
Lecture 12: Introduction to Optimizing Compilers

Motivation for using optimizing compilers
Control flow analysis

Dominance analysis
Loop analysis

Scalar optimizations on SSA Form
Copy propagation
Global value numbering
Partial redundancy elimination
Operator strength reduction
Constant propagation
Dead code elimination

Instruction scheduling
Register allocation

jonasskeppstedt.net Optimizing Compilers 2020 1 / 78



Motivation for Using Optimizing Compilers

Execution time / energy reduction: possible speedups due to
compiler optimization depend on the application and the architecture
(e.g. pipeline, SIMD, caches, multicore).
Example: SPEC CPU2000 benchmark gzip on a Power machine:
PowerMac Quad G5/2.5 GHz with similar cores to the IBM Power4
plus SIMD (the first multicore chip)
Compiler Opt level Execution time
IBM XL max opt 135 s
GCC 4.7.2 max opt 145 s
GCC 4.7.2 no opt 494 s

Increase programmer productivity by knowing
what the compiler can optimize faster and better than himself/herself,
and
compilers’ limitations and how to write code that helps them to do
better automatic optimization.

jonasskeppstedt.net Optimizing Compilers 2020 2 / 78



Control-Flow Graph: Example C Code

a = u + v;
if (a > b) {

y = u;
} else {

a = u - v;
b = a - 1;

}
y = a * b;

jonasskeppstedt.net Optimizing Compilers 2020 3 / 78



Control-flow graph: Basic Blocks and Branches

a = u + v
a > b ??

y = u

y = a*b

a = u - v
b = a - 1

Basic block: sequence of instructions with no label or branch
CFG: directed graph with basic blocks as nodes and branches as edges

jonasskeppstedt.net Optimizing Compilers 2020 4 / 78



Control-Flow Graph: the CFG View

s

1

2

3

4

e

Special nodes:
the first node is called s — start
the last node is called e — exit

jonasskeppstedt.net Optimizing Compilers 2020 5 / 78



Definition of Dominance

Consider a control flow graph G (V ,E , s, e) and two vertices u, v ∈ V .
If every path from s to v includes u then u dominates v , written
u � v .
For example 1 dominates itself, 2, 3, 4, and e.

s

1

2

3

4

e

jonasskeppstedt.net Optimizing Compilers 2020 6 / 78



Immediate dominators

The set dom(w) is a total order.
In other words: if u, v ∈ dom(w) then either u � v or v � u.
We can order all vertices in dom(w) to find the ”closest” dominator
of w .
First let S ← dom(w)− {w}.
Consider any two vertices in S .
Remove from S the one which dominates the other. Repeat.
The only remaining vertex in S is the immediate dominator of w .
We write the immediate dominator of w as idom(w).
Every vertex, except s, has a unique immediate dominator.
We can draw the immediate dominators in a tree called the
dominator tree.

jonasskeppstedt.net Optimizing Compilers 2020 7 / 78



The Dominator Tree

CFG
0

1

2

3

4

5

6

7

w idom(w)

0 -
1 0
2 1
3 1
4 3
5 1
6 2
7 6

DT
0

1

2 3

4

5

6

7

jonasskeppstedt.net Optimizing Compilers 2020 8 / 78



The Lengauer-Tarjan Algorithm

The LT algorithm is the standard algorithm for computing the
dominator tree.
It was completed in 1979 by Robert Tarjan and his PhD student
Thomas Lengauer at Stanford.
Thomas Lengauer is the brother of Christian Lengauer whose group in
Passau has developed many high order transformations which are now
being implemented in clang and gcc.
The LT algorithm calculates the immediate dominators in a clever way
and is based on insights from depth first search.

jonasskeppstedt.net Optimizing Compilers 2020 9 / 78



Loop Analysis Using Dominance: More About DFS

0

1

2 5

3

4

6

0

1

tree

2

tree

5

tree

3

tree

forw
ard

cr
os
s

4

6

tree

tree

cross

cycle

jonasskeppstedt.net Optimizing Compilers 2020 10 / 78



Loop Analysis Using Dominance: Cycle Arcs

Loops can be found by exploiting cycle arcs.
In a natural loop, one vertex called the header dominates all vertices
in the loop.
Suppose there is a cycle arc (v , u) such as (3, 1) above.
Then, if u � v we know that u is a natural loop header.
We can search backwards from v and include everything we find to the
loop, stopping at u.
Due to u � v we cannot go wrong and miss u.

jonasskeppstedt.net Optimizing Compilers 2020 11 / 78



Static Single Assignment For Form: SSA Form

A variable is only assigned to by one unique instruction
That instruction dominates all the uses of the assigned value
We introduce a new variable name at each assignment
SSA Form is the key to elegant and efficient scalar optimization
algorithms
Invented by IBM Research Yorktown Heights in New York

But what to do when paths from different assignments join???

jonasskeppstedt.net Optimizing Compilers 2020 12 / 78



Partial Translation to SSA Form

a0 = u + v
a0 > b ??

s

y = ux

a2 = ???
y0 = a2 + v

e

a1 = u - v
b = a1 - 1

y

In node e: if we came from node x we let a2 ← a0 and if we came from
node y we let a2 ← a1. This operation is called the φ-function.

jonasskeppstedt.net Optimizing Compilers 2020 13 / 78



Our Example Translated to SSA Form

a0 = u + v
a0 > b ??

y = u

a2 ← φ(a0, a1)
y0 = a2 + v

a1 = u - v
b = a1 - 1

s

x y

e

jonasskeppstedt.net Optimizing Compilers 2020 14 / 78



A Function Translated to SSA Form

We insert a φ-function where the paths from two different assignments
of the same variable join
With the φ-function, each definition dominates its uses

jonasskeppstedt.net Optimizing Compilers 2020 15 / 78



Copy Propagation

x0 = a0 + b0; x0 = a0 + b0;
if (...) { if (...) {

...; ...;
} }
y0 = x0; /* COPY */
if (...) { if (...) {

...; ...;
} }
c0 = y0 + 1; /* USE */ c0 = x0 + 1;

With SSA Form we can know that it is correct to replace y0 with x0

The values of x0 and y0 do not change after the definition (in a static
sense)

jonasskeppstedt.net Optimizing Compilers 2020 16 / 78



Constant Propagation with Iterative Dataflow Analysis

a = 1;
b = 2;
if (a < b)

c = 3;
else

c = 4;
put(c);

Invented by Gary Kildall in 1973.
Each variable can be either

Unknown
Constant
Non-constant

Iterative dataflow analysis is performed to
determine whether a variable is constant and
in that case which constant.
All branches (i.e. paths in a function) are
assumed to be executable.
Since c cannot be both 3 and 4 it’s assumed
to be nonconstant.

jonasskeppstedt.net Optimizing Compilers 2020 17 / 78



Constant Propagation with Conditional Branches

a = 1;
b = 2;
if (a < b)

c1 = 3;
else

c2 = 4;
c3 = phi(c1, c2);
put(c3);

Based on SSA Form.
Invented at IBM Research and published
1991.
Recall Kildall’s algorithm assumed every
branch was executable.
This algorithm assumes that nothing is
executable except the start vertex.
The function is interpreted and the constant
expressions are propagated.
The interpretation proceeds until no new
knowledge about constants can be found.

jonasskeppstedt.net Optimizing Compilers 2020 18 / 78



Key Idea with φ-functions

a = 1;
b = 2;
if (a < b)

c1 = 3;
else

c2 = 4;
c3 = phi(c1, c2);
put(c3);

Thanks to SSA Form, one statement and
variable is analyzed at a time.
At a φ-function, if any operand is
nonconstant the result is nonconstant, and if
any two constants have different values the
result also is nonconstant.
However, operands corresponding to
branches which we don’t think will be
executed can be ignored for the moment.
While interpreting the program we may later
realize that the branch in fact might be
executed and then the φ-function will be
re-evaluated.
We can ignore c2 and let c3 be 3.

jonasskeppstedt.net Optimizing Compilers 2020 19 / 78



Value Numbering

The name is due to each expression, e.g. ti ← a + b, is given a
number, essentially a hash-table index.
In subsequent occurrences of tj ← a + b it is checked whether the
statement can be changed to tj ← ti .
This is a very old optimization technique with one version that is
performed during translation to SSA Form and other versions when
the code already is on SSA Form.
There are obviously older versions used before SSA Form but we will
not look at them.

jonasskeppstedt.net Optimizing Compilers 2020 20 / 78



Redundancy Elimination

An expression a + b is redundant if it is evaluated multiple times with
identical values of the operands.
Eliminating redundant expressions is a very important optimization
goal.
There are different approaches to redundancy elimination, including

1 Hash-Based Value Numbering
2 Global Value Numbering
3 Common Subexpression Elimination
4 Code Motion out of Loops
5 Partial Redundancy Elimination

We will look at 1, 2, and 5.

jonasskeppstedt.net Optimizing Compilers 2020 21 / 78



Example 1

a0 ← x
b0 ← y

0

c0 ← a0 + b0
1

d0 ← a0 + b0
2

/* ... */
3

e0 ← a0 + b0
4

In vertex 1 the expression a0 + b0 is first
computed.

The redundant occurrences of a0 + b0 can
easily be removed.

On SSA Form we simply check that the
variable versions are the same in the
current and previous occurrence.

jonasskeppstedt.net Optimizing Compilers 2020 22 / 78



Example 2

a0 ← x
b0 ← y

0

c0 ← a0 + b0
b0 = a0?

1

d0 ← a0 + b0
2

a1 ← φ(a0, a2)
f0 ← a1 + b0

3

a2 ← a0 + b0
e0 ← a2 + b0

4

The occurrences in vertices 3 and 4
cannot mistakenly be regarded as useful
due to mismatching variable versions.

jonasskeppstedt.net Optimizing Compilers 2020 23 / 78



Example 3

a0 ← x
b0 ← y

0

1

d0 ← a0 + b0
2

3

e0 ← a0 + b0
4

Obviously there are no redundant
expressions here.

We could perhaps save memory by
computing a0 + b0 in vertex 1 but that is
not a goal for redundancy elimination.

Which data structure should we use for
performing value numbering during
translation to SSA Form?

jonasskeppstedt.net Optimizing Compilers 2020 24 / 78



The Power of Global Value Numbering

int h(int a, int b) int h(int a, int b)
{ {

int x, y; int x, y;

x = 1; x = 1;
y = 1; do {
do { a = a + b;

a = a + b; x = x + a;
x = x + a; } while (a > 0);
y = y + a; return x + x;

} while (a > 0); }
return x + y;

}

jonasskeppstedt.net Optimizing Compilers 2020 25 / 78



Purpose of Partial Redundancy Elimination

Partial Redundancy Elimination, or PRE, can eliminate both full and
partial redundancies.
Full redundancies: when the expression is available from all predecessor
basic blocks.
Partial redundancies: when the expression is only available from some
but not all predecessor basic blocks.
Partial redundancies also covers loops, i.e. PRE can move code out
from loops.

jonasskeppstedt.net Optimizing Compilers 2020 26 / 78



Partial Redundancy Elimination History

PRE was invented by Morel and Renvoise in 1979.
Then Fred Chow in his PhD thesis at Stanford from 1983 (with John
Hennessy as supervisor) improved it.
In 1992 Knoop et al. published a version of PRE which is optimal in
the sense of minimizing register pressure. They called their algorithm
Lazy Code Motion.
It was stated by a famous researcher that PRE cannot be done on
SSA Form since SSA Form involves variables while PRE involves
expressions.
”Cannot” is dangerous to state in public...
In 1999 Kennedy and Chow and others at SGI published the SSA
formulation of Lazy Code Motion and called it SSAPRE.
We will look at a simpler version of it and then note that there exists
a faster implementation.

jonasskeppstedt.net Optimizing Compilers 2020 27 / 78



Limitations of Value Numbering

a0 + b00

a0 + b01

a1 ← x2 4

a2 ← φ(a1, a0)
a2 + b0

3

Both hash-based and global
value numbering can optimize
the full redundancy in vertex 1.
None of them can optimize the
partial redundancy in vertex 3.

jonasskeppstedt.net Optimizing Compilers 2020 28 / 78



The Key Idea of SSAPRE

h0 ← a0 + b00

h1 ← a0 + b01

a1 ← x
h2 ← ⊥

2 4

h3 ← Φ(h2, h1)
a2 ← φ(a1, a0)
a2 + b0

3

We create Φ-functions for the
hypothetical variable h.
After SSAPRE, Φ-functions
become normal φ-functions and
they are really the same
(different notation to distinguish
between them only).
By inserting the expression a + b
at Φ-operands with the value ⊥
(”bottom”), the partial
redundancy in vertex 3 becomes
a full redundancy and can be
eliminated.

jonasskeppstedt.net Optimizing Compilers 2020 29 / 78



Operator Strength Reduction

double a[N]; double* p = a;
double* end = &a[N];

for (i = 0; i < N; ++i)
x += a[i]; while (p < end)

x += *p++;

The most important purpose is to rewrite the code to the left into the
code to the right.
C/C++ compilers are required to make it possible to use the address
of the array element after the last declared element.
Typically, in total one extra byte might be wasted in memory due to
this.
It’s not one extra byte per array but rather per memory segment.

jonasskeppstedt.net Optimizing Compilers 2020 30 / 78



Invalid C Code

double a[N]; double* p = &a[N];

for (i = N-1; i >= 0; --i) while (--p >= a)
x += a[i]; x += *p;

In the last iteration p == &a[-1] in the comparison.
The compiler is not required to make that address valid.
The code to the right triggers undefined behavior if performed by the
programmer.

jonasskeppstedt.net Optimizing Compilers 2020 31 / 78



Another Name for OSR

OSR is also known as Induction Variable Elimination

do { do {
x = x + a[i]; s = i * 4;
i = i + 1; t = load a+s;

} while (i < N); x = x + t;
i = i + 1;

} while (i < N);

jonasskeppstedt.net Optimizing Compilers 2020 32 / 78



Basic och dependent IV

The primary goal is to get rid of the multiplication

do {
s = i * 4;
t = load a+s;
x = x + t;
i = i + 1;

} while (i < N);

i is a basic induction variable
Classes of dependent induction variables: j ← b × i + c , i is a basic IV
s ← 4× i + 0

jonasskeppstedt.net Optimizing Compilers 2020 33 / 78



Strength reduction

s = 4 * i;
do { do {

s = i * 4;
t = load a+s; t = load a+s;
x = x + t; x = x + t;
i = i + 1; i = i + 1;

s = s + 4;
} while (i < N); } while (i < N);

Initialize the dependent IV before the loop
Increment the dependent IV just after the basic IV is incremented
Maybe we can get rid of the basic IV now?

jonasskeppstedt.net Optimizing Compilers 2020 34 / 78



Linear function test replacement

s = 4 * i; m = 4 * N;
do { s = 4 * i;

t = load a+s; do {
x = x + t; t = load a+s;
i = i + 1; x = x + t;
s = s + 4; s = s + 4;

} while (i < N); } while (s < m);

s = i × b + c (we have b = 4 and c = 0)
i = s−c

b

i < N ⇒ s−c
b < N ⇒ s < N × b + c , if b > 0

jonasskeppstedt.net Optimizing Compilers 2020 35 / 78



A Loop and its SSA Representation

double a[N];

for (i = 0; i < N; ++i)
x += a[i];

x0 ← 0
i0 ← 0

x1 ← φ(x0, x2)
i1 ← φ(i0, i2)
i1 ≥ n?

t1 ← i1 × 8
t2 ← M[a + t1]
x2 ← x1 + t2
i2 ← i1 + 1

jonasskeppstedt.net Optimizing Compilers 2020 36 / 78



The SSA Graph of the Loop

0x0

φ(x0, x2)x1

x1 + t2x2

M[a + t1]t2

i1 × 8t1 0i0

φ(i0, i2)i1

i1 + 1i2

We first find all strongly connected components of the SSA graph.
We want to copy the SCC of i and modify the copy for t1.
Therefore we want to have processed i before processing t1.
Let us start with x .

jonasskeppstedt.net Optimizing Compilers 2020 37 / 78



Processing of x0

0x0

φ(x0, x2)x1

x1 + t2x2

M[a + t1]t2

i1 × 8t1 0i0

φ(i0, i2)i1

i1 + 1i2

SCC0 = {x0}. Empty stack.
Nodes processed in a SCC are green.
Next processing x1.

jonasskeppstedt.net Optimizing Compilers 2020 38 / 78



Processing of x1 and x2

0x0

φ(x0, x2)x1

x1 + t2x2

M[a + t1]t2

i1 × 8t1 0i0

φ(i0, i2)i1

i1 + 1i2

x1 and x2 are pushed and then the search continues with t2.
Nodes on the stack are red.
Next processing t2.

jonasskeppstedt.net Optimizing Compilers 2020 39 / 78



Processing of t2

0x0

φ(x0, x2)x1

x1 + t2x2

M[a + t1]t2

i1 × 8t1 0i0

φ(i0, i2)i1

i1 + 1i2

Next processing t1.

jonasskeppstedt.net Optimizing Compilers 2020 40 / 78



Processing of t1

0x0

φ(x0, x2)x1

x1 + t2x2

M[a + t1]t2

i1 × 8t1 0i0

φ(i0, i2)i1

i1 + 1i2

Next processing i2.

jonasskeppstedt.net Optimizing Compilers 2020 41 / 78



Processing of i2 and i1

0x0

φ(x0, x2)x1

x1 + t2x2

M[a + t1]t2

i1 × 8t1 0i0

φ(i0, i2)i1

i1 + 1i2

Next processing i0.

jonasskeppstedt.net Optimizing Compilers 2020 42 / 78



Processing of i0

0x0

φ(x0, x2)x1

x1 + t2x2

M[a + t1]t2

i1 × 8t1 0i0

φ(i0, i2)i1

i1 + 1i2

SCC1 = {i0}
Next more processing in i2.

jonasskeppstedt.net Optimizing Compilers 2020 43 / 78



Classifying SCC2 = {i1, i2}

0x0

φ(x0, x2)x1

x1 + t2x2

M[a + t1]t2

i1 × 8t1 0i0

φ(i0, i2)i1

i1 + 1i2

SCC2 = {i1, i2}
SCC2 is an induction variable due it consists of a φ-function and an
add with a region constant.
A region constant is not modified in a loop, i.e. it’s a number or its
definition strictly dominates the loop header.
jonasskeppstedt.net Optimizing Compilers 2020 44 / 78



Replacing i1 × 8

0x0

φ(x0, x2)x1

x1 + t2x2

M[a + t1]t2

i1 × 8t1 0i0

φ(i0, i2)i1

i1 + 1i2

SCC3 = {t1}
SCC3 is a multiplication of an induction variable and a region constant.
Therefore SCC3 is replaced by a modified copy of SCC2 with φ(i).

jonasskeppstedt.net Optimizing Compilers 2020 45 / 78



Modifying a Copy of SCC2 to Compute t1

0x0

φ(x0, x2)x1

x1 + t2x2

M[a + y1]t2

i1 × 8t1 0y0

φ(y0, y2)
y1

y1 + 8y2

0i0

φ(i0, i2)i1

i1 + 1i2

SCC4 = {y1, y2}
Due to the replacement, the assignment to t1 becomes dead code.
There is a very beautiful algorithm to remove t1 and other dead code
that we will look at soon.

jonasskeppstedt.net Optimizing Compilers 2020 46 / 78



Also a + t1 can be Replaced

0x0

φ(x0, x2)x1

x1 + t2x2

M[a + y1]t2

i1 × 8t1 0 y0

φ(y0, y2)
y1

y1 + 8 y2

0i0

φ(i0, i2)i1

i1 + 1i2

Due to Tarjan’s algorithm we can start in any node and be sure we
have already processed the operand nodes, when a variable’s definition
is going to be replaced.
Not only multiplications but also some additions can be replaced, but
we don’t show this in the example.

jonasskeppstedt.net Optimizing Compilers 2020 47 / 78



Two Simple Forms of Dead Code Elimination

#include <stdio.h>

int main(void)
{

int a;

a = 1;
a = a + 2;

goto L;

printf("a = %d\n", a);

L:
return 0;

}

DFS
Liveness Analysis

jonasskeppstedt.net Optimizing Compilers 2020 48 / 78



Depth First Search and Dominance Analysis

DFS from the start vertex visits all basic blocks reachable from the
start vertex, obviously.
All other vertices are removed before performing dominance analysis.
For some minor modifications of the control flow graph an existing
dominator tree can be updated.
In general, it’s easier and probably faster to recompute the dominator
tree from scratch, according to some researchers who tried to update
the DT.

jonasskeppstedt.net Optimizing Compilers 2020 49 / 78



Limitations of DCE Based on Liveness Analysis

for (i = 0; i < n; ++i)
a = a + i * i;

return;

The variable a is live in the loop but will not affect program output.
The loop should be deleted but it cannot be using DCE based on
liveness.

jonasskeppstedt.net Optimizing Compilers 2020 50 / 78



DCE Based on Observable Output

The correct approach to DCE is to delete all code which cannot affect
the observable output.
In each function, some instructions are marked as live, e.g. calls to
printf, and are put in a worklist.
Then, recursively, all instructions which provide input to a live
instruction is marked as live and put on the worklist.
Eventually no new instructions are marked as live and all other
instructions can be deleted (but read more about branches first!).
Instructions initially marked live include: function calls, memory writes,
and return instructions.
Why did it take more than 30 years to invent this obvious approach to
DCE?

jonasskeppstedt.net Optimizing Compilers 2020 51 / 78



SSA and DCE

The main reason why it was not invented earlier is that the other
approaches usually were sufficient.
With SSA Form, however, it’s more likely there will be lots of
instructions, in particular φ-functions, which remain after other
optimizations.
For example, operator strength reduction explicitly copies and modifies
the strongly connected components in the SSA Graph of induction
variables, which can leave a lot of work to DCE.
The article in ACM Transactions on Programming Languages and
Systems (TOPLAS) which presented SSA Form also presented the
DCE algorithm we will study.

jonasskeppstedt.net Optimizing Compilers 2020 52 / 78



Control Dependence

s

u

x

y

w

e

v

Assume there is a live instruction in vertex x .
The DCE algorithm must assure execution
actually reaches x exactly as the original
program would.
Therefore some conditional branch
instructions (and the instructions providing
their input etc) which branch to x must also
be marked live.
In this example the branch in u controls
whether x certainly will be executed.
The vertices that control whether w will be
executed are u, v , and w itself.

jonasskeppstedt.net Optimizing Compilers 2020 53 / 78



The DCE Algorithm

procedure eliminate_dead_code (G)
for each statement s do

if (s is prelive) {
live (s) ← true
add s to worklist

} else
live (s) ← false

worklist← prelive
while (worklist 6= ∅) do {

take s from worklist
v ← vertex (s)
live (v) ← true
for each source operand ω of s do {

t ← def (ω)
if (not live (t)) {

live (t) ← true
add t to worklist

}
}
for each vertex v ∈ CD−1(vertex(s)) do {

t ← multiway branch of v
if (not live (t)) {

live (t) ← true
add t to worklist

}
}

}
for each statement s do

if (not live (s) and s /∈ {label, branch})
delete s from vertex (S)

simplify (G)
end jonasskeppstedt.net Optimizing Compilers 2020 54 / 78



Simplifying the CFG after DCE

procedure simplify (G)
live (e) ← true
modified ← false
for each vertex u ∈ G do {

if (not live (u))
continue

for each v ∈ succ (u) do {
if (live (v))

continue
w ← ipdom (v) /* idom in RCFG */
while (not live (w))

w ← ipdom (w)
replace (u, v) with (u,w)
update the branch in u to its new target w
update φ-functions in w if necessary
modified ← true

}
}
if (modified) {

delete vertices from G which now have become unreachable
update dominator tree DT

}
end

Green denotes live vertices

0 a0 ← x

1 a0 6= y?

2

3a1 ← z

4

5

6

7
a2 ← φ(a1, a0, a0)
print(a2)

8

9

10

11

12

13

14

jonasskeppstedt.net Optimizing Compilers 2020 55 / 78



Processing 0

procedure simplify (G)
live (e) ← true
modified ← false
for each vertex u ∈ G do {

if (not live (u))
continue

for each v ∈ succ (u) do {
if (live (v))

continue
w ← ipdom (v) /* idom in RCFG */
while (not live (w))

w ← ipdom (w)
replace (u, v) with (u,w)
update the branch in u to its new target w
update φ-functions in w if necessary
modified ← true

}
}
if (modified) {

delete vertices from G which now have become unreachable
update dominator tree DT

}
end

0 a0 ← x

1 a0 6= y?

2

3a1 ← z

4

5

6

7
a2 ← φ(a1, a0, a0)
print(a2)

8

9

10

11

12

13

14

Only successor is live.

jonasskeppstedt.net Optimizing Compilers 2020 56 / 78



Processing 1: Edge (1, 2)

procedure simplify (G)
live (e) ← true
modified ← false
for each vertex u ∈ G do {

if (not live (u))
continue

for each v ∈ succ (u) do {
if (live (v))

continue
w ← ipdom (v) /* idom in RCFG */
while (not live (w))

w ← ipdom (w)
replace (u, v) with (u,w)
update the branch in u to its new target w
update φ-functions in w if necessary
modified ← true

}
}
if (modified) {

delete vertices from G which now have become unreachable
update dominator tree DT

}
end

0 a0 ← x

1 a0 6= y?

2

3a1 ← z

4

5

6

7
a2 ← φ(a1, a0, a0)
print(a2)

8

9

10

11

12

13

14

2 is dead. Nearest live is 3.

jonasskeppstedt.net Optimizing Compilers 2020 57 / 78



Processing 1: Edge (1, 2)

procedure simplify (G)
live (e) ← true
modified ← false
for each vertex u ∈ G do {

if (not live (u))
continue

for each v ∈ succ (u) do {
if (live (v))

continue
w ← ipdom (v) /* idom in RCFG */
while (not live (w))

w ← ipdom (w)
replace (u, v) with (u,w)
update the branch in u to its new target w
update φ-functions in w if necessary
modified ← true

}
}
if (modified) {

delete vertices from G which now have become unreachable
update dominator tree DT

}
end

0 a0 ← x

1 a0 6= y?

2

3a1 ← z

4

5

6

7
a2 ← φ(a1, a0, a0)
print(a2)

8

9

10

11

12

13

14

2 is dead. Nearest live is 3.

jonasskeppstedt.net Optimizing Compilers 2020 58 / 78



Processing 1: Edge (1, 9)

procedure simplify (G)
live (e) ← true
modified ← false
for each vertex u ∈ G do {

if (not live (u))
continue

for each v ∈ succ (u) do {
if (live (v))

continue
w ← ipdom (v) /* idom in RCFG */
while (not live (w))

w ← ipdom (w)
replace (u, v) with (u,w)
update the branch in u to its new target w
update φ-functions in w if necessary
modified ← true

}
}
if (modified) {

delete vertices from G which now have become unreachable
update dominator tree DT

}
end

0 a0 ← x

1 a0 6= y?

2

3a1 ← z

4

5

6

7
a2 ← φ(a1, a0, a0)
print(a2)

8

9

10

11

12

13

14

9 is dead. Nearest live is 7.

jonasskeppstedt.net Optimizing Compilers 2020 59 / 78



Processing 1: Edge (1, 9)

procedure simplify (G)
live (e) ← true
modified ← false
for each vertex u ∈ G do {

if (not live (u))
continue

for each v ∈ succ (u) do {
if (live (v))

continue
w ← ipdom (v) /* idom in RCFG */
while (not live (w))

w ← ipdom (w)
replace (u, v) with (u,w)
update the branch in u to its new target w
update φ-functions in w if necessary
modified ← true

}
}
if (modified) {

delete vertices from G which now have become unreachable
update dominator tree DT

}
end

0 a0 ← x

1 a0 6= y?

2

3a1 ← z

4

5

6

7
a2 ← φ(a1, a0, a0)
print(a2)

8

9

10

11

12

13

14

Must fix φ(a) in 7.

jonasskeppstedt.net Optimizing Compilers 2020 60 / 78



Result of Processing 3

procedure simplify (G)
live (e) ← true
modified ← false
for each vertex u ∈ G do {

if (not live (u))
continue

for each v ∈ succ (u) do {
if (live (v))

continue
w ← ipdom (v) /* idom in RCFG */
while (not live (w))

w ← ipdom (w)
replace (u, v) with (u,w)
update the branch in u to its new target w
update φ-functions in w if necessary
modified ← true

}
}
if (modified) {

delete vertices from G which now have become unreachable
update dominator tree DT

}
end

0 a0 ← x

1 a0 6= y?

2

3a1 ← z

4

5

6

7
a2 ← φ(a1, a0, a0)
print(a2)

8

9

10

11

12

13

14

Later remove one (3, 7)!
Keep only live vertices.

jonasskeppstedt.net Optimizing Compilers 2020 61 / 78



Live Variables Analysis

int h(int a, int b)
{

int c;

S1: c = a + b;

S2: if (c < 0)
return c * 44;

S3: a = b - 14;

return -a;
}

A variable x is live at a point p
(instruction) if it may be used in
the future without being
assigned to.
a is live from the function start
and up to and including the add,
and then after S3 and up to and
including the negation.
b is live from the start and up to
and including the subtraction.
c is live from S1 and up to and
including the multiplication.

jonasskeppstedt.net Optimizing Compilers 2020 62 / 78



An Example of Graph Coloring

a = 1
b = a + 2
c = a - b
d = c
e = d + 1
f = d - e

ret c + f

Which variables cannot use the same register?
How many registers are needed?

jonasskeppstedt.net Optimizing Compilers 2020 63 / 78



The Interference Graph

a = 1
b = a + 2
c = a - b
d = c
e = d + 1
f = d - e

ret c + f

a b

c d

e f

live = use(i) ∪ (live − {def (i)})
1 Initially live = out = {c , f }.
2 def (f ): add edge (c , f ).

live = {c , d , e}.
3 def (e): add edges (e, c), (e, d).

live = {c , d}.
4 def (d): add edge (d , c).

live = {c}.
5 def (c): no new edge.

live = {a, b}.
6 def (b): add edge (a, b).

live = {a}.
7 def (a): no new edge. live = ∅.

jonasskeppstedt.net Optimizing Compilers 2020 64 / 78



Coloring the Interference Graph

a = 1
b = a + 2
c = a - b
d = c
e = d + 1
f = d - e

ret c + f

a b

c d

e f

This interference graph needs three
colors.
Can we use fewer colors?

jonasskeppstedt.net Optimizing Compilers 2020 65 / 78



Register Coalescing

a = 1
b = a + 2
c = a - b
d = c
e = d + 1
f = d - e

ret c + f

a b

c,d

e f

c and d have the same value so they
can use the same register!
It is done using a technique called
register coalescing.
Register coalescing is an example of
node merging.
Register coalescing needs a minor
modification to the construction of the
interference graph.

jonasskeppstedt.net Optimizing Compilers 2020 66 / 78



Simplifying the Interference Graph

Consider an interference graph IG and a number of available colors K .
Assume the IG can be colored with K colors and there is a node
v ∈ IG with fewer than K neighbors.
Since v has fewer than K neighbors there must be at least one unused
color left for v .
Therefore we can remove v from the IG without affecting the
colorability of IG .
We remove v from IG and push v on a stack.
Then we proceed looking for a new node with fewer than K neighbors.
Assume the original IG was colorable and all its nodes have been
pushed on the stack.
Then each node is popped and re-inserted into IG and given a color
which no neighbor has.

jonasskeppstedt.net Optimizing Compilers 2020 67 / 78



Spilling

The number of neighbors of a node v is denoted its degree, or deg(v).
When there is no node with deg(v) < K a variable is selected for
spilling.
Spilling means that a variable will reside in memory instead of being
allocated a register.
Through spilling the IG eventually will become empty, obviously.
Heuristics are used to decide which variable (i.e. node) to spill.
The expected number of memory accesses removed by allocating a
variable is calculated, and this count is typically divided by a ”size” of
the node.
By size is meant the number of vertices or instructions that the
register would be reserved in for that variable, and hence cannot be
used for any other variable.

jonasskeppstedt.net Optimizing Compilers 2020 68 / 78



Rewriting the Program after Spills

a = b+c;

...

d = a + c;

-----------

t1 = b + c;
a = t1;

...

t2 = a;
d = t2 + a;

On a RISC machine where operands cannot
be in memory a new tiny live range is created
at each original memory access of the spilled
variable.
These tiny live ranges should never be spilled.
The rewriting is done after all nodes have
been removed from the interference graph.
If there was spilling the algorithm is
re-executed.
Eventually it will terminate and three
iteration almost always suffice.

jonasskeppstedt.net Optimizing Compilers 2020 69 / 78



Instruction Scheduling Example

The purpose of instruction scheduling is to improve performance by
reducing the number of pipeline stalls suffered during execution.
The following example illustrates the concept, where the right column
is the scheduled code.
Due to instructions only are scheduled within one basic block, only a
limited improvement is achieved — the fsub and stf are not helped
at all.

ldf t2,a,t1
ldf t3,b,t1
fadd t4,t2,t3
ldf t5,c,t1
ldf t6,d,t1
fmul t7,t5,t6
fsub t8,t3,t7
stf t8,e,t1

ldf t2,a,t1
ldf t3,b,t1
ldf t5,c,t1
ldf t6,d,t1
fadd t4,t2,t3
fmul t7,t5,t6
fsub t8,t3,t7
stf t8,e,t1

jonasskeppstedt.net Optimizing Compilers 2020 70 / 78



Instruction Scheduling vs. Register Allocation

The goal of instruction scheduling is to reduce pipeline stall and this is
achieved by separating the producer and consumer.
This separation makes it more difficult to perform register allocation.
Question: Which of instruction scheduling and register allocation
should be performed first?
Answer: Instruction scheduling because register allocation would
create unnecessary constraints for the scheduler, and advanced
instruction scheduling would be seriously limited with already assigned
registers.
If register allocation results in spill code, the instruction scheduler is
usually run a second time in order to separate the load instructions
from the uses of the loaded register.

jonasskeppstedt.net Optimizing Compilers 2020 71 / 78



Register Pressure of Different Schedules

The left schedule needs three floating point registers and the right
schedule one more.

ldf f2,ra,ri
ldf f3,rb,ri
fadd f2,f2,f3
ldf f3,rc,ri
ldf f4,rd,ri
fmul f3,f3,f4
fsub f2,f2,f3
stf f2,re,ri

ldf f2,ra,ri
ldf f3,rb,ri
ldf f4,rc,ri
ldf f5,rd,ri
fadd f2,f2,f3
fmul f4,f4,f5
fsub f2,f2,f4
stf f2,re,ri

jonasskeppstedt.net Optimizing Compilers 2020 72 / 78



Modulo Scheduling

Consider the following loop and assume there are true dependencies
from A to B and from B to C .
void h()
{

int i;

for (i = 0; i < 100; ++i) {
A;
B;
C;

}
}

Due to list scheduling only works with one basic block, it cannot
improve this loop.
Such loops are of course extremely common.
jonasskeppstedt.net Optimizing Compilers 2020 73 / 78



Modulo Scheduling the Loop

Let us take instructions from three iterations and interleave them.
First we need to execute instructions from the first two iterations in a
prologue.

cycle i ii iii
0 A0
1 B0 A1
2 C0 B1 A2
3 A3 C1 B2
4 B3 A4 C2
5 C3 B4 A5
6 A6 C4 B5
7 B6 A7 C5
8 C6 B7
9 C7

Assume for illustration only 8 iterations are executed.
For example A3 denotes instruction A in iteration 3.
After a steady-state with 2× 3 iterations there is an epilogue.
Consider instruction B3. While it waits for A3, the CPU can also
execute C1 and B2, assuming a pipelined superscalar CPU.

jonasskeppstedt.net Optimizing Compilers 2020 74 / 78



List Scheduled Execution

i = 0

i = 1

i = 2

i = 3

Each iteration is completed
before the next starts.
The height of an iteration is the
number of clock cycles it takes.

jonasskeppstedt.net Optimizing Compilers 2020 75 / 78



Parallelism with Modulo Scheduling

i = 0
i = 1

i = 2
i = 3

i = 4
i = 5

i = 6
i = 7

i = 8
i = 9

i = 10
i = 11

A new iteration is started before
the current has completed.
We wish to start the next
iteration as early as possible.
If we start the next iteration the
same clock cycle, we need a
multicore with one core per loop
iteration.

jonasskeppstedt.net Optimizing Compilers 2020 76 / 78



Optimizing Object Oriented Programs

All normal optimizations are applicable to OOP as well.
Virtual function calls, i.e. calls through a pointer to an unknown
method limits optimization opportunities.
Therefore, it is important to find calls which must refer to a specific
method.
Sometimes that can be done by only analyzing the type hierarchy, but
at other times the assignments must be tracked.
It is of course not always possible to find which method is called
statically.
There are function pointers in C as well, and they can sometimes be
analyzed using symbol table information (number and types of
parameters) plus tracking assignments.

jonasskeppstedt.net Optimizing Compilers 2020 77 / 78



EDAN75 Optimizing Compilers in September 2020

If you are interested in optimizing compilers, there is the course
EDAN75 in September.
It is focused on SSA Form and you will start with a subset C compiler
which first compiles and then simulates the input C program.
There you will implement:

Lengauer-Tarjan dominance analysis
Translation to/from SSA Form
Constant propagation on SSA Form
Dead code elimination on SSA Form
A simple SSA-based optimization in LLVM/Clang 10 (or newer if
available)

New this year (in August 2020 course book) will be optimal
instruction scheduling using integer programming

jonasskeppstedt.net Optimizing Compilers 2020 78 / 78


