EDAF30 — Programming in C++

3. Classes

Sven Gestegdrd Robertz
Computer Science, LTH

2018

Data types
Two kinds of constants

» A variable declared const must not be changed(final in Java)
» Roughly:“l promise not to change this variable.”
» s checked by the compiler
» Use when specifying function interfaces
» A function that does not change its (reference) argument
» A member function (“method") that does not change the state
of the object.
» Important for function overloading
» T and const T are different types
» One can overload int f(T&) and int f(const T&)
(for some type T)
» A variable declared constexpr must have a value that can be
computed at compile time.
» Use to specify constants
» Functions can be constexpr
» Introduced in C++4-11

Constructors

Default constructor

» A constructor that can be called without arguments
» May have parameters with default values

» Automatically defined if no constructor is defined
(in declaration: =default, cannot be called if =delete)

» If not defined, the type is not default constructible

Default constructor with member initializer list.

class Bar {
public:

Bar (int v=100,
private:

int value;

bool flag;

bool b=false) :value{v},flag{b} {3}

© Constants

© Classes

@ Constructors

@ the pointer this

o friend

@ Operator overloading

@ Const and classes

@ const for objects and members

More on constructors
o Copying objects

User-defined types

Concrete classes

A concrete type
» “behaves just like a built-in type”

» its representation is part of its definition,
That allows us to
» place objects
» on the stack (i.e., in local variables)
» in other objects
» in statically allocated memory (e.g., global variables)
» copy objects
> assignment of a variable
» copy-constructing an object
» value parameter of a function
» refer to objects directly (not just using pointers or references)
» initialize objects directly and completely (with a constructor)

Constructors

Default constructor

Default arguments

» If a constructor can be called without arguments, it is a
default constructor.

class KomplextTal {

public:
KomplextTal(float x=1):re(x),im(@) {3}
/...

¥

gives the same default constructor as the explicit
KomplextTal ():re{1},im{0} {3}

a/a2

Constructors

Two ways of initializing members

With member initializer list in constructor

class Bar {
public:
Bar (int v, bool b) :value{v},flag{b} {3}
private:
int value;
bool flag;
};

Members can have a default initializer, in C4++11:

class Foo {

public:
Foo() =default;

private:
int value {0};
bool flag {false};

3

» prefer default initializer to overloaded constructors or

default arguments

[—— 3. Classes 7/a2

Constructors

Prefer default member initializers

Constructors

Member initialization rules

class Bar {
public:
Bar () =default;
Bar(int v, bool b) :value{v},flag{b} {3}
private:
int value {03};
bool flag {true};
i

» |f a member has both default initializer and a member
initializer in the constructor, the constructor is used.

» Members are initialized in declaration order. (Compiler
warning if member initializers are in different order.)

» Bar() =default; is necessary to make the compiler generate a
default constructor (as another constructor is defined)

L —— 3. Classes 8/az

Constructors
Prefer default member initializers

Use default member initializers if class member variables have
default values.

Default values through overloaded ctors: risk of inconsistency

class Simple {

public:
simple() :a(1), b(2), c(3) {3}
Simple(int aa, int bb, int cc=-1) :a(aa), b(bb), c(cc) {3}
Simple(int aa) :a(aa), b(0), c(0) {}

private:
int a;
int b;
int c;
};

Classes : Constructors 3. Classes /a2

Constructors

Default constructor and parentheses

Use default member initializers if class member variables have
default values.

With default initializers: consistent

class Simple {
public:
Simple() =default;
Simple(int aa) a(aa) {}
Simple(int aa, int bb) a(aa), b(bb) {3}
Simple(int aa, int bb, int cc) :a(aa), b(bb), c(cc) {3}

private:
int a {-13};
int b {-13};
int ¢ {-13};
¥

[—— 3. Classes 10/a2

Default constructor and initialization

In a variable declaration, the default constructor
cannot be called with empty parentheses.

Bar bi1;

Bar b2{};

Bar be(); // Compiler error!
Bar b3(25); // OK

"most vexing parse”

Bar* bp1l = new Bar;
Bar* bp2 = new Bar{};
Barx bp3 = new Bar(); //0K

[T —— 3. Classes 11/42

» automatically generated default constructor (=default)
does not always initialize members
» global variables are initialized to 0 (or corresponding)
» local variables are not initialized (different meaning from Java)

struct A { int x; };

int i; // i is initialized to @ (global variable)
A a; // a.x is initialized to @ (global variable)

int main() {
int j; // j is uninitialized
int k = int(); // k is initialized to @

int 1{}; // 1 is initialized to @
A b; // b.x is uninitialized
Ac=AQ0; // c.x is initialized to ©
A d{}; // d.x is initialized to ©

[—— 3. Classes 12/a2

Default constructor and initialization
Advice

Constructors

Delegating constructors (C++11)

» The automatically generated default constructor (=default)
does not always initialize members

» To be on the safe side:

» always initialize variables
» always implement default constructor (or =delete)

[—— 3. Classes 13/42

Classes

Resource management

» RAIl Resource Acquisition Is Initialization
» An object is initialized by a constructor
» Allocates the needed resources
» When an object is destroyed, its destructor is executed
» Free resources owned by the object
class Vector{
public:

Vector (int s) :elem{new double[s]}, sz{s} {} // constructor
~Vector () {delete[] elem;} // destructor, delete the array

};
Manual memory management
» Objects allocated with new must be freed with delete
» Objects allocated with new[] must be freed with delete[]
» otherwise, the program has a memory leak
» (much) more on this later

Classes : Constructors 3. Classes 15/42

friend

Functions or classes with access to all members in a class without
being members themselves

Friend declaration in the class ComplexNumber

class ComplexNumber{

00 oo
private:

int re;

int im;

friend ostream& operator<<(ostream&, const ComplexNumber&)
¥

Definition of the free function operator<<

ostream& operator<<(ostream& o, const ComplexNumber& c) {

return o << c.re << "+" c.im << "i

}

The free function operator<<(ostream&, const ComplexNumber&)
can access private members in ComplexNumber.

Classes : friend 3. Classes 17/42

In C++11 a constructor can call another (like this(...) in Java).

struct Test{
int val;

Test(int v) :val{v} {3}
Test(int v, int scale) :Test(v*scale) {}; // delegation

Test(int a, int b, int c) :Test(atbtc) {}; // delegation

¥

A delegating constructor call shall be the only member-initializer.
(A constructor initializes an object completely.)

[—— 3. Classes 14/a2

The pointer this

Self reference

In a member function, there is an implicit pointer this, pointing to
the object the function was called on. (cf. this in Java).

» typical use: return xthis for operations returning a reference
to the object itself

Classes : the pointer this 3. Classes 16/a2

friend

Functions or classes with full access to all members in a class
without being members themselves

Free functions,
member functions of other classes, or
entire classes can be friends.

cf. package visibility in Java

vvyyvyvyy

A friend declaration is not part of the class interface, and can
be placed anywhere in the class definition.

Classes : friend 3. Classes 18/a2

Operator overloading

Operator overloading

A user-defined type can behave like a built-in type

» Operators can be overloaded

» as member functions (sometimes)
» as free functions

Syntax: return_type operator® (parameters...)
for an operator ® e.g. == or +

E.g, bool operator==(const Foo&, const Foo&);

Classes : Operator overloading 3. Classes

Operator overloading

10/a2

Most operators can be overloaded, except

sizeof 8 K o 72

E.g., these operators can be overloaded

t - /%
fg | o~
<< >>
&& || !
1= == < >
O 0

> ->x

new delete new[] delete[]

Classes : Operator overloading 3. Classes 20/a2

Operator overloading
as member function and as free function

For classes, two possibilities:

» as a member function
» for binary operators, if the order of operands is suitable
» a binary operator takes one argument
» xthis is the left operand,
» the function argument is the right operand
» as a free function

» if the public interface is enough, or
» if the function is declared friend

Classes : Operator overloading 3. Classes

Operator overloading

Example: declaration as member functions

class Komplex {

public:
Komplex (double r, double i) re(r), im(i) {3}
Komplex operator+(const Komplex& rhs) const;
Komplex operator*(const Komplex& rhs) const;
20

private:
double re, im;

¥

Example: declaration of operator+ as friend

Declaration inside the class definition of Komplex:

friend Komplex operator+(const Komplex& 1, const Komplex& r);

Note the number of parameters

Classes : Operator overloading 3. Classes 22/a2

Operator overloading

Defining operator+ in two ways:

» As member function (one parameter)

Komplex Komplex::operator+(const Komplex& rhs)const{
return Komplex(re + rhs.re, im + rhs.im);

}

» As a free function (two parameters)

Komplex operator+(const Komplex& lhs, const Komplex& rhs){
return Komplex(lhs.re + rhs.re, lhs.im + rhs.im);

}

NB! the friend declaration is only in the class definition

Classes : Operator overloading 3. Classes

Defining operator+ in two ways:

» As member function

Komplex Komplex::operator+(Komplex& rhs)

return Komplex(re + rhs.re, Yq + rhs.im);

}

the right operand
cannot be changed
the Teft operand
cannot be changed

omplex& lhs, Komplex& rhs){
s.re + rhs.re, lhs.im + rhs.im);

» As a free function

Komplex operator+ K
return Komplex

}

NB! the friend declaration is only in the class definition

Classes : Operator overloading 3. Classes 23/a2

Operator overloading

Another implementation of +, using +=

class Komplex {
public:
const Komplex& operator+=(const Komplex& z) {
re += z.re;
im += z.im;
return xthis;

NB! Returns const reference to
disallow e.g. (a += b) = c;

7 (non-standard, different from
Bg built-in types).

Komplex operator+(Komplex a,
return a+=b;

const Komplex& b) {
¥

NB! call by value: we want to return a copy.

Classes : Operator overloading 3. Classes

Conversion operators

Exempel: counter

struct Counter{
Counter (int c=0) :cnt{c} {};
Counter& operator++() {++cnt; return xthis;}
Counter operator++(int) {Counter res(cnt++);
operator int() const {return cnt;}

private:
int cnt;

return res;}

};

Note: operator T().
» no return type in declaration (must obviously be T)
» can be declared explicit

» two overloads for operator++. Dummy int parameter for
postincrement.

Classes : Operator overloading 3. Classes

Constant objects

Example

const references and const functions

class Point{
public:
Point(int xi, int yi) :x{xi},y{yi}{}
int get_x() const {return x;}
int get_y() const {return y;}
void set_x(int xi) {x = xi;}
void set_y(int yi) {y =

yi;}
private:
int x;
int y;
};
void example(Point& p, const Point& o) {
p.set_y(10);

cout << "p: "<< p.get_x() << ","” << p.get_y() << endl;

o.set_y(10);
cout << "o: "<< o.get_x() << "," << o.get_y() << endl;
}
passing ’const Point’ as ’this’ argument discards qualifiers

Classes 3. Classes

const for objects and members

Conversion to int

Class definition

Free function, does not need to be friend

24/a2

26/a2

Classes : Operator overloading

Classes

Classes

Operator overloading

Example: inline friend operator<<

The definition (in the class definition)

#include <ostream>
using std::ostream;

class Komplex{
friend ostream& operator<<(ostream& o,
0 << v.re << '+’ << v.im << ’i’;
return o;

const Komplex& v) {

/7. ..
};

» inline friend definition: defines a free function in the same
namespace as the class

> operator<< cannot be a member function (due to the order of
operands it would have to be a member of std::ostream)

3. Classes

Constant objects

» const means | promise not to change this”

» Objects (variables) can be declared const
» “I promise not to change the variable”

» References can be declared const
» "I promise not to change the referenced object”
> a const& can refer to a non-const object
» common for function parameters

» Member functions can be declared const
» “| promise that the function does not change the state of the
object”
» technically: implicit declaration const T* const this;

const for objects and members 3. Classes

Constant objects
Example

Note const in the declaration (and definition!) of the member
function operator[1(int) const: (“const is part of the name”)

class Vector {
public:
/7. ..
double operator[](int i) const;
/7.
private:
doublex elem;
/7. ..

// function declaration

¥

double Vector::operator[](int i) const

{

// function definition

return elem[i];

}

const for objects and members 3. Classes

25/a2

20/a2

Constant objects

Example: const overloading

The functions operator[](int) and operator[](int) const
are different functions.

Example

class Vector {

double& operator[](int i) {return elem[i];}

double operator[](int i) const {return elem[il;}
private:

doublex elem;

/7. ..

};

» If operator[] is called on a
» non-const object, a reference is returned
» const object, a copy is returned

» The assignment v[2] = 10; only works on a non-const v.

Classes : const for objects and members 3. Classes

Constructors

Copy Constructor

» s called when initializing an object
» Is not called on assignment

» Can be defined, otherwise a standard copy constructor is
generated (=defau1t, =de1ete)

void function(Bar); // by-value parameter

Bar b1(10, false};

Bar b2{b1}; // the copy constructor is called
Bar b3(b2); // the copy constructor is called
Bar b4 = b2; // the copy constructor is called
function(b2); // the copy constructor is called

More on constructors : Copying objects 3. Classes 32/42

Constructors

Special cases: zero or one parameter

Copy Constructor

» Has a const & as parameter: Bar::Bar(const Bar& b);

Converting constructor

» A constructor with one parameter defines
an implicit type conversion from the type of the parameter

class ComplexNumber {

public:
ComplexNumber () :re{0},im{0} {}
ComplexNumber (const ComplexNumber& k)
ComplexNumber (double x):re{x},im{0} {3}
/7. ..

private:
double re;
double im;

:re{k.re},im{k.im} {3}

};

default constructor copy constructor converting constructor

More on constructors : Copying objects 3. Classes 34/a2

User-defined types

Concrete classes

A concrete type
» “behaves just like a built-in type”

» the representation is part if the definition,
That allows us to
» place objects
» on the stack (i.e., in local variables)
» in other objects
» in statically allocated memory (e.g., global variables)
» copy objects
P assignment of a variable
P copy-constructing an object
» value parameter of a function
» refer to objects directly (not just using pointers or references)
» initialize objects directly and completely (with a constructor)

More on constructors : Copying objects 3. Classes

Copy Constructors

default

31/82

» Declaration:

class C {
public:

C(const C&) =default;
};

» default copy constructor
> Is automatically generated if not defined in the code
» exception: if there are members that cannot be copied
» shallow copy of each member

» Works for members variables with built-in types,

» or classes that behave like built-in types (RAll-types)

» Does not work for classes which manage resources “manually”
(More on this later)

More on constructors : Copying objects 3. Classes

Converting constructor

Warning - implicit conversion

33/a2

class Vector{
public:
Vector (int s); // create Vector with size s

int size() const; // return size of Vector

};
void example_vector ()
{
Vector v = 7;
std::cout << "v.size(): " << v.size() << std::endl;
3

v.size(): 7

In std: :vector the corresponding constructor is declared

explicit vector(size_type count);

More on constructors : Copying objects 3. Classes

35/42

Converting constructor and explicit

Copying objects

Difference between construction and assignment

explicit specifies that a constructor does not allow implicit type
conversion.
struct A struct B void function(Bar); // by-value parameter
{ { .
A(int); explicit B(int); Bar bi(10, false};
}A// e }A// e Bar b2{b1}; // the copy constructor is called
’ ’ Bar b3(b2); // the copy constructor is called
Bar b4 = b2; // the copy constructor is called
A al(2); // OK B b1(2); // 0K function(b2); // the copy constructor is called
A a2 = 1; // OK B b2 = 1; // Error! [2]
A a3 = (A)1; // OK B b3 = (B)1; // OK: explicit cast b4 = b3; // the copy constructor is not called
a3 = 17; /7 0K [1] b3 =17; // Errorl! [3] copy assignment — not construction
[1]: construct an A(17), and then copy
[2]: conversion from ’int’ to non-scalar type ’'B’ requested
[3]: no match for ’operator=’ (operand types are ’B’ and ’int’)

More on constructors : Copying objects 3. Classes 36/42 More on constructors : Copying objects 3. Classes 37/a2

Copying objects

the copy assignment operator: operator=

The copy assignment operator is implicitly defined
» with the type T& T::operator=(const T&)
» if no operator= is declared for the type
» if all member variables can be copied
» i.e., define a copy-assignment operator

» If all members are of built-in (and RAIl) types the default
variant works (same problems as with copy ctor).

» More on copy control when we discuss resource management

More on constructors : Copying objects 3. Classes

Preventing copying

38/42

Constructors

Initialization and assignment

An object is initialized before the body of the constructor is run

It is (often) possible to write like in Java, but
> it is less efficient
» the members must be assignable

Java-style: assignment in constructor

class Foo {
public:
Foo(const Bar& v) {
value = v; NB! assignment, not initialization
3
private:
Bar value; is default constructed before the body of the constructor

i

More on constructors : Copying objects 3. Classes 30/a2

Suggested reading

» Declaration:

class C {
public:

C(const C&) =delete;

C& operator=(const C&) =delete;
};

» A class without copy constructor and copy assignment
operator cannot be copied.

» C++-98: declare private and don't define

More on constructors : Copying objects 3. Classes

4a0/a2

References to sections in Lippman

Variable initialization 2.2.1

26,714,715

Constructors 7.5-7.5.4

(Aggregate classes) ("C structs" without constructors) 7.5.5
Operator overloading 14.1 — 14.3, 14.5 - 14.6
const, constexpr 2.4

this and const p 257-258

inline 6.5.2, p 273

friend 7.2.1

static members 7.6

Classes

More on constructors : Copying objects 3. Classes 41/42

Next lecture

References to sections in Lippman
Iterators 3.4

Sequential containers 9.1 — 9.3
Algorithms 10.1

Associative containers chapter 11
Pairs 11.2.3

Tuples 17.1

More on constructors : Copying objects

