
EDAF30 – Programming in C++

9. Classes and polymorphism.

Sven Gestegård Robertz
Computer Science, LTH

2018

Outline

1 Polymorphism and inheritance
Concrete and abstract types
Virtual functions
Constructors and destructors
Accessibility
Inheritance without polymorphism
Pitfalls

2 Multiple inheritance

3 More about polymorphic types

9. Classes and polymorphism. 2/1

Polymorphism and dynamic binding

Polymorphism

Overloading Static binding
Generic programming (templates) Static binding
Virtual functions Dynamic binding

Static binding: The meaning of a construct is decided
at compile-time

Dynamic binding: The meaning of a construct is decided
at run-time

Polymorphism and inheritance 9. Classes and polymorphism. 3/46

Polymorphism

Static

void foo(int);
void foo(double);

int x;
foo(x);

std::vector <int > v;

std::sort(begin(v), end(v));

Dynamic

struct Animal{
virtual void speak ();

};

struct Dog :public Animal{
void speak ();

};

struct Cat :public Animal{
void speak ();

};

void use(Animal& a)
{

a.speak ();
}

Polymorphism and inheritance 9. Classes and polymorphism. 4/46

Concrete and abstract types

A concrete type behaves “just like built-in-types”:
I The representation is part of the definition 1

I Can be placed on the stack, and in other objects
I can be directly refererred to
I Can be copied
I User code must be recompiled if the type is changed

An Abstract types isolates the user from implementation details
I Decouples the interface from the representation:
I The representation of objects (incl. the size!) is not known
I Can only be accessed through pointers or references
I Cannot be instantiated (only concrete subclasses)
I Code using the abstract type does not need to be recompiled if

the concrete subclasses are changed
1can be private, but is known

Polymorphism and inheritance : Concrete and abstract types 9. Classes and polymorphism. 5/46

Concrete and abstract types
A concrete type: Vector

class Vector {
public:

Vector(int l = 0) :p{new int[l]},sz{l} {}
~Vector () {delete [] elem;}
int size() const {return sz;}
int& operator [](int i) {return elem[i];}

private:
int *elem;
int sz;

};

Generalize: extract interface

class Container {
public:

int size() const;
int& operator [](int o);

};

Polymorphism and inheritance : Concrete and abstract types 9. Classes and polymorphism. 6/46

Concrete and abstract types
Generalization: an abstract type, Container

class Container {
public:

virtual int size() const =0;
virtual int& operator [](int o) =0;
virtual ~Container () {}

};

I pure virtual function
I Abstract class
I or interface in Java

class Vector :public Container {
public:

Vector(int l = 0) :p{new int[l]},sz{l} {}
~Vector () {delete [] elem;}
int size() const override {return sz;}
int& operator [](int i) override {return elem[i];}

private:
int *elem;
int sz;

}; I extends (or implements) Container in Java
I override ⇔ @Override in Java (C++11)
I A polymorph type needs a virtual destructor

Polymorphism and inheritance : Virtual functions 9. Classes and polymorphism. 7/46

Concrete and abstract types
Use of an abstract class

void fill(Container& c, int v)
{

for(int i=0; i!=c.size (); ++i){
c[i] = v;

}
}
void print(Container& c)
{

for(int i=0; i!=c.size (); ++i){
cout << c[i] << " " ;

}
cout << endl;

}
void test_container ()
{

Vector v(10);

print(v);
fill(v,3);
print(v);

}

Polymorphism and inheritance : Virtual functions 9. Classes and polymorphism. 8/46

Concrete and abstract types
Use of an abstract class

Assume that we have two other subclasses to Container

class MyArray : public Container { ...};
class List : public Container { ...};

void test_container ()
{

Vector v(10);
print(v);
fill(v,7);
print(v);

MyArray a(5);
fill(a,0);
print(a);

List l{1,2,3,4,5,6,7};
print(l);

}

I Dynamic binding of Container::size() and
Container::operator[]()

Polymorphism and inheritance : Virtual functions 9. Classes and polymorphism. 9/46

Concrete and abstract types
Variant, without changing Vector

Instead of changing Vector we can use it in a new class:
class Vector_container :public Container {
public:

Vector_container(int l = 0) :v{l} {}
~Vector_container () =default;
int size() const override {return v.size ();}
int& operator [](int i) override {return v[i];}

private:
Vector v;

};

I Vector is a concrete class
I Note that v is a Vector object, not a reference

I Different from Java

I The destructor of a member variable (here, v) is implicitly
called by the default destructor

Polymorphism and inheritance : Virtual functions 9. Classes and polymorphism. 10/46

Dynamic binding

I virtual function table (vtbl)
I contains pointers to the virtual functions of the object
I each class with virtual member function(s) has a vtbl
I each object of such a class has a pointer to the vtbl of the class
I calling a virtual function (typically) < 25% more expensive

int example(Container& c)
{

return c.size ();
}

v.sz
v.elem

Vector_container object: vtbl:
Vector_container::size()

Vector_container::operator[]()

Vector_container::˜Vector_container

...

List object: vtbl:
List::size()

List::operator[]()

List::˜List

Polymorphism and inheritance : Virtual functions 9. Classes and polymorphism. 11/46

Constructors and inheritance
Rules for the base class constructor

I The default constructor of the base class is implicitly called
I if it exists!

I Arguments to the base class constructor
I are given in the member initializer list in the derived class

constructor.
I the name of the base class must be used.

(super() like in Java does not exist due to multiple
inheritance.)

Polymorphism and inheritance : Constructors and destructors 9. Classes and polymorphism. 12/46

Constructors and inheritance

Order of initialization in a constructor (for a derived class)
1 The base class is initialized: The base class ctor is called
2 The derived class is initialized: Data members (in the derived

class) is initialized
3 The constructor body of the derived class is executed

Explicit call of base class constructor in the member initializer list
D::D(param ...) :B(param ...), ... {...}

Note:
I Constructors are not inherited
I Do not call virtual functions in a constructor.:

In the base class B, this is of type B*.

B

D

Polymorphism and inheritance : Constructors and destructors 9. Classes and polymorphism. 13/46

Constructors and inheritance

Constructors are not inherited

class Base{
public:

Base(int i) :x{i} {}
virtual void print() {cout << "Base: " << x << endl;}

private:
int x;

};

class Derived :public Base {
};

void test_ctors ()
{

Derived b(5); //no matching function for call to
// Derived :: Derived(int)

Derived b2; //use of deleted function Derived :: Derived ()
}

Polymorphism and inheritance : Constructors and destructors 9. Classes and polymorphism. 14/46

Constructors and inheritance

using: make the base class constructor visible (C++11)

class Base{
public:

Base(int i) :x{i} {}
virtual void print() {cout << "Base: " << x << endl;}

private:
int x;

};

class Derived :public Base {
using Base::Base;

};

void test_ctors ()
{

Derived b(5); // OK!
Derived b2; //use of deleted function Derived :: Derived ()
b.print ();

}

Polymorphism and inheritance : Constructors and destructors 9. Classes and polymorphism. 15/46

Constructors and inheritance

Now with a default constructor

class Base{
public:

Base(int i=0) :x{i} {}
virtual void print() {cout << "Base: " << x << endl;}

private:
int x;

};

class Derived :public Base {
using Base::Base;

};

void test_ctors ()
{

Derived b; // OK!
b.print ();
Derived b2(5); // OK!
b2.print ();

}

Polymorphism and inheritance : Constructors and destructors 9. Classes and polymorphism. 16/46

Inherited constructors
rules

I using makes all base class constructors inherited, except
I those hidden by the derived class (with the same parameters)
I default, copy, and move constructors

⇒ if not defined, synthesized as usual

I default arguments in the super class gives multiple inherited
constructors

Polymorphism and inheritance : Constructors and destructors 9. Classes and polymorphism. 17/46

Copying and inheritance

I The copy constructor shall copy the entire object
I typically: call the base class copy-constructor

I The same applies to operator=
I Different from the destructor

I A destructor shall only deallocate what has been allocated in
the class itself. The base class destructior is implicitly called.

I The synthesized special member functions are
deleted in a derived class if the corresponding function is
deleted in the base class.
(i.e., private or =delete)
I default constructor,
I copy constructor,
I copy assignment operator
I (destructor, but avoid classes without a destructor)

I Base classes should define these =default

Polymorphism and inheritance : Constructors and destructors 9. Classes and polymorphism. 18/46

Destructors and inheritance

Destruction is done in reverse order:

Execution order in a destructor
1 The function body of the derived class destructor is executed
2 The members of the derived class are destroyed
3 The base class destructor is called

The base class destructor must be virtual

Polymorphism and inheritance : Constructors and destructors 9. Classes and polymorphism. 19/46

Accessibility

The different levels of accessibility

class C {
public:

// Members accessible from any function
protected:

// Members accessible from member functions
// in the class or a derived class

private:
// Members accessible only from member functions
// in the class

};

Polymorphism and inheritance : Accessibility 9. Classes and polymorphism. 20/46

Accessibility

Accessibility and inheritance

class D1 : public B { // Public inheritance
// ...

};

class D2 : protected B { // Protected inheritance
// ...

};

class D3 : private B { // Private inheritance
// ...

};

Polymorphism and inheritance : Accessibility 9. Classes and polymorphism. 21/46

Accessibility

Accessibility and inheritance

Accessibility i B Accessibility through D

public public

Public inheritance protected protected

private private

public protected

Protected inheritance protected protected

private private

public private

Private inheritance protected private

private private

The accessibility inside D is not affected by the type of inheritance
Polymorphism and inheritance : Accessibility 9. Classes and polymorphism. 22/46

Function overloading and inheritance

Function overloading does not work as usual
between levels in a class hierarchy

class C1 {
public:

void f(int) {cout << "C1::f(int)\n";}
};

class C2 : public C1 {
public:

void f(); {cout << "C2::f(void)\n";}
};

C1 a;
C2 b;
a.f(5); // Ok, calls C1::f(int)
b.f(); // Ok, calls C2::f(void)
b.f(2) // Error! C1::f is hidden!
b.C1::f(10); // Ok

Polymorphism and inheritance : Accessibility 9. Classes and polymorphism. 23/46

Function overloading and inheritance
Make base class names visible with using

Function overloading between levels of a class hierarchy

class C1 {
public:

void f(int); {cout << "C1::f(int)\n";}
};

class C2 : public C1 {
public:

using C1::f;
void f(); {cout << "C2::f(void)\n";}

};

//...
C1 a;
C2 b;
a.f(5); // Ok, calls C1::f(int)
b.f(); // Ok, calls C2::f(void)
b.f(2) // Ok, calls C1::f(int)

Polymorphism and inheritance : Accessibility 9. Classes and polymorphism. 24/46

Inheritance and scope

I The scope of a derived class is nested inside the base class
I Names in the base class are visible in derived classes
I if not hidden by the same name in the derived class

I Use the scope operator :: to access hidden names
I Name lookup happens at compile-time

I static type of a pointer or reference determines which names
are visible (like in Java)

I Virtual functions must have the same parameter types in
derived classes.

I Use override to get help from the compiler with finding
mistakes.

Polymorphism and inheritance : Accessibility 9. Classes and polymorphism. 25/46

Inheritance without virtual functions

In C++ member functions are not virtual unless declared so.
(Difference from Java)

I It is possible to inherit from a class and hide functions.
I Base class funcions can be called explicitly
I can be used to “extend” a function. (Add things before and

after the function.)

Polymorphism and inheritance : Inheritance without polymorphism 9. Classes and polymorphism. 26/46

Inheritance without virtual functions
Example

struct Clock{
Clock(int h, int m, int s) :seconds {60*(60*h+m) + s} {}
Clock& tick (); // NB! Not virtual
int get_ticks () {return seconds ;}

private:
int seconds;

};
struct AlarmClock : public Clock {

using Clock::Clock;
void setAlarm(int h, int m, int s);
AlarmClock& tick (); // hides Clock::tick()
void soundAlarm ();

private:
int alarmTime;

};

AlarmClock& AlarmClock ::tick()
{

Clock::tick (); // explicit call of base class function
if(get_ticks () == alarmTime) soundAlarm ();
return *this;

}

Polymorphism and inheritance : Inheritance without polymorphism 9. Classes and polymorphism. 27/46

Pitfalls

I Type conversion
I Copying objects of polymorph types

Polymorphism and inheritance : Pitfalls 9. Classes and polymorphism. 28/46

Type conversion and run-time type info

I Be careful with type casts
I In particular (Derived*) base_class_pointer
I and static_cast<Derived*>(base_class_pointer)
I No safety net, no ClassCastException

I Use dynamic_cast (returns nullptr or throws if not OK)
Vector v;

Container* c = &v;

if(dynamic_cast <Vector*>(c)) {
cout << " *c instanceof Vector\n";

}

I typeid corresponds to .getClass() comparison in Java
if(typeid (*c) == typeid(Vector)) {

cout << " *c is a Vector\n";
}

Polymorphism and inheritance : Pitfalls 9. Classes and polymorphism. 29/46

Object slicing
Example

class Point {...};
class Point3d : public Point {...};

Point3d b;
Point a = b;

Not dangerous, but a only contains the Point part of b

Point3d b1;
Point3d b2;

Point& point_ref = b2;
point_ref = b1;

Wrong! b2 now contains the Point part of b1 and the Point3d part
of its old value.

Polymorphism and inheritance : Pitfalls 9. Classes and polymorphism. 30/46

Object slicing
Example

struct Point{
Point(int xi , int yi) :x{xi}, y{yi} {}
virtual void print() const; // prints Point(x,y)
int x;
int y;

};

struct Point3d :public Point{
Point3d(int xi , int yi, int zi) :Point(xi,yi), z{zi} {}
virtual void print() const; // prints Point3d(x,y,z)
int z;

};

void test_slicing () {
Point3d q1{1,2,3};
Point3d q2{3,4,5};

q2.print (); Point3d(3,4,5)
Point& pr = q2;

pr = q1; solution: virtual operator=
q2.print (); Point3d(1,2,5)

}
Polymorphism and inheritance : Pitfalls 9. Classes and polymorphism. 31/46

Object slicing
Solution with virtual operator=

struct Point {
. . .
virtual Point& operator =(const Point& p) =default;

};

struct Point3d :public Point{
. . .
virtual Point3d& operator =(const Point& p);

};

Point3d& Point3d :: operator =(const Point& p)
{

Point:: operator =(p);
auto p3d = dynamic_cast <const Point3d *>(&p);
if(p3d){

z = p3d ->z;
} else {

z = 0;
}
return *this;

}

Polymorphism and inheritance : Pitfalls 9. Classes and polymorphism. 32/46

Multiple inheritance

I A class can inherit from multiple base classes
I cf. implementing multiple interfaces in Java

I Like in Java if at most one of the base classes have member
variables

I Can be tricky otherwise
I The diamond problem

I How many MotorVehicle are there in a MiniBus?
MotorVehicle

CarBus

MiniBus

Multiple inheritance 9. Classes and polymorphism. 33/46

Multiple inheritance
How many MotorVehicle are there in a MiniBus?

class MotorVehicle {...};
class Bus : public MotorVehicle {...};
class Car : public MotorVehicle {...};
class MiniBus : public Bus , public Car {...}; MotorVehicle

string regno;
int weight;

Car

string regno;
int weight;

Bus

string regno;
int weight;

MiniBus

string Bus::regno;
int Bus::weight;
string Car::regno;
int Car::weight;

Multiple inheritance 9. Classes and polymorphism. 34/46

Multiple inheritance
The diamond problem

I A common base class is included multiple times
I Multiple copies of member variables
I Members must be accessed as Base::name to avoid ambiguity

I if virtual inheritance is not used

Multiple inheritance 9. Classes and polymorphism. 35/46

Multiple inheritance
Virtual inheritance

Virtual inheritance : Derived classes share the base class instance.
(The base class is only included once)
class MotorVehicle {...};
class Bus : public virtual MotorVehicle {...};
class Car : public virtual MotorVehicle {...};
class MiniBus : public Bus , public Car {...};

MotorVehicle

string regno;
int weight;

Car

string regno;
int weight;

Bus

string regno;
int weight;

MiniBus

string regno;
int weight;

Multiple inheritance 9. Classes and polymorphism. 36/46

Example: A class hierarchy

class Animal{
public:

void speak () const { cout << get_sound () << endl;}
virtual string get_sound () const =0;
virtual ~Animal () =default;

};

class Dog :public Animal{
public:

string get_sound () const override {return "Woof!";}
};
class Cat :public Animal{
public:

string get_sound () const override {return "Meow!";}
};
class Bird :public Animal{
public:

string get_sound () const override {return "Tweet!";}
};
class Cow :public Animal{
public:

string get_sound () const override {return "Moo!";}
};More about polymorphic types 9. Classes and polymorphism. 37/46

Example
Use (not polymorphic)

int main()
{

Dog d;
Cat c;
Bird b;
Cow w;

d.speak (); Woof!
c.speak (); Meow!
b.speak (); Tweet!
w.speak (); Moo!

}

More about polymorphic types 9. Classes and polymorphism. 38/46

Example
Call by reference

void test_polymorph(const Animal& a)
{

a.speak ();
}

int main()
{

Dog d;
Cat c;
Bird b;
Cow w;

test_polymorph(d); Woof!
test_polymorph(c); Meow!
test_polymorph(b); Tweet!
test_polymorph(w); Moo!

}

More about polymorphic types 9. Classes and polymorphism. 39/46

Example
Container with polymorph objects

int main()
{

Dog d;
Cat c;
Bird b;
Cow w;

vector <Animal > zoo{d,c,b,w};

for(auto x : zoo){
x.speak ();

};

}

error: cannot allocate an object of abstract type ’Animal ’

More about polymorphic types 9. Classes and polymorphism. 40/46

Example
Must use container of pointers

int main()
{

Dog d;
Cat c;
Bird b;
Cow w;

vector <Animal*> zoo{&d,&c,&b,&w};

for(auto x : zoo){
x->speak (); Woof!

}; Meow!
Tweet!

} Moo!

More about polymorphic types 9. Classes and polymorphism. 41/46

Example
A class hierarchy

struct Foo{
virtual void print() const {cout << "Foo" << endl;}

};

struct Bar :Foo{
void print() const override {cout << "Bar" << endl;}

};

struct Qux :Bar{
void print() const override {cout << "Qux" << endl;}

};

More about polymorphic types 9. Classes and polymorphism. 42/46

Polymorph class
example, object slicing

What is printed?

void print1(const Foo* f)
{

f->print ();
}
void print2(const Foo& f)
{

f.print ();
}
void print3(Foo f)
{

f.print ();
}

void test()
{

Foo* a = new Bar;
Bar& b = *new Qux;
Bar c = *new Qux;

print1(a); Bar
print1 (&b); Qux
print1 (&c); Bar
std::cout << std::endl;
print2 (*a); Bar
print2(b); Qux
print2(c); Bar
std::cout << std::endl;
print3 (*a); Foo
print3(b); Foo
print3(c); Foo

}

More about polymorphic types 9. Classes and polymorphism. 43/46

Next lecture
Generic programming

References to sections in Lippman
Function templates 16.1.1
Class templates 16.1.2
Template arguments and deduction 16.2–16.2.2
Trailing return type 16.2.3
Templates and overloading 16.3

More about polymorphic types 9. Classes and polymorphism. 45/46

Suggested reading

References to sections in Lippman
Dynamic polymorphism and inheritance chapter 15 – 15.4
Accessibility and scope 15.5 – 15.6
Type conversions and polymorphism 15.2.3
Inheritance and resource management 15.7
Polymorph types and containers 15.8
Multiple inheritance 18.3
Virtual base classes 18.3.4 – 18.3.5

More about polymorphic types 9. Classes and polymorphism. 46/46

