
Debugging 17

3 Debugging
Objective: to practice debugging a C++ program

1 A (broken) system for access control

A company has created a system for controlling access to its facilities. To open a door, an
employee inserts a card in a card-reader. The system looks up the card number in a table. If
the card number is found, the name of the employee is presented on a display and the door is
unlocked. Otherwise the door remains locked.

The class UserTable is used to check who a certain card number belongs to. The access
control system includes the following code:

UserTable t;
...
int cardNbr = sensor.getCardNbr();

User u = t.find(cardNbr); // Find the owner of the card

if (u == UserTable::user_not_found) {
display.showText("** access denied **");

} else {
display.showText("Welcome, " + u.getName());
door.unlock();

}

The interesting line is marked with a comment. Given a card number (an integer) the system
looks up a user. The variables sensor, display, and door refer to objects outside the scope of
this task. Can you understand the general operation of the above code?

The class UserTable is unfortunately broken. Your task is to find and correct the mistakes.
Present your solution according to the table at the end of this section, together with a working
test program.

2 Tasks

Study the source code in the files User.h , User.cpp , UserTable.h och UserTable.cpp . There is
also a text file, users.txt , containing all users and their card numbers. Look at the file and see
how it is organized.

In the class UserTable the user database is read from users.txt and stored in an array.

We will now debug the class UserTable. To test the class, it is impractical to try a lot of cards
in the card reader. A better option is to create a simple test-program that creates a UserTable

object and calls the function find in the same way the card-reader does. Then you can simply
make up and test different card numbers yourself.

Create such a test program (including a main function) that

• creates a UserTable object,

• calls the function find(int) to find the user with card number 21330,

• calls the function find(int) to find the user with card number 21331 and

• calls the function find(std::string) to find the user named ”Jens Holmgren”.

What is the result of the program? What did you expect? (Compare with the file users.txt .)

18 Debugging

The class UserTable has a member function for printing the contents of the table. Extend
your test program with a call to this function and see what is printed.

Study the constructor for the class UserTable. Here, the user database is read from a file and
stored in an array. Either the reading from the file is not working, or the read lines are not stored
correctly in the array.

Add some lines to your test program so that a new (made up) user with card number 1234 is
added, and then print the contents of the table. Run your test program. How many users are
now in the table? How many did you expect?

Find and fix the mistake that you identified in the previous task. To get further clues you can
ask yourself the following questions:

• The function add inserts a User object at the right position in the array. What positions are
the objects put in? That is, what value does the variable pos get? (You can either use debug
printouts, or run it in the debugger and use breakpoints.)

• Does the function getNbrUsers return the correct result? (Test.)

When you have corrected the mistake, check if searching for a card number works. Verify
that your test program calls find(int) with a card number, and that the result is the same card
number and the correct user name. Compare with the corresponding line in users.txt . Always
compile with warnings enabled (the option -Wall to g++).

It has been reported that find(std::string name) does not work. The function is imple-
mented with linear search: starting at the first position, go through the array until a person with
the name name is found. Study the implementation of the function to find the bug.

When the function is corrected, the search for Jens Holmgren should work.

Verify that searching works. There is function testFindNumber() that can be used to test the
member function UserTable::find(int). Let your test program call that test function and verify
that all users (card numbers) now can be found.

Check the test function. It has been reported that testFindNumber() performs the tests cor-
rectly, but that the tested UserTable object is left in an unusable state afterwards. Investigate
what happens when testFindNumber() is called.

Note. The names in the table have been generated from the 100 most common swedish family
names and male and female names8 (excluding names containing åäö). They do not refer to
actual persons.

8 Source: SCB, http://www.scb.se/namnstatistik/.

Debugging 19

Solution

To pass the task you have to show a working program, according to the above instructions. In
addition you must be prepared to account for your debugging work. Record information about
each bug so that you remember them when you present your solution.

Bug (what function?, what line?) Describe the problem. How did you find the bug?

