
LUND INSTITUTE OF TECHNOLOGY EDAF30
Department of Computer Science 2016

Laboratory Exercises, C++ Programming
General information:

• The course has four compulsory laboratory exercises.

• You shall work in groups of two students. Sign up for the labs at sam.cs.lth.se/Labs.

• The labs require homework. Before each lab session, you must have done as much as you
can of the assignments (A1, A2, . . .) in the lab, written and tested the programs, and so on.
Use the scheduled lab sessions for getting answers to your questions.

• Extra labs are organized only for students who cannot attend a lab because of illness. Notify
Sven Gestegård Robertz (Sven.Robertz@cs.lth.se) if you fall ill, before the lab.

The labs are about:

1. Basic C++ programming, compiling, linking.

2. Introduction to the standard library.

3. Debugging

4. Strings and streams.

Practical information:

• You will use many half-written “program skeletons” during the lab. You must download the
necessary files from the course homepage before you start working on the lab assignments.

• The lab files are available in gzipped tar format. The archives can be unpacked from the
command line like this:

tar xzf lab1.tar.gz

That creates a directory lab1 in the current directory.

Good sources of information about C++:

• http://www.cppreference.com

• http://www.cplusplus.com

2 Godkända laborationsuppgifter

Programmering i C++, godkända laborationsuppgifter

Skriv ditt namn och din namnteckning nedan:

Namn: .

Namnteckning: .

Godkänd laboration Datum Laborationsledarens namnteckning

1

2

3

4

Basic C++ Programming, Compiling, Linking 3

1 Basic C++ Programming, Compiling, Linking
Objective: to introduce C++ programming in a Unix environment.

Read:

• Book: basic C++, variables and types including pointers, expressions, statements, functions,
simple classes, ifstream, ofstream.

• GCC manual: http://gcc.gnu.org/onlinedocs/

• GNU make: http://www.gnu.org/software/make/manual/

1 Introduction

Different C++ compilers are available in a Unix environment, for example g++ from GNU (see
http://gcc.gnu.org/) and clang++ from the Clang project (see http://clang.llvm.org/). The
GNU Compiler Collection, GCC, includes compilers for many languages, the Clang collection
only for “C-style” languages. g++ and clang++ are mostly compatible and used in the same way
(same compiler options, etc.). In the remainder of the lab we mention only g++, but everything
holds for clang++ as well.

Actually, g++ is not a compiler but a “driver” that invokes other programs:

Preprocessor (cpp): takes a C++ source file and handles preprocessor directives (#include files,
#define macros, conditional compilation with #ifdef).

Compiler: the actual compiler that translates the input file into assembly language.

Assembler (as): translates the assembly code into machine code, which is stored in object files.

Linker (ld): collects object files into an executable file.

A C++ source code file is recognized by its extension. The two commonly used extensions are .cc
(recommended by GNU) and .cpp .

In C++ (and in C) declarations are collected in header files with the extension .h . To distinguish
C++ headers from C headers other extensions are sometimes used, such as .hpp or .hh . We will
use .h .

A C++ program normally consists of many classes that are defined in separate files. It must
be possible to compile the files separately. The program source code should be organized like
this (a main program that uses a class List):

• Define the editor class in a file editor.h:

#ifndef EDITOR_H // include guard
#define EDITOR_H
// include necessary headers here

class Editor {
public:

/* Creates a text editor containing the text t */
Editor(const std::string& t) : text(t) {}
size_type find_left_par(size_type pos) const;

// ... functions to edit the text (insert and delete characters)
private:

std::string text;
};
#endif

4 Basic C++ Programming, Compiling, Linking

• Define the class member functions in a file editor.cpp

#include "editor.h"
// include other necessary headers

size_type Editor::find_left_par(size_type pos) const { ... }
...

• Define the main function in a file test_editor.cpp :

#include "editor.h"
// include other necessary headers

...
int main() {

Editor ed(...);
test_equals(ed.find_left_par(15), 11);
...

}

The include guard is necessary to prevent multiple definitions of names. Do not write function
definitions in a header file (except inline functions and template functions).

The g++ command line looks like this:

g++ [options] [-o outfile] infile1 [infile2 ...]

The .cpp files are compiled separately. The resulting object files (.o files) are linked into an
executable file test_editor , which is then executed:

g++ -std=c++11 -c editor.cpp
g++ -std=c++11 -c test_editor.cpp
g++ -o test_editor test_editor.o editor.o
./test_editor

The -c option directs the driver to stop before the linking phase and produce an object file, named
as the source file but with the extension .o instead of .cpp .

A1. Write a “Hello, world!” program in a file hello.cpp , compile and test it.

2 Options and messages

There are more options to the g++ command than were mentioned in section 1. Your source files
must compile correctly using the following command line:

g++ -c -O2 -Wall -Wextra -pedantic-errors -Wold-style-cast -std=c++11 file.cpp

Short explanations (you can read more about these and other options on the gcc and g++

manuals):

Basic C++ Programming, Compiling, Linking 5

-c just produce object code, do not link
-O2 optimize the object code (perform nearly all supported optimiza-

tions)
-Wall print most warnings
-Wextra print extra warnings
-pedantic-errors treat “serious” warnings as errors
-Wold-style-cast warn for old-style casts, e.g., (int) instead of static_cast<int>
-std=c++11 follow the new C++ standard (use -std=c++0x on early versions

of g++)
-stdlib=libc++ Clang only — use Clang’s own standard library instead of GNU’s

libstdc++

Do not disregard warning messages. Even though the compiler chooses to “only” issue warnings,
your program is erroneous or at least questionable.

Some of the warning messages are produced by the optimizer and will therefore not be output
if the -O2 flag is not used. But you must be aware that optimization takes time, and on a slow
machine you may wish to remove this flag during development to save compilation time. Some
platforms define higher optimization levels, -O3, -O4, etc. You should not use these optimization
levels unless you know very well what their implications are.

It is important that you become used to reading and understanding the GCC error messages.
The messages are sometimes long and may be difficult to understand, especially when the errors
involve the standard library template classes (or any other complex template classes).

3 Introduction to make

You have to type a lot in order to compile and link C++ programs — the command lines are long,
and it is easy to forget an option or two. You also have to remember to recompile all files that
depend on a file that you have modified.

There are tools that make it easier to compile and link, “build”, programs. These may be
integrated development environments (Eclipse, Visual Studio, . . .) or separate command line
tools. In Unix, make is the most important tool. Make works like this:

• it reads a “makefile” when it is invoked. Usually, the makefile is named Makefile .

• The makefile contains a description of dependencies between files (which files that must be
recompiled/relinked if a file is updated).

• The makefile also contains a description of how to perform the compilation/linking.

As an example, we take the list program from section 1. The files editor.cpp and test_editor.cpp
must be compiled and then linked. Instead of typing the command lines, you just enter the
command make. Make reads the makefile and executes the necessary commands.

A minimal makefile, without all the compiler options, looks like this:

The following rule means: "if test_editor is older than test_editor.o
or editor.o, then link test_editor".
test_editor: test_editor.o editor.o

g++ -o test_editor test_editor.o editor.o

Rules to create the object files.
test_editor.o: test_editor.cpp editor.h

g++ -std=c++11 -c test_editor.cpp

editor_o: editor.cpp editor.h
g++ -std=c++11 -c editor.cpp

6 Basic C++ Programming, Compiling, Linking

A rule specifies how a file (the target), which is to be generated, depends on other files (the
prerequisites). The line following the rule contains a shell command, a recipe, that generates the
target. The recipe is executed if any of the prerequisites are older than the target. It must be
preceded by a tab character, not eight spaces.

A2. The file Makefile in the lab1 directory contains the makefile described above. The files
editor.h , editor.cc , and test_editor.cc are in the same directory. Experiment:

Run make. Run make again. Delete the executable program and run make again.
Change one or more of the source files (it is sufficient to touch them) and see what
happens. Run make test_editor.o. Run make notarget. Read the manual 1and try other
options.

4 More Advanced Makefiles

4.1 Implicit Rules

Make has implicit rules for many common tasks, for example producing .o-files from .cc-files. The
recipe for this task is:

$(CXX) $(CPPFLAGS) $(CXXFLAGS) -c -o $@ $<

CXX, CPPFLAGS, and CXXFLAGS are variables that the user can define. The expression $(VARIABLE)

evaluates a variable, returning its value. CXX is the name of the C++ compiler, CPPFLAGS are the
options to the preprocessor, CXXFLAGS are the options to the compiler. $@ expands to the name of
the target, $< expands to the first of the prerequisites.

There is also an implicit rule for linking, where the recipe (after some variable expansions)
looks like this:

$(CC) $(LDFLAGS) $^ $(LOADLIBES) $(LDLIBS) -o $@

LDFLAGS are options to the linker, such as -Ldirectory. LOADLIBES and LDLIBS2 are variables
intended to contain libraries, such as -llab1. $� expands to all prerequisites. So this is a good
rule, except for one thing: it uses $(CC) to link, and CC is by default the C compiler gcc, not g++.
But if you change the definition of CC, the implicit rule works also for C++:

Define the linker
CC = $(CXX)

4.2 Phony Targets

Make by default creates the first target that it finds in the makefile. By convention, the first target
should be named all , and it should make all the targets. But suppose that a file all is created
in the directory that contains the makefile. If that file is newer than the test_editor file, a make
invocation will do nothing but say make: Nothing to be done for `all'., which is not the
desired behavior. The solution is to specify the target all as a phony target, like this:

all: test_editor
.PHONY: all

1 See section 9 (How to run make) of the manual. The options are summarized in section 9.7.
2 There doesn’t seem to be any difference between LOADLIBES and LDLIBS — they always appear together and are
concatenated. Use LDLIBS.

Basic C++ Programming, Compiling, Linking 7

Another common phony target is clean . Its purpose is to remove intermediate files, such as object
files, and it has no prerequisites. It typically looks like this:

.PHONY: clean
clean:

rm -f *.o test_editor

4.3 Generating Prerequisites Automatically

While you’re working with a project the prerequisites are often changed. New #include directives
are added and others are removed. In order for make to have correct information about the
dependencies, the makefile must be modified accordingly. This is a tedious task, and it is easy to
forget a dependency.

The C++ preprocessor can be used to generate prerequisites automatically. The option -MMD3

makes the preprocessor look at all #include directives and produce a file with the extension
.d which contains the corresponding prerequisite. Suppose the file test_editor.cc contains the
following #include directive:

#include "editor.h"

The compiler produces a file test_editor.d with the following contents:

test_editor.o: test_editor.cpp editor.h

The .d files are included in the makefile, so it functions the same way as if we had written the
rules ourselves.

4.4 Putting It All Together

The makefile below can be used as a template for makefiles in many (small) projects. To add a
new target you must:

1. add the name of the executable to the definition of PROGS,
2. add a rule which specifies the object files that are necessary to produce the executable.

Define the compiler and the linker. The linker must be defined since
the implicit rule for linking uses CC as the linker. g++ can be
changed to clang++.
CXX = g++
CC = $(CXX)

Generate dependencies in *.d files
DEPFLAGS = -MT $@ -MMD -MP -MF $*.d

Define preprocessor, compiler, and linker flags. Uncomment the # lines
if you use clang++ and wish to use libc++ instead of GNU's libstdc++.
-g is for debugging.
CPPFLAGS = -std=c++11 -I.
CXXFLAGS = -O2 -Wall -Wextra -pedantic-errors -Wold-style-cast
CXXFLAGS += -std=c++11
CXXFLAGS += -g
CXXFLAGS += $(DEPFLAGS)
LDFLAGS = -g
#CPPFLAGS += -stdlib=libc++

3 The option -MMD generates prerequisites as a side effect of compilation. If you only want the preprocessing but no
actual compilation, -MM can be used.

8 Basic C++ Programming, Compiling, Linking

#CXXFLAGS += -stdlib=libc++
#LDFLAGS += -stdlib=libc++

Targets
PROGS = test_editor print_argv

all: $(PROGS)

Targets rely on implicit rules for compiling and linking
test_editor: test_editor.o editor.o
print_argv: print_argv.o

Phony targets
.PHONY: all clean

Standard clean
clean:

rm -f *.o $(PROGS)

Include the *.d files
SRC = $(wildcard *.cc)
include $(SRC:.cc=.d)

A3. The better makefile is in the file BetterMakefile . Rename this file to Makefile , and experi-
ment. The compiler will warn about unused parameters. These warnings will disappear
when you implement the member functions.

Look at the generated .d files. Use the makefile to build your “Hello world!” program.

5 Writing small programs

A4. Editors for program text usually help with matching of parentheses: when you type a right
parenthesis,),] or } the editor highlights the corresponding left parenthesis.

Example with matching parentheses marked (the dots ... represent a sequence of
characters except parentheses):

...(...(...[...]...)...)...{...}...

|---| |---|

|-----------|

|-------------------|

Implement the function find_left_par in the class Editor, test with editortest.cc.

A5. Implement two functions for encoding and decoding:

/* For any character c, encode(c) is a character different from c */
unsigned char encode(unsigned char c);

/* For any character c, decode(encode(c)) == c */
unsigned char decode(unsigned char c);

Use a simple method for coding and decoding. Test your encoding and decoding routines
with test_coding.cpp.

Basic C++ Programming, Compiling, Linking 9

Then write a program, encode, that reads a text file4, encodes it, and writes the encoded
text to another file. The program can ask for a filename as in the following execution

./encode
enter filename.
myfile

and write the encoded contents to myfile.enc.
Alternatively, you can give the file name on the command line, like this:
./encode myfile

Command-line parameters are passed to main in an array of C-strings. The prototype of
to use is int main(int argc, const char** argv). See print_argv.cpp for an example
of how to use command line arguments.

Write another program, decode, that reads an encoded file, decodes it, and writes the
decoded text to another file FILENAME.dec . Add rules to the makefile for building the
programs.

Test your programs and check that a file that is first encoded and then decoded is
identical to the original. Use the Unix diff command.

Note: the programs will work also for files that are UTF-8 encoded. In UTF-8 characters
outside the “ASCII range” are encoded in two bytes, and the encode and decode functions
will be called twice for each such character.

6 Finding Errors

With the GNU debugger, gdb, you can control a running program (step through the program,
set breakpoints, inspect variable values, etc.). Debug information is inserted into the executable
program when you compile and link with the option -g. Preferably you should also turn off
optimization (no -O2 option). From g++ version 4.8 there is a new option -Og, which turns on all
optimizations that do not conflict with debugging.

A program is executed under control of gdb like this:

gdb ./program

Some useful commands:

help [command] Get help about gdb commands.
run [args...] Run the program (with arguments).
start [args...] Set a temporary breakpoint at main and run the program
continue Continue execution.
next Step to the next line over function calls.
step Step to the next line into function calls.
finish Continue until just after the current function returns.
where Print the call stack.
list [nbr] List 10 lines around the current line or around line nbr (the

following lines if repeated).
break func Set a breakpoint on the first line of a function func.
break nbr Set a breakpoint at line nbr in the current file.
print expr Print the value of the expression expr.
watch var Set a watchpoint, i.e., watch all modifications of a variable. Can

be very slow but can be the best solution to find some bugs.

A6. (Optional) Run the test programs under control of gdb, try the commands.

4 Note that you cannot use while (infile � ch) to read all characters in infile, since � skips whitespace. Use
infile.get(ch) instead. Output with outfile � ch should be ok, but outfile.put(ch) looks more symmetric.

10 Basic C++ Programming, Compiling, Linking

7 Object Code Libraries

A lot of software is shipped in the form of libraries, e.g., class packages. In order to use a library, a
developer does not need the source code, only the object files and the headers. Object file libraries
may contain thousands of files and cannot reasonably be shipped as separate files. Instead, the
files are collected into library files that are directly usable by the linker.

7.1 Static Libraries

The simplest kind of library is a static library. The linker treats the object files in a static library in
the same way as other object files, i.e., all code is linked into the executable files. In Unix, a static
library is an archive file, lib<name>.a . In addition to the object files, an archive contains an index
of the symbols that are defined in the object files.

A collection of object files f1.o , f2.o , f3.o , . . . , are collected into a library libfoo.a using the ar

command:

ar crv libfoo.a f1.o f2.o f3.o ...

(Some Unix versions require that you also create the symbol table with ranlib libfoo.a.) In
order to link a program main.o with the object files obj1.o , obj2.o and with object files from the
library libfoo.a , you use the following command line:

g++ -o main main.o obj1.o obj2.o -L. -lfoo

The linker searches for libraries in certain system directories. The -L. option makes the linker
search also in the current directory.5 The library name (without lib and .a) is given after -l.

A7. Collect the object files list.o and coding.o in a library liblab1.a . Change the makefile so
the programs (test_editor, encode, decode) are linked with the library. The -L option
belongs in LDFLAGS, the -l option in LDLIBS.

7.2 Shared Libraries

Since most programs use large amounts of code from libraries, executable files can grow very
large. Instead of linking library code into each executable that needs it the code can be loaded at
runtime. The object files should then be in shared libraries. When linking programs with shared
libraries, the files from the library are not actually linked into the executable. Instead a “pointer”
is established from the program to the library.

In Unix shared library files are named lib<name>.so[.x.y.z] (.so for shared objects, .x.y.z is
an optional version number). The linker uses the environment variable LD_LIBRARY_PATH as the
search path for shared libraries. In Microsoft Windows shared libraries are known as DLL files
(dynamically loadable libraries).

A8. (Advanced, optional) Create a shared library with the object files list.o and coding.o . Link
the executables using the shared library. Make sure they run correctly. Compare the
sizes of the dynamically linked executables to the statically linked (there will not be a big
difference, since the library files are small).

Use the command ldd (list dynamic dependencies) to inspect the linkage of your
programs. Shared libraries are created by the linker, not the ar archiver. Use the gcc

and ld manpages (and, if needed, other manpages) to explain the following sequence of
operations:

5 You may have several -L and -l options on a command line. Example, where the current directory and the directory
/usr/local/mylib are searched for the libraries libfoo1.a and libfoo2.a :

g++ -o main main.o obj1.o obj2.o -L. -L/usr/local/mylib -lfoo1 -lfoo2

Basic C++ Programming, Compiling, Linking 11

g++ -fPIC -std=c++11 -c *.cc
g++ -shared -Wl,-soname,liblab1.so.1 -o liblab1.so.1.0 editor.o coding.o
ln -s liblab1.so.1.0 liblab1.so.1
ln -s liblab1.so.1 liblab1.so

You then link with -L. -llab1 as before. The linker merely checks that all referenced
symbols are in the shared library. Before you execute the program, you must define
LD_LIBRARY_PATH so it includes the current directory. You do this with the following
command (on the command line):

export LD_LIBRARY_PATH=.:$LD_LIBRARY_PATH

