
A	Technical	Introduction	to	Bitcoin	
Niklas Fors,	2018-02-20

Bitcoin

• Decentralized digital	currency	
• Anyone	can	be	part	of	the	network

• Global	distributed	ledger	called	blockchain

First	Appearance
• Bitcoin:	A	Peer-to-Peer	Electronic	Cash	System
by	Satoshi	Nakamoto,	November	2008
• First	implementation:	January	2009

Centralized	vs	decentralized

Centralized	database

Decentralized	control
Anyone	can	join	the	network

Accounts

Accounts

Accounts

Accounts

Accounts

Accounts Accounts

Accounts

Accounts

Accounts

Decentralized	database

Centralized	control
A	central	authority	decides	which
nodes	are	part	of	the	network

Cryptographic	Background

Important	concepts	from	cryptography:
• Cryptographic	hash	functions
• Applications:	message/file	integrity,	hash	pointers,	storing	passwords…

• Digital	signatures
• Applications:	email	signatures	(PGP),	…

Cryptographic	Hash	Functions

Infinite	set	of	values
(all	possible	strings)

Finite	set	of	values
(e.g.,	using	256	bits)

y

x
H(x)

H(y)

Hash	Collision

Infinite	set	of	values
(all	possible	strings)

Finite	set	of	values
(e.g.,	using	256	bits)

x

y

H(x)=H(y)

Hash	collision:	different	input	
values	yield	the	same	hash	value

Important	Properties	for	Bitcoin

1)	Collision-resistance
A	hash	function	H	is	said	to	be	collision	resistant if	it	is	infeasible	to	
find	two	values,	x	and	y,	such	that	x	≠	y,	yet	H(x)=H(y).

2)	Hiding
Given	y	=	H(x),	it	should	be	infeasible	to	figure	out	x.

3)	Puzzle	friendliness
Can	be	used	for	puzzles	where	the	only	solving	strategy	is	bruteforcing

SHA256

Examples
sha256(niklas) =

760dcecfbe1ce8c36f9ac03686d3ad74e4c4f08978648677aa62b87014c27365

sha256(niklaz) =
1f5fd1befbf9da49d1fc5f8c241fc932800aa907358742155d091d880c2b18d8

Bitcoin	uses	the	hash	function	SHA256	(from	SHA-2	family).	
The	output	uses	256	bits	=>	2^256	different	values
You will get	a	hash collision when computing 2^128	hashes (on	average)

Hash	Pointers

… data	…

prev:	...	

B1

last:	H(prev ||	data)

Last is	a	hash	pointer,	which	is	the	hash	of	the	content	of	B1.
If	we	change	the	data	in	B1,	the	value	of	lastwill	change.
Thus,	given	the	hash	pointer,	we	can	verify	that	B1	has	not	changed	(probabilistic).

||	is	concatenation

A	Linked	Chain	of	Blocks

… data	…

prev:	...	

… data	…

prev:	H(B1)	

B1 B2 B3

… data	…

prev:	H(B2)	

last:	H(B3)	

Given	the	value	of	last,	it’s	very	difficult	to	change	the	data	of	B1,
without	changing	the	value	of	last.

Digital	Signatures
Signing	messages	that	can	be	verified.

API
(privateKey,	publicKey)	<- generateKeys()
signature	<- sign(privateKey,	message)
verify(publicKey,	message,	signature)

Property:
verify(publicKey,	message,	sign(privateKey,	message))	==	true

Bitcoin

• Addresses
• Transaction-based	ledger
• Blocks	– a	collection	of	transactions
• Mining	– verifying	blocks
• Double-spend	problem

Public	Keys	as	Identities

In	Bitcoin,	public	keys	are	used	as	identities.

Coins	are	sent	to	addresses,	which	is	the	hash	of	the	public	key.

To	use	a	coin:	
Create	a	new	transaction	and	sign	it	with	the	corresponding	private	key.

Transactions-based	ledger

In:	
Out:
25	->	Alice

Transaction	1

In
1[0]
Out:
17	->	Bob
8			->	Alice

Transaction	2

The	ledger	is	transaction-based	(no	accounts)
• A	transaction	has	input	coins	and	output	coins	(index	from	0)
• Inputs	are	consumed	in	the	transaction	(cannot	be	used	again)
• Outputs	are	produced	from	the	inputs,	thus,	sum(inputs)	>=	sum(outputs)
• The	inputs	reference	outputs	from	previous	transactions

SIGNED(Alice)

In:
2[0]
Out:
8	->	Carol
9	->	Bob

Transaction	3

SIGNED(Bob)

In:
2[1]
Out:
6	->	Carol
2	->	Alice

Transaction	4

SIGNED(Alice)

In:
3[0]
4[0]
Out:
14	->	Bob

Transaction	5

SIGNED(Carol)

End	result:
Alice:	2
Bob:	23 UTXO: unspent transaction output

Example	Transactions

Change	address
A(2)	à B(1),	A(1)

Joint	payment
A(1),	B(1)	à C(2)

Merging
B(1),	B(1)	à B(2)

Splitting
B(2)	à B(1),	B(1)

Don’t	Lose	Your	Private	Key!

Today	worth	(approximately):
7500*10000	=	75	000	000	USD

{ "hash":"1b4890246...",
"vin_sz":1,
"vout_sz":1
"size":223,
"inputs":[

{"prev_out":{
"hash":"76a91496b..."
"n":0},

"scriptSig":"47304402201420..."}
],
"out":[

{"value":2298949,
"scriptPubKey": "OP_DUP ... <pubKeyHash>..."}

]
}

Example	of	Transaction	Data

Bitcoin	scripts!

Address

Example	Transaction	Verification

To	verify	an	input
1. Find	the	referenced	output
2. Hash	the	public	key	(h)	given	in	the	input
3. Compare	hwith	address	specified	in	referenced	output
4. Verify	signature	with	public	key

In:	
Out:
25	->	Alice

Transaction	1

In
1[0]
Out:
…

Transaction	2

Address	(hash	of	public	key)

Signature	and	public	key

Bitcoin	Scripts	(Pay-to-PubkeyHash script)

scriptSig:
<sig>
<pubKey>

scriptPubKey:
OP_DUP
OP_HASH160
<pubKeyHash>
OP_EQUALVERIFY
OP_CHECKSIG

Script	in	referenced	output	(earlier	transaction): Script	in	input	(new	transaction)

The	scripts	are	concatenated:
<sig>
<pubKey>
OP_DUP
OP_HASH160
<pubKeyHash>
OP_EQUALVERIFY
OP_CHECKSIG

Script	Execution

Command Stack Description

<sig> <sig> Push

<pubKey> <sig>	<pubKey> Push

<OP_DUP> <sig>	<pubKey>	<pubKey> Duplicate	top	of	stack

<OP_HASH160> <sig> <pubKey>	<hashOfPubKey> Hash	top	of	 stack

<pubKeyHash> <sig>	<pubKey> <hashOfPubKey>	 <pubKeyHash> Push

OP_EQUALVERIFY <sig>	<pubKey> Top of	stack	should	be	equal

OP_CHECKSIG true Verify	 signature of	public	key

From	input

From	
referenced	
output

Scripting	Languages

• The	scripting	language	in	Bitcoin	is	limited
• However,	other	cryptocurrencies (Ethereum,…) have	scripting	
languages	that	are	Turing-complete	
=>	making	it	possible	to	write	arbitrary	programs
• A way	to	implement	smart	contracts (contracts	specified	in	code)

Blockchain

prev:	...

…
transactions

…

prev:	H(B2)

…
transactions

…

prev:	H(B1)

…
transactions

…

• A	block	is	a	collection	of	transactions	(some	thousands	transactions)
• A	new	block	is	created	every	10	minutes	(on	average)
• The	blocks	are	put	in	a	blockchain

B1 B3B2

Double	Spend	Attempt

...
… ->	A
...

…
T1:	A	->	B

…

…
T2:	A	->	C

…

Block	created	by	miner	M1

Block	created	by	miner	M2

Which	transaction	is	valid?	T1	or	T2?	Both?

Alice	creates	two	transaction	that	uses	the	same	output,	
thus,	a	double	spend	attempt!

Two	block	are	created	simultaneously	by	two	different	miners.

Answer:	we	don’t	know	yet

Which	Block	to	Extend?	(1)

...
… ->	A
...

…
T1:	A	->	B

…

…
T2:	A	->	C

…

…

A	new	block	is	created	by	a	miner.
Which	previous	block	to	extend?

The	miner	decides	that!
(probably	the	block	that	the	miner	observed	first)

Which	Block	to	Extend?	(1)

...
… ->	A
...

…
T1:	A	->	B

…

…
T2:	A	->	C

…

…

In	this	case,	the	miner	selected	the	top	block.

Which	Block	to	Extend?	(2)

...
… ->	A
...

…
T1:	A	->	B

…

…
T2:	A	->	C

…

… …

A	new	block	is	created.	
Which	block	to	extend?

Longest	Chain	is	Extended!

...
… ->	A
...

…
T1:	A	->	B

…

…
T2:	A	->	C

…

Honest	miners	extend	the	longest	chain!

…

The	top	block	has	a	longer	chain

…

Thus,	it	seems	that	T1	succeeded,	but	
the	answer	is	of	probabilistic	nature.

After	6	block	confirmations,	 it’s	very	
likely	that	the	transaction	succeeded.

Block	Creation	(1)

How	is	a	block	created?
Miners	need	to	solve	a	cryptographic	puzzle!

For	the	whole	network,	it	takes	an	average	of	10	minutes	to	solve	the	puzzle.

Block	Creation

The	puzzle	requires	a	solution	to:

H(nonce ||	prev_hash ||	…)	<	difficultyTarget

The	hash	should	have	a	leading	number	of	zero	bits	(difficulty	decides	how	many)

The	miner	tries	different	values	of	the	nonce to	meet	the	target	(by	bruteforcing).

The	puzzle	is	hard	to	solve,	but	very	easy	to	verify.

Proof	of	Work

This	technique	is	called	Proof	of	Work	(PoW),	an	approach	for	distributed	consensus

It	can	be	thought	of	as	one-CPU-one-vote.

PoW prevents	attacks	on	the	network,	or	rather,	it	makes	them	very	costly.

If	you	own	10%	of	all	hash	power	of	the	network,	
then	you	will	on	average	create	10%	of	the	blocks.

(There	are	other	consensus	mechanisms:	Proof	of	Stake,	…)

Exa=10^18
21	290	000	000	000	000	000	hashes/s

Requires	a	lot	of	energy!

How	long	time	before	we	get	a	hash	collision	with	this	hash	rate?
!"#$

!%∗'("$/(86400*365)	=	469	142	742	209	years
13	799	000	000	years
(the age of	the universe)

Answer:	34	times the age of	the universe

Network	(from	Bitcoin	paper)

The	steps	to	run	the	network	are	as	follows:
1. New	transactions	are	broadcast	to	all	nodes.
2. Each	node	collects	new	transactions	into	a	block.
3. Each	node	works	on	finding	a	difficult	proof-of-work	for	its	block.
4. When	a	node	finds	a	proof-of-work,	it	broadcasts	the	block	to	all	nodes.
5. Nodes	accept	the	block	only	if	all	transactions	in	it	are	valid	and	not	

already	spent.
6. Nodes	express	their	acceptance	of	the	block	by	working	on	creating	the	

next	block	in	the	chain,	using	the	hash	of	the	accepted	block	as	the	
previous	hash.

Merkle Tree

prev:	H()	
mrkl_root:	H()

nonce:
hash:
…

H()			H()

H()			H()

transactiontransaction

H()			H()

transactioncoinbase

Block	header
The	transactions	in	a	block	
are	stored	in	a	Merkle tree

CPU	mining	pseudocode

TARGET=(65535<<208)/DIFFICULTY;
coinbase_nonce=0;
while(1){

header=makeBlockHeader(transactions,coinbase_nonce);
for(header_nonce=0;header_nonce<(1<<32); header_nonce++){
if(SHA256(SHA256(makeBlock(header,header_nonce))) < TARGET)

break;//block found!
}
coinbase_nonce++;

}

Mining	Incentive

Why	do	miners	mine?	
Because	they	are	rewarded!
The	rewards	encourage	them	stay	honest.

Block	rewards
• New	coins	are	created	in	each	block	(called	the	coinbase transaction)

• The	number	decreases	over	time

• Transaction	fees	(when	sum(inputs)	>	sum(outputs))

The	Genesis	Block

The	Gensis block	contains	the	following	text	in	its	coinbase transaction:

The	Times	03/Jan/2009	Chancellor	on	brink	of	second	bailout	 for	banks

(approximately	every	four	years)

Current	number	of	blocks:	~500	000
Current	block	reward	(approximately):
12.5*10k=125k	USD

The	Cost	of	Mining

If		mining	reward >	mining	cost		
miner	profits

where		
mining	reward	=	block	reward	+	transaction	fees		
mining	cost	=	hardware	cost	+	operating	costs	(electricity,	cooling,	etc.)

Mining	Hardware

The	miners	are	increasingly	using	more	efficient	hardware:
1. CPU
2. GPU
3. FPGA
4. ASIC

Mining	Pools

Source:	blockchain.info

To	get	a	more	stable	stream	of	income,	
be	a	member	of	a	mining	pool.

Scalability?

• A	new	block	is	created	every	10	minutes
• The	max	block	size	is	1	MB
• Number	of	transactions	per	second:	
~average transaction size/1	MB/60*10
• The	current limit	is	about 7	transactions/second	=>	604	800/day

Ongoing work
- SegWit:	roughly doubling the	block	size
- Lightning	network:	second	layer on	top of Bitcoin blockchain for	micropayments

Current	median	transaction	fee:	0.5-1	USD

Source:	bitinfocharts.com

Read	More

• The	content	of	this	lecture	is	based	on	the	book:
Bitcoin	and	Cryptocurrency Technologies
• The	authors	also	have	a	course	on	Coursera

