
Exam in EDAF15 Algorithm Implementation

June 3, 2010, 14-18

Inga hjälpmedel!

Examinator: Jonas Skeppstedt

30 out of 60p are needed to pass the exam.

1. (10p) Pipelining

(a) (3p) Does pipelining reduce the number of clock cycles to execute an

instruction, or what is the purpose of pipelining?

Answer No, the number of clock cycles remains the same. The pur-

pose is to start a new instruction every clock cycle so a new result

can be produced every clock cycle. This does not always work due to

various delays, e.g. in the following sequence, since the data will not

arrive to the add instruction in time:

load R1, R2, R3 // loads data into R1

add R4,R1,R5 // uses R1

(b) (4p) Why is it important to design a pipeline so that the different

pipeline stages need approximately the same time to perform their

work?

Answer

The clock cycle time must be sufficiently large so the slowest pipeline

stage can complete its work. Thus, there is no point in making one

stage faster than the others since the slowest will determine the clock

frequency.

(c) (3p) What is branch-prediction and which performance problem is it

aimed at reducing?

Answer

Branch-prediction is a hardware mechanism which guesses whether

a branch will be taken or not, and starts fetching and executing in-

structions in the predicted path. Such instructions are called spec-

ulative and are cancelled if it turns out the guess was wrong. Such

instructions may not modify state (e.g. memory) before it’s certain

they should be executed.

The performance problem it can reduce is waiting for the fetching of

instructions that are located where a branch jumps to.

1

2. (10p) Cache Memories

(a) (4p) Which two types of locality of references are exploited with caches

to reduce the execution times of programs? Give examples of C code

fragments in which each type of locality can be exploited.

Answer

Temporal and spatial locality. See book for examples.

(b) (4p) In C programs with nested for-loops and matrices it is often im-

portant to try to order the loops to improve performance. Why and

what is the goal?

Answer

It is important to have the innermost loop’s index variable select a

matrix column and not a matrix row. The reason for this is that ma-

trices in C (and most other languages but not FORTRAN) are put in

memory one row at a time, i.e. all elements in one row are close to

each other while elements in different rows are not. Accessing the

same row thus can result in spatial locality.

(c) (2p) What does cache associativity mean?

Answer

A cache is divied into a number of sets and an address maps to one

particular set. The number of cache lines, N , in one set is its asso-

ciativity. With N larger than one, it’s less likely that two different

variables will overwrite each other since they can be present in the

same set at the same time.

3. (20p) C

(a) (3p) Memory allocated with alloca or for variable length arrays should

not be returned to the calling function. Why?

Answer

The lifetime ends when the function returns since they are allocated

from the stack.

(b) (3p) Why is alloca so much faster than malloc?

Answer

It simply adjusts the stack pointer while malloc must search for a

suitable memory block in its data structure.

2

(c) (1p) Write a recursive function in C to compute factorials.

Answer

int f(int n)

{

if (n <= 1)

return 1;

else

return n * f(n - 1);

}

(d) (5p) Which data in your program from the previous question do you

expect the compiler will save in memory for later use? Where is it

saved? Draw a simple picture!

Answer

It needs to save the parameter n and the return address. See book in

Chapter 1 or slides.

(e) (8p) Write a function to append a list to the end of another list, where

a list node is represented by:

typedef struct list_t list_t;

struct list_t {

list_t* succ;

list_t* pred;

void* data;

};

The lists are circular and an empty list is represented by NULL. The

function append should have return type void. Specify suitable types

of the two parameters to the function.

Answer

void append(list_t** list1, list_t* list2)

{

list_t* p;

if (*list1 == NULL)

*list1 = list2;

else if (list2 != NULL) {

(*list1)->pred->succ = list2;

list2->pred->succ = *list1;

p = (*list1)->pred;

(*list1)->pred = list2->pred;

list2->pred = p;

}

}

3

4. (20p) Tuning

(a) (6p) Important words in performance optimization are

make the common case fast

What is meant by that, and which tools would you use for this on Linux

and MacOS X, and which information can they provide?

Answer

See book and slides. Shark is similar to Oprofile except that it has a

different user interface.

(b) (14p) Assume you discover that it is the dynamic memory allocation

which takes most of the time due to you allocate numerous (1) short

strings and (2) objects of type struct s { int a, b; }.

Both the strings and the objects of type struct s may be used in

the rest of the program’s execution. Implement alternative memory

allocation to speed up your program.

Answer

Brief solution without implementation follows:

For instance, an arena for the strings (see slides for how to imple-

ment an arena), and an array for the structs will be faster than using

malloc. The arena is better than malloc since short strings don’t have

to be aligned and should avoid the overhead (both size and time) of

malloc. An array of such structs can be allocated and a variable can

be used to keep track of which element to allocate next. The array

can be allocated with malloc or calloc. If one array is not sufficient,

one can allocate another array etc. These arrays should be put in a

list so they can be deallocated before the program terminates. The

purpose of deallocating them explicitly before program termination is

to avoid risking to introduce a memory leak in case the program will

be modified in the future. However, calling free just before calling

exit is strictly not necessary but it is strongly recommended practise.

4

