
Contents Lecture 3

Arrays, matrices, and lists in C
C Preprocessor, Chapter 11
Declarations, Chapter 8

jonasskeppstedt.net Lecture 3 2020 1 / 34

Multidimensional arrays in C

The language has no concept of multidimensional arrays.
Instead you simply use arrays of arrays.

jonasskeppstedt.net Lecture 3 2020 2 / 34

Arrays of arrays

double m[3][4];
double x[2][3][4][5];

So m is an array with three elements, where each element is an array of
four doubles.
x has two elements.

jonasskeppstedt.net Lecture 3 2020 3 / 34

Multidimensional arrays with calloc

Suppose we want an m × n matrix from calloc. How do we do?
A one-dimensional array is declared as: double* a.
Here a is a pointer which points to the start of the calloc-ed memory.
A two-dimensional matrix, can be declared as double** m.
But how can we allocate memory for it???
First allocate an array which can hold m pointers to the rows,
and then allocate memory for each row.

jonasskeppstedt.net Lecture 3 2020 4 / 34

More from previous slide

double** make_matrix(int m, int n)
{

double** a;
int i;

a = calloc(m, sizeof(double*));
for (i = 0; i < m; i += 1)

a[i] = calloc(n, sizeof(double));
return a;

}

Now we can write double** m = make_matrix(3, 4);

We can access the elements as m[i][j].

jonasskeppstedt.net Lecture 3 2020 5 / 34

Alternatives

Instead of doing m + 1 calls to calloc, we can make one big:

double* a = calloc(m * n, sizeof(double));

Unfortunately, we cannot use it as a two-dimensional matrix. Assume
we want a[i][j]:

for (i = 0; i < m; i++)
for (j = 0; j < n; j++)

a[i * n + j] = ...

The row number is determined by i and each row has n elements.
We cannot write a[i][j] since the type of a[i] is a double and not
an array.

jonasskeppstedt.net Lecture 3 2020 6 / 34

malloc/calloc/realloc/free

The data allocated by void* calloc(size_t count, size_t
size) is initialized to zeroes.
There is an alternative function void* malloc(size_t size)
which leaves the data uninitialised.
Using malloc but forgetting to initialize the data leads to painful bugs.
You will often notice that the data is already zeroed by malloc but
that is only by accident (by chance).
The function void* realloc(void* ptr, size_t size) tries to
extend (or shrink) the memory area pointed to by ptr, and if that is
not possible it allocated new memory and copies to old content. Why
can that be dangerous ?

jonasskeppstedt.net Lecture 3 2020 7 / 34

Lists in C

There are of course various kinds of lists, eg:
Single linked,
Single linked, with header pointing to the end (instead of having data).
Null terminated double linked,
Circular double linked.

jonasskeppstedt.net Lecture 3 2020 8 / 34

An example circular double linked list

typedef struct list_t list_t;

struct list_t {
list_t* succ;
list_t* pred;
void* data;

};

Without the typedef we must write struct list_t everywhere.
By circular is meant that the head’s predecessor points to the last
node and the successor of the last node points to the head.

jonasskeppstedt.net Lecture 3 2020 9 / 34

Making a list node

list_t* new_list(void* data)
{

list_t* list;

list = malloc(sizeof(list_t));

list->succ = list; // (∗ l i s t) . succ = l i s t ;
list->pred = list; // (∗ l i s t) . pred = l i s t ;
list->data = data; // (∗ l i s t) . data = data ;

return list;
}

The arrow is a shorthand for (*list). and was added to C very early.

jonasskeppstedt.net Lecture 3 2020 10 / 34

Freeing of a list

void free_list(list_t** head)
{

list_t* h = *head;
list_t* p;
list_t* q;
if (h == NULL)

return;
p = h->succ;
while (p != h) {

q = p->succ;
free(p);
p = q;

}
free(p);
*head = NULL;

}

jonasskeppstedt.net Lecture 3 2020 11 / 34

Comments on free

int* a;
int* b;
a = malloc(sizeof(int));
b = a;
free(a);
*a = 12; // wrong .
a; // wrong .
b; // wrong .

After you have freed an object, any mention of that object is wrong,
and the behavior is undefined. Anything is permitted to happen
according to the C standard.

jonasskeppstedt.net Lecture 3 2020 12 / 34

Iterating through a circular list

#include <stddef.h>

size_t length(list_t* head)
{

size_t count;
list_t* p;

if (head == NULL)
return 0;

count = 0;
p = head;
do {

count += 1;
p = p->succ;

} while (p != head);
return count;

}

jonasskeppstedt.net Lecture 3 2020 13 / 34

Strings in C

Strings are adjacent characters terminated with a 0.
”C is fun” is a string and consists of 9 bytes.
Eg char v[10] can hold a string.
Eg char* s can point to a string — but it is no string.
If we also do s = malloc(10); it is still no string.
However, s points to memory which can hold a string.
If we now do s = ”C is fun”; — what will happen?

jonasskeppstedt.net Lecture 3 2020 14 / 34

Effect of s = ”C is fun”

When we write something like ”C is fun” we also create a string
literal.
It is invalid to modify a string literal such as s[0] = ’c’ because:

they may be reused for other identical string literals, and
they may be located in a read-only memory segment.

A string literal is a constant string which will be part of the program.
It is essentially an anonymous array of characters of sufficient size
which will be present in the program from start to end, and initialized
to the string we wrote.
But what happens at the assignment s = ”C is fun” ?
Hypothesis: the characters somehow jump down into the memory
previously allocated with s = malloc(10).

jonasskeppstedt.net Lecture 3 2020 15 / 34

Memory leaks

The hypothesis is wrong. The string literal, being an array of
characters, lives at a certain place, or address, in memory, and the
assignment simply writes that address into s.
That means the old value of s, the address of the memory allocated
with malloc is lost.
In fact that memory is lost until the program terminates.
That is a bug which may or may not be serious. It is called a memory
leak.
A small memory leak every twenty minutes will let the program run for
a long time before running out of memory, but more frequently and in
eg a mobile phone or an Airbus, they are very unpleasant. Valgrind is a
tool which will help you detect leaks.

jonasskeppstedt.net Lecture 3 2020 16 / 34

Copying a string

To make a copy of a string, we can use the following function.

char* copy_string(char* s)
{

int length;
char* t;

length = strlen(s);
t = malloc(length + 1); // why + 1 ???
strcpy(t, s);
return t;

}

jonasskeppstedt.net Lecture 3 2020 17 / 34

size_t strlen(const char* s);

The type size_t is an unsigned integer of some suitable size, and
const means this function promises not to modify what s points to.

size_t strlen(const char* s)
{

size_t length = 0;
while (*s != 0) { // have we reached the zero?

length += 1; // one more char found .
s += 1; // step to the next character .

}
return length;

}

jonasskeppstedt.net Lecture 3 2020 18 / 34

A faster size_t strlen(const char* s);

size_t strlen(const char* s)
{

char* s0 = s;
while (*s != 0)

s += 1;
return s - s0;

}

jonasskeppstedt.net Lecture 3 2020 19 / 34

The C Programming Language

Terminology for discussing the C Standard
Lexical elements
Declarations
Expressions
Statements
Preprocessing directives
The Standard C Library

jonasskeppstedt.net Lecture 3 2020 20 / 34

The C Standard

The C compiler and the Standard Library provided with the compiler is
referred to as the Implementation.
The Standard consists of requirements at different levels on a program:
Constraints can be checked at compile-time. Eg forgotten declaration
of a variable or a syntax error.
If a Constraint is violated by a program, it must be diagnosed by the
compiler.
Semantics. The behavior of a language construct is normally described
in a Semantics section of the Standard.

jonasskeppstedt.net Lecture 3 2020 21 / 34

Implementation-defined behavior

An implementation is free to make certain decisions about the
behavior which it must follow consistently and document.
This is called Implementation-defined behavior.
Examples include

The size and precision of various types.
How bit-fields are layed out in memory.
Whether right shift of an signed integer is arithmetic or logical.
Whether the register keyword has any effect on performance.

Portable programs should avoid using some of the language constructs
with implementation-defined behavior.

jonasskeppstedt.net Lecture 3 2020 22 / 34

Unspecified behavior

Unspecified behavior lets the implementation decide on the behavior
and it does not have to document the behavior since it can vary
”randomly” eg due to optimization, and should be avoided if it can
affect observable behavior.
Examples include

The order of evaluation in + is unspecified.

int a = 12, b = 13;
int f(void) { printf("%d\n", a); return a; }
int g(void) { printf("%d\n", b); return b; }
int main() { f() + g(); return 0; }

The order of evaluation of arguments in function calls.
Whether two identical string literals share memory.
Whether setjmp is a macro or identifier with external linkage;
&setjmp is bad.

jonasskeppstedt.net Lecture 3 2020 23 / 34

Undefined behavior

The worst situation is undefined behavior; (ugly form of bug).
The implementation is permitted to do anything including

Terminating compilation with an error message.
Continuing without understanding what happened.
Continuing possibly with a warning message.

Examples of undefined behavior include
A requirement which is not a Constraint is violated.
An invalid pointer is dereferenced.
A stack variable is used before it was given a value.
Divide by zero.
Array index out of range.

jonasskeppstedt.net Lecture 3 2020 24 / 34

Lexical elements

Character sets

Keywords

Identifiers

Universal character names

Constants

String literals

Punctuators

Header names

Preprocessing numbers

Comments

jonasskeppstedt.net Lecture 3 2020 25 / 34

Character sets

The Basic character set must be supported by all C compilers
Lower and upper case Latin alphabet
Decimal digits

! " # % & ’ () * + , - . / :
; < = > ? [\] ^ _ { | } ~

Extended character sets may optionally be supported and can include
Swedish, Japanese etc. Represented by multibyte characters.
Trigraph sequences: be careful in strings: ”trigraph? what??!”

??= # ??)] ??! | ??([
??’ ^

??> } ??/ \ ??< { ??- ~

jonasskeppstedt.net Lecture 3 2020 26 / 34

Keywords

auto enum restrict unsigned
break extern return void
case float short volatile
char for signed while
const goto sizeof _Bool
continue if static _Complex
default inline struct _Imaginary
do int switch
double long typedef
else register union

inline, restrict, _Bool, _Complex and _Imaginary are new in C99

jonasskeppstedt.net Lecture 3 2020 27 / 34

Identifiers

An identifier starts with a nondigit and then may contain digits
A nondigit is underscore, [A-Z], [a-z], a universal character name, or
an implementation-defined multibyte character
It is not portable to use Å, Ä, or Ö in identifiers (as in Java)
Identifiers with a leading underscore are reserved for the system: don’t
use them

/∗ the system may have done #define _tough_luck ???? ∗/
typedef struct _tough_luck {

struct _tough_luck* next;
int a;

} tough_luck;

jonasskeppstedt.net Lecture 3 2020 28 / 34

Universal character names (UCNs)

Used to specify any Unicode character
Written as \Unnnnnnnn or \unnnn where n is a hex digit.
Can be used in identifiers, strings, and character constants

jonasskeppstedt.net Lecture 3 2020 29 / 34

Constants 1(4)

Integer constants:
integer-suffix: combination of u, U, l, L, ll, LL
decimal-constant integer-suffix, eg 1ULL
octal-constant integer-suffix, eg 0123
hexadecimal-constant integer-suffix 0xabc123

Floating constants:
float constant, eg 123.456e12F
double constant, eg 123.456e12
long double constant, eg 123.456e12L
C99: hexadecimal floating constant, eg 0xap-3 = 10× 2−3 = 1.25

jonasskeppstedt.net Lecture 3 2020 30 / 34

Constants 2(4)

float x; float x;
int main() int main()
{ {

x += 0.1; x += 0.1F;
} }
main: lis 4,x@ha main: lis 4,x@ha

lis 5,.LC0@ha lis 5,.LC0@ha
lfs 5,x@l(4) lfs 2,x@l(4)
lfd 4,.LC0@l(5) lfs 3,.LC0@l(5)
fmr 3,5 fadds 1,2,3
fadd 2,3,4 stfs 1,x@l(4)
frsp 1,2 blr
stfs 1,x@l(4)
blr // No conversion to double !

jonasskeppstedt.net Lecture 3 2020 31 / 34

Constants 3(4)

Character constants
Normal character constant:

’1’ ’A’

Simple escape character constant:

’\’’ ’\"’ ’\?’ ’\\’ ’\a’ ’\b’
’\f’ ’\n’ ’\r’ ’\t’ ’\v’

Octal character constant, one, two, or three digits:

’\1’ ’\12’ ’\123’

Hexadecimal character constant, any number of digits:

’\x1’ ’\x12’ ’\x123’ ’\x1234’ etc

But more than two will most likely cause an overflow
(implementation-defined)
Universal character name:

’\U12345678’ ’\u00ab’

jonasskeppstedt.net Lecture 3 2020 32 / 34

Constants 4(4)

Wide character constants
Like normal character constant but with an L prefix:

#include <wchar.h> /∗ or <stddef .h> or <std l i b .h> ∗/

wchar_t w = L’A’;

The size of the type wchar_t is usually two or four bytes

jonasskeppstedt.net Lecture 3 2020 33 / 34

String literals 1(2)

Adjacent string literals are automatically concatenated: ”hello, ”
”world” becomes ”hello, world”
Strings are ended with a zero character: 0 or ′\0′

The string consisting of bytes 255, ’8’, and 0 cannot be written as:

"\xff8"

but the following works

"\3778" "\xff" "8"

jonasskeppstedt.net Lecture 3 2020 34 / 34

