
Appendix B

Integer linear programming

This appendix introduces the Simplex algorithm for linear programming,
with variables in R, and the more difficult problem integer linear program-
ming with variables in N. The purpose is to explain the principles and the pseudo
code of implementations of basic solvers for these problems, which are widely
used in industry. We give no proofs and instead refer the reader to [67].

�0.5x0 + x1 = 43x0 + x1 = 18x1

x0

Figure B.1: A convex region with vertices (0,0), (0,4), (4,6) and (6,0).

Consider Figure B.1 with a region enclosed by the four lines x0 = 0, x1 = 0,
3x0 + x1 = 18, and �0.5x0 + x1 = 4. The region defines a set of points in which
we are looking for some point which maximizes (or minimizes) a linear function
such as z = x0 + 2x1. This is an example of a linear program, which consists of
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linear constraints on variables xi and a linear objective function which should
be maximized (or minimized). The linear program which results in the previous
figure is

max z = x0 + 2x1

�0.5x0 + x1  4
3x0 + x1  18.

Here x0 and x1 are called decision variables. If some variables are in R and
some others are N, we have a mixed integer linear program. The most widely
used algorithm for solving linear programs is the Simplex algorithm, invented
in 1947 by George Dantzig after arriving late at a lecture at Berkeley and mis-
taking an open research problem for a home assignment. Although the Simplex
algorithm is not in P, it is very fast in practice, but exponential in the worst
case. Solving an integer linear program is in general an NP-complete problem.
A branch-and-bound algorithm introduced in Section B.4, on page 726, for
solving integer linear programs makes use of the Simplex algorithm for solving
linear programs as a subproblem.

The chapter is organized as follows. In Section B.1, on page 712, we introduce
some mathematical aspects of linear programming to prepare for the explanation
of the Simplex algorithm in Section B.2, on page 716.

B.1 Linear programs

A linear program consists of an objective function with n variables
P

ci xi which
either should be minimized or maximized and m linear constraints on xi . In
addition, we require xi � 0. With c= (c0, c1, ..., cn�1), b= (b0, b1, ..., bm�1), and A
an (m, n) matrix, we can write a linear program as

max z = c0 x0 + c1 x1 + ...+ cn�1 xn�1

a0,0 x0 + a0,1 x1 + ...+ a0,n�1  b0
a1,0 x0 + a1,1 x1 + ...+ a1,n�1  b1

...
am�1,0 x0 + am�1,1 x1 + ...+ am�1,n�1  bm�1

x0, x1, ..., xn�1 � 0

(B.1)

or simpler as

max z = cx
Ax  b
x � 0.

(B.2)
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The non-negativity constraints are not counted in the m other constraints.
Each constraint defines a halfplane in n dimensions and the intersection of these
halfplanes defines the feasible region, P, with feasible solutions x 2 P. The
feasible region is convex, and a point where halfplanes intersect is called a vertex.
A linear program is either infeasible when P is empty, unbounded when no
finite solution exists, or feasible, in which case we search for an optimal solution
x⇤ 2 P which maximizes z. There may exist more than one optimal solution. We
denote by z(x) the value of the objective function z at point x. A solution x is
local optimum for z(x) if there is an ✏ > 0 such that z(x) � z(y) for all y 2 P
with ||x � y|| ✏.

We give the following theorem without a proof.

Theorem B.1 A local optimum of a linear program is also a global optimum.

Having seen that a local optimum is also a global optimum, we will next prove
another convenient fact about linear programs which limits where we need to
search for an optimal solution.

Theorem B.2 For a bounded feasible linear program with feasible region P, at
least one vertex is an optimal solution.

Now knowing that the optimal solution can be found in a vertex, we will
next see how the linear constraints and the vertices are related. So far we have
expressed linear programs with inequalities, which is called standard form.
It is, however, more convenient to work with equalities and therefore for each
of the m constraints, we add another variable and rewrite the constraints as
equalities, which is called slack form.

max cx

xn+0 = b0 �
Pn�1

j=0 a0, j x j

xn+1 = b1 �
Pn�1

j=0 a1, j x j

...
xn+m�1 = bm�1 �

Pn�1
j=0 am�1, j x j

xi � 0 0 i  n+m� 1

(B.3)

The variables on the left hand side are called basic variables and occur only
once, i.e. neither in any sum on the right hand side, nor in the objective function.
The other variables are called nonbasic variables. There are m basic and n
nonbasic variables. To be clear, the definition of a basic variable is that it is on
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the left hand side of an equation, and thus the definition is not that the variable’s
index i satisfies n i  n+m� 1, although that happens to be the case initially.

We will also add a constant term y , initially zero, to the objective function. We
will always represent a linear program in this form, but we will perform algebraic
manipulations so that a particular variable xk sometimes is a basic and and at
other times is a nonbasic variable, depending on whether it to the left or right of
the =. A variable is identified by its index and when we have found an optimal
solution, it is the values of x0, x1, ..., xn�1 which are of interest.

An important observation is that if each coefficient ci in the objective function
is negative, we have found an optimal solution, with value y, each nonbasic
variable set to zero, and each basic variable set to the corresponding bi constant
(the ai j coefficients can be ignored since they are multiplied with nonbasic
variables which are zero).

A strategy to find an optimal solution therefore is to rewrite the problem
until all ci < 0. So, we find any nonbasic variable xk with a positive coefficient
ci , and rewrite the equations so that xk becomes basic and a basic variable
x j becomes nonbasic. Recall, the index k of the variable xk is that variable’s
”identity” and it is located in a column i of the right hand side, i.e., both in the
objective function and the constraints. This nonbasic variable xk is called an
entering basic variable and the basic variable x j is called a leaving basic
variable, because x j will become nonbasic. When we rewrite the equations,
the index of a variable is never changed. There are always n nonbasic and m
basic variables. Assume xk is the nonbasic and x j is the basic and we want
them to switch roles. To do so, we simply take the row with x j and rearrange
it so that xk becomes the left hand side variable. We also need to rewrite the
other rows and the objective function so they no longer contain xk. During the
rewrite, the values of the A matrix, the b and c vectors and the constant term
y change, but not the value of the objective function. This rewriting is called a
pivot operation.

Example B.1.1 Consider again the linear program in Figure B.1. In this example
we will illustrate how it can be solved. We start with the linear program on
standard form:

max z = x0 + 2x1

�0.5x0 + x1  4
3x0 + x1  18

and then introduce two new variables, one for each linear constraint, and write
it on slack form:

max z = x0 + 2x1
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x2 = 4 � ( 0.5x0 + x1 )
x3 = 18 � ( 3x0 + x1 ).

The strategy is to rewrite the problem until all coefficients in the objective
function are negative and then set the nonbasic variables to zero. The optimal
value will then be the constant term in the objective function. The basic variables
are given by their equation which will be the corresponding bi . We select
variable with a positive ci coefficient. Let us take x0, which therefore becomes
the entering basic variable. Since c0 is positive, we want in principle to increase
the value of x0 as much as possible as that increases z. As mentioned, we will
rewrite the problem in order to have only negative coefficients of the nonbasic
variables since we then have found the optimal value of z. In order to achieve
that, we want to increase the value of x0 as much as possible. The basic variables
limit how much x0 can be increased, and it is x3 which is more restrictive since
increasing x0 is limited by 4�0.5x0 � 0 for x2 and 18�3x0 � 0 for x3. Therefore
we select x3 as the leaving basic variable, and after rewriting the problem it
becomes:

max z = �0.333x3 + 1.667x1 + 6

x2 = 7 � ( 0.167x3 + 1.167x1 )
x0 = 6 � ( 0.333x3 + 0.333x1 )

Since we set the nonbasic variables to zero, we can make the observation that the
initial problem with x0 and x1 as nonbasic had a value of the objective function
z = z0 + 2x1 = 0, which corresponds to vertex (0,0) of the feasible region. In the
current problem with nonbasic variables x3 and x1 set to zero and x0 = b1 = 6,
and z = x0 + 2x1 = 6, and the values of x0 and x1 correspond to vertex (6, 0) in
the feasible region.

In this problem only c1 > 0 and x1 becomes entering basic variable. At this
point x2 is most constrained and becomes leaving basic variable, and with the
rewritten problem it is solved.

max z = �0.571x3 � 1.429x2 + 16

x1 = 6 � ( 0.143x3 + 0.857x2 )
x0 = 4 � ( 0.286x3 � 0.286x2 )

We see that x0 = 4 and x1 = 6, i.e. vertex (4, 6) gives z = 16. In this example,
both x0 and x1 happen to become basic variables in the end but this is not in
general the case. Ñ

The variable assignment of zero to each nonbasic variable and the correspond-
ing element of the b vector to each basic variable is called a basic solution, and
a basic feasible solution if it is feasible (i.e. all constraints satisfied). In our
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example, each basic feasible solution corresponded to one vertex and it can be
shown that this is so in general. See for instance [64]. In the next section, we
will present the Simplex algorithm.

B.2 The Simplex algorithm

The main idea of the Simplex algorithm is to improve the value of the objective
function by moving from a vertex to another vertex with a higher value of z.
Consider a linear program P0 in which b � 0. We can then start with setting
all original decision variables (which from the beginning all are nonbasic) to
zero, since then each basic variable becomes non-negative, and we have a basic
feasible solution and can start the algorithm. In a linear program where x = 0
is not in the feasible region, at least one bi is negative. In this case we need
to find another vertex v to start in. To find v, we create a new linear program
P1 as follows. Starting with A and b from P0 we create a new nonbasic variable
xn+m. Instead of the objective function from P0 we use z1 = �xn+m. From each
constraint in the standard form of P1, we subtract xn+m giving each constraint i
the form:

ai,0 x0 + ai,1 x1 + ...+ ai,n�1 � xn+m  bi

If P0 has a feasible solution x, then P1 will as well and with optimal value zero,
i.e. xn+m = 0, since the x from P0 concatenated with xn+m = 0 then is a feasible
solution for P1 which maximizes its objective function. If P1 has optimal value 0
then xn+m = 0 and by removing xm+n from this solution, P0 will have a feasible
solution. Two interesting questions then are:

• can we easily find a feasible solution as start vertex for P1?

• if P1 is feasible, can we use its solution to find a start vertex v for P0?

The answer to the first question is yes, and to the second that we continue
with P1 but with the objective function of P0.

By doing a pivot on P1 with xm+n as entering basic variable and xk with
smallest bk (i.e., most negative) as leaving basic variable, we get b� 0, so P1 can
be solved using the Simplex algorithm, and if the value assigned to xm+n is zero
(or, in practical terms, |xm+n|< ✏) we know both P0 and P1 are feasible. If xm+n
is a basic variable in the solution of P1, we perform one additional pivot to make
xm+n nonbasic, so that xm+n can be removed from P1 (since its value is zero). We
then take the objective function of P0 and use it in P1 by going through each of
the n nonbasic variables in P0, i.e. xk for 0  k < n. We check if xk is nonbasic
or basic in the solution of P1. If it is nonbasic, we can use the coefficient of xk
of the the objective function of P0 directly while if it is basic, we need to take
into account the coefficients of A of the solution of P1 in the row where xk is a
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basic variable. The details can be found in the function initialize in the pseudo
code. Before translating the pseudo code of this and the pivot function to source
code, we strongly recommend the reader to manually perform the calculations
with pen and paper. Although the algorithm might appear to be recursive since
xsimplex and initialize call each other, there is only one level of recursion: when
initialize is called the second time by xsimplex, we have b � 0, so it returns
without calling xsimplex again.

Vertices which are neighbors have all except one basic variable in common.
Therefore, when performing a pivot operation we move from one vertex to a
neighboring vertex. With m basic and n nonbasic variables, there are

�n+m
m

�
ways

to select m basic variables from all m+ n variables. There is a small risk of not
making progress and instead cycles which can be discovered after the same
number of pivot operations. If that happens, we can switch to select entering
and leaving basic variables using Bland’s rule which guarantees progress but
is slower. It states that of the nonbasic variables with a positive coefficient the
one with smallest index should be selected, and if there are multiple leaving
basic variables with the same ratio, again the one with smallest index should be
selected.

The pseudo code below was translated from the author’s C implementation.
The purpose of it is to be as trivial as possible without allocating additional
memory. For instance, it assumes there is memory allocated for the extra decision
variable needed when x= 0 is not a feasible initial basic solution, and the order
in which the statements in a pivot operation are performed can reuse memory
allocated for A, b and c.

Due to finite precision of floating point variables, it is not sufficient to sim-
ply compare a number against zero to see if it is nonzero. We arbitrarily use
✏ = 10�10 but others might prefer a larger value.
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Algorithm B.1 The Simplex algorithm.

Note that one extra column is assumed to have been allocated, for xm+n.

struct simplex_t{
int m ; /* Constraints. */
int n ; /* Decision variables. */
int var [n+m]; /* 0..n� 1 are nonbasic. */
double a [m][n+1]; /* A. */
double b [m]; /* b. */
double x [n+1]; /* x. */
double c [n]; /* c. */
double y ; /* y. */

}

procedure init (s, m, n, a, b, c, x , y, var)
begin

int i,k
*s = (m,n,a,b,c,x,y,var) // assign each attribute
if s.var = null then

s.var = new int [m+n+1]
for (i = 0; i < m+n; i = i + 1)

s.var[i] = i
for (k = 0, i = 1; i < m; i = i + 1)

if b[i] < b[k] then
k = i

return k
end

function select_nonbasic (s)
begin

int i
for (i = 0; i < s.n; i = i + 1)

if s.c[i] > ✏ then
return i

return -1
end
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procedure prepare (s, k)
begin

int m= s.m
int n= s.n
// make room for xm+n at s.var[n] by moving s.var[n..n+m-1] one
// step to the right.
for (i = m+ n; i > n; i = i � 1)

s.var[i] = s.var[i � 1]
s.var[n] = m+ n
// add xm+n to each constraint
n= n+ 1
for (i = 0; i < m; i = i + 1)

s.a[i][n� 1] �1
s.x = new double [m+ n]
s.c = new double [n]
s.c[n� 1] = �1
s.n= n
pivot (s, k, n-1)

end

function initial (s, m, n, a, b, c, x , y, var)
begin

int i,j,k
double w
k = init(s, m, n, a, b, c, x, y, var)
if b[k] � 0 then

return 1 // feasible
prepare (s,k)
n = s.n
s.y = xsimplex (m, n, s.a, s.b, s.c, s.x, 0, s.var,1)
for (i = 0; i < m+n; i = i + 1) {

if s.var[i] = m+n then
if |s.x[i]|> ✏ then

delete s.x
delete s.c
return 0 // infeasible

else
break // This i will be used on the next page.

}

// The rest of this function is on the next page.
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if i � n then
// xn+m is basic. find good nonbasic.
for (j = k = 0; k < n; k = k + 1)

if |s.a[i � n][k]|> |s.a[i � n][ j]| then
j = k

pivot (s,i-n,j)
i = j

if i < n-1 then
// xn+m is nonbasic and not last. swap columns i and n-1
k = s.var[i]; s.var[i] = s.var[n-1]; s.var[n-1] = k
for (k = 0; k < m; k = k + 1)

w = s.a[k][n-1]; s.a[k][n-1] = s.a[k][i]; s.a[k][i] = w
else

// xn+m is nonbasic and last. forget it.
delete s.c
s.c = c
s.y = y
for (k = n-1; k < n+m-1; k = k + 1)

s.var[k] = s.var[k+1]
n = s.n = s.n - 1
t = new double [n]
for (k = 0; k < n; k = k + 1) {

for (j = 0; j < n; j = j + 1)
if k = s.var[j] then

// xk is nonbasic. add ck
t[j] = t[j] + s.c[k]
goto next_k

// xk is basic.
for (j = 0; j < m; j = j + 1)

if s.var[n+j] = k then
// xk is at row j
break

s.y = s.y + s.c[k] * s.b[j]
for (i = 0; i < n; i = i + 1)

t[i] = t[i] - s.c[k] * s.a[j][i]
next_k:;
}
for (i = 0; i < n; i = i + 1)

s.c[i] = t[i]
delete t and s.x
return 1

end
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function pivot (s, row, col)
begin

auto a = s.a
auto b = s.b
auto c = s.c
int m = s.m
int n = s.n
int i,j,t
t = s.var[col]
s.var[col] = s.var[n+row]
s.var[n+row] = t
s.y = s.y + c[col] * b[row] / a[row][col]
for (i = 0; i < n; i = i + 1)

if i 6= col then
c[i] = c[i] - c[col] * a[row][i] / a[row][col]

c[col] = - c[col] / a[row][col]
for (i = 0; i < m; i = i + 1)

if i 6= row then
b[i] = b[i] - a[i][col] * b[row] / a[row][col]

for (i = 0; i < m; i = i + 1)
if i 6= row then

for (j = 0; j < n; j = j + 1)
if j 6= col then

a[i][j] = a[i][j] - a[i][col] * a[row][j] / a[row][col]
for (i = 0; i < m; i = i + 1)

if i 6= row then
a[i][col] = -a[i][col] / a[row][col]

for (i = 0; i < n; i = i + 1)
if i 6= col then

a[row][i] = a[row][i] / a[row][col]
b[row] = b[row] / a[row][col]
a[row][col] = 1 / a[row][col]

end
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function xsimplex (m, n, a, b, c, x , y, var, h)
begin

simplex_t s
if !initial (&s, m, n, a, b, c, x , y, var) then

delete s.var
return NaN // not a number

while (col  select_nonbasic (&s))� 0) {
row -1
for (i = 0; i < m; i = i + 1)

if a[i][col] > ✏ and
(row < 0 or b[i] / a[i][col] < b[row] / a[row][col]) then
row = i

if row < 0 then
delete s.var
return1 // unbounded

pivot (s,row, col)
}
if h = 0 then

for (i = 0; i < n; i = i + 1)
if s.var[i] < n then

x[s.var[i]] = 0
for (i = 0; i < m; i = i + 1)

if s.var[n+i] < n then
x[s.var[n+i]] = s.b[i]

delete s.var
else

for (i = 0; i < n; i = i + 1)
x[s.var[i]] = 0

for (i = n; i < n+m; i = i + 1)
x[s.var[i]] = s.b[i-n]

return s.y
end

function simplex (m, n, a, b, c, x , y)
begin

return xsimplex (m,n,a,b,c,x,y,null,0)
end
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B.3 Integer linear programming

Integer linear programming is an NP-complete problem in which the decision
variables are integers, and therefore, no efficient algorithm for finding an optimal
solution exists. Again, we have n decision variables and m constraints. If we
relax the integer requirement, and try the Simplex algorithm and it happens
to produce an integer solution, i.e. with each xi 2 N, then that is the optimal
solution, and we are ready. If it does not, let us denote the initial integer program
p, the value returned by the Simplex algorithm for the relaxed problem p.z and
the variable assignment p.x . Rounding each non-integer p.xi does not work, but
we still have use for the Simplex algorithm.

Suppose p.xk = u /2 N. We can then create two new problems, one with the
additional constraint xk  buc and another with xk � due. For the moment, think
of these as left and right children of p. In principle, we can create a search tree
in this way and enumerate all solutions and select the optimal one, but that would
be impractical. Conceptually, we will create a tree but try to avoid enumerating
all solutions. In the search tree, a child has all constraints of its parents plus the
additional constraint from xk from its parent (i.e., either xk  buc or xk � due).
Each node in the search tree therefore has limits on each variable. Initially we
have 0  xi 1 for 0  i < n. These limits are then added to a node (and its
descendants) as constraints expressed in a node’s A and b.

When we have created the two left and right children of a node q, q is no
longer needed and all its memory can be recycled. We need a set of nodes which
wait for being explored. Denote this set by h. By exploring a node q is meant that
we check if q has an integer solution which is better than what we have seen so
far, in which case we remember that solution but create no children of q (since
no additional constraints on the children of q can possibly find a better solution
than q.z). If q instead was not an integer solution, we compare q.z with the value
of the best integer solution found so far. If q.z is higher, then we create two new
nodes, and add them to h, since one or both of these may lead to a better integer
solution. If q.z is lower, there is no point in creating any new node since they
cannot be better than q.

In addition, whenever we find a better integer solution, we remove from h all
waiting nodes with a lower z. The approach to solve integer linear problem we
have just seen can be generalized for other problems as well. It is an example of a
branch-and-bound algorithm. In the next section we present pseudo code for
a integer program solver. The function intopt is the main function. In the pseudo
code, delete means deallocate memory. The pseudo code should be viewed as a
reference implementation as it is not optimized (translating the pseudo code to C
and optimizing it is studied in the course EDAG01 Efficient C at Lund University).
The memory used by a node for A, b, c, and x is needed only for Simplex and
can be deallocated either directly after a node no longer is needed, or, for a
node which will branch, after the value of the branching variable, xh, has been
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saved. See branch. It should be noted that integer problems often are sparse and
instead of explicitly storing and computing with all zeroes, it is then better to
use a more compact representation, as discussed in Section 17.5, on page 663.

Example B.3.1 Consider an undirected graph G(V, E) with m edges and n ver-
tices. At most n colors are needed and we create n binary decision variables
wi for 0  i < n, with the meaning wi = 0 if color i is unused and wi = 1 if at
least one vertex is assigned color i. For each vertex v we then create n decision
variables xvi , also binary, with the meaning that xvi = 1 if vertex v is assigned
color i and otherwise zero. The object function is to minimize the number of used
colors, i.e., the sum of all wi . There are two types of constraints:

• each vertex must be assigned a color, so the sum of all xvi for a particular
vertex v must be one, and

• two neighbors cannot use the same color, so if u and v are neighbors
xui + xvi  wi , for all i.

The model becomes:

min z = w0 + w1 + ...+ wn�1

n�1P
i=0

xvi = 1 8v 2 V

xui + xvi  wi 8(u, v) 2 E

xvi , wi 2 {0, 1} 8v 2 V, 0 i < n

Since we expect the constraints to be on the form Ax  b, we write it as
follows instead:

min z = w0 + w1 + ...+ wn�1

n�1P
i=0

xvi  1 8v 2 V

n�1P
i=0
�xvi  �1 8v 2 V

xui + xvi � wi  0 8(u, v) 2 E

xvi , wi  1 8v 2 V, 0 i < n

Ñ
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Example B.3.2 Consider next the problem of instruction scheduling to min-
imize pipeline delays. See Section 3.3, on page 156, Section 3.4, on page 158,
and [66]. This is an important part of all optimizing compilers. Assume for
simplicity the input is a list of instructions, each with two source operands, one
destination operand and a number indicating how many clock cycles it takes a
CPU to execute the instruction. For instance, for a floating point add instruction,
this latency may be five clock cycles. The input can be described as a weighted
directed acyclic graph with nodes being instructions and with an edge from u to
v if instruction u computes the value of an operand of instruction v. The edge has
weight the latency of u. The instruction scheduling problem is NP-complete for
most realistic CPUs. How can we solve it with integer linear programming? Let
our goal be to find an m cycle schedule, and that our CPU can issue r instructions
each clock cycle.

Let x j
i be a decision variable which says instruction i is scheduled in cycle j.

Our schedule must satisfy the dependences in the dag, i.e., with an edge from u
to v, u must not be scheduled after v for correctness, but preferably sufficiently
earlier than v to take the latency of u into account. Denote by Luv this latency. In
this example we look for any feasible solution. With the nodes V , with n = |V |,
and edges E, a basic model then becomes:

mP
j=1

x j
i = 1 8xi 2 V

nP
i=1

x j
i  r 81 j  n

mP
j=1

j ⇥ x j
k + Lki 

mP
j=1

j ⇥ x j
i 8(k, i) 2 E

In the last constraint, the expression
Pm

j=1 j⇥x j
k is the cycle in which instruction k

is scheduled. Wilken presents improvements to this basic formulation [78]. Ñ
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B.4 Branch-and-bound algorithm

Algorithm B.2 Branch-and-bound for integer linear programming.

Integer linear programming algorithm.

struct node_t{
int m /* Constraints. */
int n /* Decision variables. */
int k /* Parent branches on xk. */
int h /* Branch on xh. */
double xh /* xh. */
double ak /* Parent ak. */
double bk /* Parent bk. */
double min [n] /* Lower bounds. */
double max [n] /* Upper bounds. */
double a [m][n] /* A. */
double b [m]; /* b. */
double x [n]; /* x. */
double c [n]; /* c. */
double z ; /* z. */

}

function initial_node (m, n, a, b, c)
begin

auto p = allocate memory for a node
p.a = new double [m+1][n+1]
p.b = new double [m+1]
p.c = new double [n+1]
p.x = new double [m+n+1]
p.min = new double [n]
p.max = new double [n]
copy a, b, and c parameters to p
for (i = 0; i < n; i = i + 1) {

p.min[i] = �1
p.max[i] = +1

}
return p

end
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function extend (p, m, n, a, b, c, k, ak, bk)
begin

auto q = allocate memory for a node
q.k = k
q.ak = ak
q.bk = bk
if ak > 0 and p.max[k] <1 then

q.m = p.m
else if ak < 0 and p.min[k] > 0 then

q.m = p.m
else

q.m = p.m + 1
q.n = p.n
q.h = -1
q.a = new double [q.m+1][q.n+1] // note normally q.m > m
q.b = new double [q.m+1]
q.c = new double [q.n+1]
q.x = new double [q.n+1]
q.min = new double [n+1]
q.max = new double [n+1]
copy p.min and p.max to q // each element and not only pointers
copy m first rows of parameter a to q.a // each element
copy m first elements of parameter b to q.b
copy parameter c to q.c // each element
if ak > 0 then

if q.max[k] =1 or bk < q.max[k] then
q.max[k] = bk

else if q.min[k] = �1 or -bk > q.min[k] then
q.min[k] = -bk

for (i = m, j = 0; j < n; j = j + 1) {
if q.min[j] > �1 then

q.a[i][j] = -1
q.b[i] = -q.min[j]
i += 1

if q.max[j] <1 then
q.a[i][j] = 1
q.b[i] = q.max[j]
i += 1

}
return q

end
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function is_integer (x p)
begin

// xp is a pointer to a double
double x = *xp
double r = round(x) // ISO C lround
if |r � x |< ✏ then

*xp = r
return 1

else
return 0

end

function integer (p)
begin

for (i = 0; i < p.n; i = i + 1)
if !is_integer (&p.x[i]) then

return 0
return 1

end

procedure bound (p, h, zp, x)
// zp is a pointer to max z found so far
if p.z > *zp then

*zp = p.z
copy each element of p.x to x // save best x
remove and delete all nodes q in h with q.z < p.z

end

function isfinite (x)
begin

// ISO C function
if x is a NaN or |x |=1 then

return 0
else

return 1
end
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function branch (q, z)
begin

if q.z < z then
return 0

for (h = 0; h < q.n; h = h + 1)
if !is_integer (&q.x[h]) then

if q.min[h] = �1 then
min = 0

else
min = q.min[h]

max = q.max[h]
if bq.x[h]c< min or dq.x[h]e> max then

continue
q.h = h
q.xh = q.x[h]
delete each of a,b,c,x of q // or recycle in other way
return 1

return 0
end

procedure succ (p, h, m, n, a, b, c, k, ak, bk, zp, x)
auto q = extend (p,m,n,a,b,c,k,ak,bk)
if q = null then

return
q.z = simplex(q.m, q.n, q.a, q.b, q.c, q.x, 0)
if isfinite (q.z) then

if integer (q) then
bound (q,h,zp,x)

else if branch (q, *zp) then
add q to h
return

delete q
end

729



function intopt (m, n, a, b, c, x)
begin

auto p = initial_node (m,n,a,b,c,x)
set h = {p}
double z = �1 // best integer solution found so far
p.z = simplex (p.m, p.n, p.a, p.b, p.c, q.x, 0)
if integer (p) or !isfinite (p.z) then

z = p.z
if integer (p) then

copy p.x to x
delete p
return z

branch (p,z)
while h 6= ;

take p from h
succ (p, h, m, n, a, b, c, p.h, 1, bx .hc, &z, x)
succ (p, h, m, n, a, b, c, p.h, -1, �dx .he, &z, x)
delete p

if z = �1 then
return NaN // not-a-number

else
return z

end

730


