiler with finding
mistakes.
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Inheritance without virtual functions

In C++ member functions are not virtual unless declared so.
(Difference from Java)

I It is possible to inherit from a class and hide functions.
I Base class funcions can be called explicitly
I can be used to “extend” a function. (Add things before and

after the function.)
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Inheritance without virtual functions
Example

struct Clock{
Clock(int h, int m, int s) :seconds {60*(60*h+m) + s} {}
Clock& tick (); // NB! Not virtual
int get_ticks () {return seconds ;}

private:
int seconds;

};
struct AlarmClock : public Clock {

using Clock::Clock;
void setAlarm(int h, int m, int s);
AlarmClock& tick (); // hides Clock::tick()
void soundAlarm ();

private:
int alarmTime;

};

AlarmClock& AlarmClock ::tick()
{

Clock::tick (); // explicit call of base class function
if(get_ticks () == alarmTime) soundAlarm ();
return *this;

}
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Pitfalls

I Type conversion
I Copying objects of polymorph types
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Type conversion and run-time type info

I Be careful with type casts
I In particular (Derived*) base_class_pointer
I and static_cast<Derived*>(base_class_pointer)
I No safety net, no ClassCastException

I Use dynamic_cast (returns nullptr or throws if not OK)
Vector v;

Container* c = &v;

if(dynamic_cast <Vector*>(c)) {
cout << " *c instanceof Vector\n";

}

I typeid corresponds to .getClass() comparison in Java
if(typeid (*c) == typeid(Vector )) {

cout << " *c is a Vector\n";
}
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Object slicing
Example

class Point {...};
class Point3d : public Point {...};

Point3d b;
Point a = b;

Not dangerous, but a only contains the Point part of b

Point3d b1;
Point3d b2;

Point& point_ref = b2;
point_ref = b1;

Wrong! b2 now contains the Point part of b1 and the Point3d part
of its old value.
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Object slicing
Example

struct Point{
Point(int xi , int yi) :x{xi}, y{yi} {}
virtual void print() const; // prints Point(x,y)
int x;
int y;

};

struct Point3d :public Point{
Point3d(int xi , int yi, int zi) :Point(xi,yi), z{zi} {}
virtual void print() const; // prints Point3d(x,y,z)
int z;

};

void test_slicing () {
Point3d q1{1,2,3};
Point3d q2{3,4,5};

q2.print (); Point3d(3,4,5)
Point& pr = q2;

pr = q1; solution: virtual operator=
q2.print (); Point3d(1,2,5)

}
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Object slicing
Solution with virtual operator=

struct Point {
. . .
virtual Point& operator =(const Point& p) =default;

};

struct Point3d :public Point{
. . .
virtual Point3d& operator =(const Point& p);

};

Point3d& Point3d :: operator =(const Point& p)
{

Point:: operator =(p);
auto p3d = dynamic_cast <const Point3d *>(&p);
if(p3d){

z = p3d ->z;
} else {

z = 0;
}
return *this;

}
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Multiple inheritance

I A class can inherit from multiple base classes
I cf. implementing multiple interfaces in Java

I Like in Java if at most one of the base classes have member
variables

I Can be tricky otherwise
I The diamond problem

I How many MotorVehicle are there in a MiniBus?
MotorVehicle

CarBus

MiniBus
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Multiple inheritance
How many MotorVehicle are there in a MiniBus?

class MotorVehicle {...};
class Bus : public MotorVehicle {...};
class Car : public MotorVehicle {...};
class MiniBus : public Bus , public Car {...}; MotorVehicle

string regno;
int weight;

Car

string regno;
int weight;

Bus

string regno;
int weight;

MiniBus

string Bus::regno;
int Bus::weight;
string Car::regno;
int Car::weight;
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Multiple inheritance
The diamond problem

I A common base class is included multiple times
I Multiple copies of member variables
I Members must be accessed as Base::name to avoid ambiguity

I if virtual inheritance is not used
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Multiple inheritance
Virtual inheritance

Virtual inheritance : Derived classes share the base class instance.
(The base class is only included once)
class MotorVehicle {...};
class Bus : public virtual MotorVehicle {...};
class Car : public virtual MotorVehicle {...};
class MiniBus : public Bus , public Car {...};

MotorVehicle

string regno;
int weight;

Car

string regno;
int weight;

Bus

string regno;
int weight;

MiniBus

string regno;
int weight;
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Example: A class hierarchy

class Animal{
public:

void speak () const { cout << get_sound () << endl;}
virtual string get_sound () const =0;
virtual ~Animal () =default;

};

class Dog :public Animal{
public:

string get_sound () const override {return "Woof!";}
};
class Cat :public Animal{
public:

string get_sound () const override {return "Meow!";}
};
class Bird :public Animal{
public:

string get_sound () const override {return "Tweet!";}
};
class Cow :public Animal{
public:

string get_sound () const override {return "Moo!";}
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Example
Use (not polymorphic)

int main()
{

Dog d;
Cat c;
Bird b;
Cow w;

d.speak (); Woof!
c.speak (); Meow!
b.speak (); Tweet!
w.speak (); Moo!

}
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Example
Call by reference

void test_polymorph(const Animal& a)
{

a.speak ();
}

int main()
{

Dog d;
Cat c;
Bird b;
Cow w;

test_polymorph(d); Woof!
test_polymorph(c); Meow!
test_polymorph(b); Tweet!
test_polymorph(w); Moo!

}
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Example
Container with polymorph objects

int main()
{

Dog d;
Cat c;
Bird b;
Cow w;

vector <Animal > zoo{d,c,b,w};

for(auto x : zoo){
x.speak ();

};

}

error: cannot allocate an object of abstract type ’Animal ’
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Example
Must use container of pointers

int main()
{

Dog d;
Cat c;
Bird b;
Cow w;

vector <Animal*> zoo{&d,&c,&b,&w};

for(auto x : zoo){
x->speak (); Woof!

}; Meow!
Tweet!

} Moo!
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Example
A class hierarchy

struct Foo{
virtual void print() const {cout << "Foo" << endl;}

};

struct Bar :Foo{
void print() const override {cout << "Bar" << endl;}

};

struct Qux :Bar{
void print() const override {cout << "Qux" << endl;}

};
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Polymorph class
example, object slicing

What is printed?

void print1(const Foo* f)
{

f->print ();
}
void print2(const Foo& f)
{

f.print ();
}
void print3(Foo f)
{

f.print ();
}

void test()
{

Foo* a = new Bar;
Bar& b = *new Qux;
Bar c = *new Qux;

print1(a); Bar
print1 (&b); Qux
print1 (&c); Bar
std::cout << std::endl;
print2 (*a); Bar
print2(b); Qux
print2(c); Bar
std::cout << std::endl;
print3 (*a); Foo
print3(b); Foo
print3(c); Foo

}
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Next lecture
Generic programming

References to sections in Lippman
Function templates 16.1.1
Class templates 16.1.2
Template arguments and deduction 16.2–16.2.2
Trailing return type 16.2.3
Templates and overloading 16.3
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Suggested reading

References to sections in Lippman
Dynamic polymorphism and inheritance chapter 15 – 15.4
Accessibility and scope 15.5 – 15.6
Type conversions and polymorphism 15.2.3
Inheritance and resource management 15.7
Polymorph types and containers 15.8
Multiple inheritance 18.3
Virtual base classes 18.3.4 – 18.3.5
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