
Administration

Lecturer is Jonas.Skeppstedt@cs.lth.se with office E:2190
C page http://cs.lth.se/edaa25

Algimp page http://cs.lth.se/edaf15

You will get an account on a POWER8 machine (10 cores, 80
hardware threads)
You can work on other machines if you wish but performance
measurements are to be done on this.
You can access it with ssh -Y user@power.cs.lth.se

jonasskeppstedt.net Lecture 1 2020 1 / 50

Contents of the courses

EDAA25 C Programming: odd lectures
EDAF15 Algorithm implementation: all lectures but you can skip some
from F7, F9, and F11 — I will tell you what.

F1 Introduction to C
F2 Project: linear and integer programming
F3 More C
F4 Instruction set architectures: POWER
F5 Types, conversions, and linkage
F6 Superscalar processors: POWER8
F7 Declarations and expressions
F8 Cache memories
F9 Statements and the C preprocessor

F10 Performance analysis
F11 The C Standard library
F12 Optimizing compilers

jonasskeppstedt.net Lecture 1 2020 2 / 50

EDAF15 Algorithm Implementation

Sedgewick and Flajolet in ”An Introduction to the Analysis of Algorithms”:

The quality of the implementation and properties of compilers, machine
architecture, and other major facets of the programming environment have

dramatic effects on performance.

jonasskeppstedt.net Lecture 1 2020 3 / 50

EDAF15 Algorithm Implementation

You will learn a methodology to maximise algorithm performance
on a specific real machine (we will use an IBM POWER8 chip)

To write efficient code, you need competence in:
Mathematics, algorithms and data structures (not the focus in this
course)
The C programming language and UNIX C programming tools
Pipelined and superscalar processors
Cache memories
What optimizing compilers can do for you — and what you need to fix
yourself

EDAA25: you will learn language details on C.

jonasskeppstedt.net Lecture 1 2020 4 / 50

Contents Lecture 1

The purpose of learning C
Some simple C programs

jonasskeppstedt.net Lecture 1 2020 5 / 50

Some views of C

The other language for high-performance, FORTRAN, is mainly
focussed on numerical computing and not for writing code eg for
embedded systems, operating system kernels, or compilers.
Very often other languages such as Clojure, Rust, Go, Scala, Haskell,
Lisp, Prolog, Ada, Java, C++, Mathematica, or Matlab are preferable
because they have many convenient features which enable faster
program development.
When performance in terms of memory usage and/or speed is the
most important aspect, however, the programmer must have complete
control over what is happening and then the overhead of many
language features can lead to inferior performance.

jonasskeppstedt.net Lecture 1 2020 6 / 50

Your lecturer’s relationship with C

C is great but not ideal for everything. My default language since
1988. Just like Lisp and Prolog, it’s beautiful because it’s powerful and
has few language features.
I have written the second ISO validated C99 compiler (EDG was first).
If I would manage a large software project with several million lines of
code, I would still use C.
I will not try to convince you that C ”is best” because there is no such
thing as a best language.

jonasskeppstedt.net Lecture 1 2020 7 / 50

Principles of the C Programming Language

Trust the programmer
Don’t prevent the programmer from doing what needs to be done
Keep the language small and simple
Provide only one way to do an operation
Make it fast, even if it is not guaranteed to be portable
Support international programming

Update since the C99 version: Don’t trust the programmer.

jonasskeppstedt.net Lecture 1 2020 8 / 50

Writing a C program

#include <stdio.h>

int main(int argc, char** argv)
{

printf("hello, world\n");
return 0;

}

A Java methods is called a function in C.
A C program must have a main function.
A C function must be declared before it is used.

jonasskeppstedt.net Lecture 1 2020 9 / 50

The C preprocessor

The command #include <stdio.h> reads a file with a declaration of
printf.
Commands in a C file which start with a hash, #, are performed by
the C preprocessor before the compiler starts.
You can run the preprocessor by typing cpp.
The preprocessor can include files and deal with macros, eg
INT_MAX is the largest number of type int.
Notice that cpp knows nothing about C syntax.

jonasskeppstedt.net Lecture 1 2020 10 / 50

Compiling a C program

In this course we will use the GNU C compiler, called gcc.
To compile one or more C files to make an executable program type
gcc hello.c
The command gcc will first run cpp, then the C compiler, and then
two more programs called an assembler and a link-editor.
Later in the course you will learn about assembler and the operating
system course you can learn about link-editors.
For this course, gcc takes care of the link-editor and tells it to produce
an executable file.

jonasskeppstedt.net Lecture 1 2020 11 / 50

Running a C program

By default the executable file (made by typing gcc hello.c) is called
a.out.
To execute it in Linux (or MacOS X, or another UNIX), type ./a.out.
You can tell gcc that you want a certain name: gcc hello.c -o hello.
Now you type ./hello.

jonasskeppstedt.net Lecture 1 2020 12 / 50

Separate compilation

If you have many big source code files, it is a waste of time to
recompile all files every time.
You can tell gcc to compile a file and produce a so called object file
(has nothing to do with object-oriented programming).
gcc -c hello.c
gcc hello.o
The above two lines are identical to gcc hello.c but useful if you have
many files. The second line should then contain all .o files.

jonasskeppstedt.net Lecture 1 2020 13 / 50

Example of I/O: scanf and printf

#include <stdio.h>
int main(int argc, char** argv)
{

int a;
float b;
double c;

scanf("%d %f %lf\n", &a, &b, &c);
printf("%lf\n", a + b + c);

}

%d for int, %f for float, and %lf for double.
The program will read three numbers from input and print the sum.

jonasskeppstedt.net Lecture 1 2020 14 / 50

More about the previous example

In the call to the function scanf, we need & to tell the compiler that
the variables should be modified by the called function.
This does not exist in Java. You cannot ask another method to modify
a number passed as a parameter to the method.
Other useful format-specifiers include:

%x for a hexnumber (base 16),
%s for a string,
%c for a char,

jonasskeppstedt.net Lecture 1 2020 15 / 50

Writing to files in C

#include <stdio.h>
int main(int argc, char** argv)
{

int a = 1;
float b = 2;
double c = 3;
FILE* fp;

fp = fopen("data.txt", "w"); // open the f i l e for writing .
fprintf(fp, "%d %f %lf\n", a, b, c);
fclose(fp);

}

This will create a new file on your hard disk.

jonasskeppstedt.net Lecture 1 2020 16 / 50

Reading from files in C

#include <stdio.h>
int main(int argc, char** argv)
{

int a;
float b;
double c;
FILE* fp;

fp = fopen("data.txt", "r"); // open the f i l e for reading.
fscanf(fp, "%d %f %lf\n", &a, &b, &c);
fclose(fp);

}

Note again the & since fscanf will modify the variables.

jonasskeppstedt.net Lecture 1 2020 17 / 50

Three ways to make arrays in C

#include <stdio.h>
#include <stdlib.h>
int size = 10;
int main(int argc, char** argv)
{

int a[10], n, i;
int* b;
int c[size]; // called a variable length array .
sscanf(argv[1], "%d", &n); // assumes program is run eg as $./a.out 10
b = calloc(n, sizeof(int)); // like to Java’s b = new int [n] ;
for (i = 0; i < n; i += 1)

b[i] = i; // play around with b as i f i t was an array
free(b);

}

jonasskeppstedt.net Lecture 1 2020 18 / 50

Explanation of the previous slide

The a and c arrays are allocated with other local variables.
Note that a and c are ”real” arrays.
On the other hand, b is like an array in Java for which you must
allocate memory yourself. Use new in Java and eg calloc in C.
Java automatically takes care of deallocating the memory of objects.
In C you must do it yourself using free.
The variable b is not an array — it is a pointer.

jonasskeppstedt.net Lecture 1 2020 19 / 50

Variable length array in C99 and C11

int fun(int m, int n)
{

int a[n];
int b[m][n];

}

Before C99 the above was illegal due to m and n are not constants.
In C99 it is OK to write like that but only for local variables.
Most C compilers still only support C89 and thus it may be wise to
stick to that at least sometimes.
Variable lengths arrays are only optional in C11.

jonasskeppstedt.net Lecture 1 2020 20 / 50

Class in Java vs Struct in C 1(4)

C has no classes.
C has structs which are Java classes with everything public and no
methods.

struct s { // th i s s i s a tag .
int a;
int b;

} s; // th i s s i s a var iab le i d e n t i f i e r .

Struct names have a so called tag which is a different namespace than
variables and functions: so the above declares a struct s which is a
type and a variable s.
If we write Link p in Java we declare p to be a reference but not the
object itself whereas s above is the real object, or data.

jonasskeppstedt.net Lecture 1 2020 21 / 50

Class in Java vs Struct in C 2(4)

In Java we can declare a List class something like this:
class List {

List next; // Next is a reference to another object .
int a;
int b;

}

next above only holds the address of another object but next is not a
List object itself. The list does not contain a list.
Java let’s you use pointers conveniently without giving you too much
head ache.
C does not.

jonasskeppstedt.net Lecture 1 2020 22 / 50

Class in Java vs Struct in C 3(4)

We cannot write the following in C:

struct list_t {
struct list_t next; // Compilation error ! !
int a;
int b;

};

It is impossible to allocate a list within the list!
We really want to declare next to simply hold the address of a list
object.
In C this is done as: struct list_t* next; which makes next a pointer.

jonasskeppstedt.net Lecture 1 2020 23 / 50

Class in Java vs Struct in C 4(4)

The following is correct in C:

struct list_t {
struct list_t* next;
int a;
int b;

};

After going into pointers in more detail we will see how to avoid
typing struct list_t more than twice using typedef.

jonasskeppstedt.net Lecture 1 2020 24 / 50

Memory

As you all know, your computer has something called memory.
It is sufficient to view it as a huge array: char memory[4294967296];
It is preferable in the beginning to view it as: int
memory[1073741824];
Forget about strings for the moment. Now our world consists only of
ints.
As you know, a compiler translates a computer program into some
kind of language which can be understood by a machine.
That has happened for the software in everybody’s mobile phone.

jonasskeppstedt.net Lecture 1 2020 25 / 50

Instructions

You will see more details about it later, but the C program which
controls your phone is translated to commands which are numbers and
can be represented as ints.
These ints are also put in the memory.
We can for instance put the instructions at the beginning of the array.
The instructions will occupy a large number of array elements.
No problem — our array is huge.

jonasskeppstedt.net Lecture 1 2020 26 / 50

Global variables in memory

int x = 12;
int main()
{

return x * 2;
}

We also put the variable x in the memory.
This program will have a few instructions for reading x from memory,
multiplying with two, and returning the result.
It is a good idea to put x after the instructions: next page

jonasskeppstedt.net Lecture 1 2020 27 / 50

Memory layout

0 READ from 3 into R read the data in x from memory at address 3
1 MUL 2 R = R * 2
2 RETURN return R
3 12 x lives here

The array element where we have put a variable is called its address
The instructions above are not written as integers but rather as
commands to make them more readable.
An instruction is represented in memory as a number however.
It would be too complicated to demand that the hardware should read
text such as MUL — it is easier is to build hardware if there simply is
a number which means multiplication.

jonasskeppstedt.net Lecture 1 2020 28 / 50

Function calls and local variables

When you call a function or method, all the local variables must be
stored somewhere.
It is a convention to put them at the end of the memory array.
The local variables of the main function are put at the very end of the
array.
When main calls a function, its local variables are put just before
main’s.
In general, when a new function starts running, it puts its local
variables at the last (highest index) unused memory array elements.
This works like a stack of plates: main is at the bottom and you put
newly called functions on the plate at the top.

jonasskeppstedt.net Lecture 1 2020 29 / 50

The Stack

int main() int f(int a) int g(int a)
{ { {

int x = 12; int b = a+1; return a + 3;
return f(x); return g(b+2); }

} }

1073741817 15 a in g lives here.
1073741818 return address from g is here.
1073741819 13 b in f lives here.
1073741820 12 a in f lives here.
1073741821 return address from f is here.
1073741822 12 x in main lives here.
1073741823 return address from main is here.

When a function returns, it deallocates its memory space.
This is managed by the compiler which uses a register for holding the
current free memory index, called the stack pointer.

jonasskeppstedt.net Lecture 1 2020 30 / 50

Pointers

int x = 12;
int *p;
int main()
{

p = &x;
*p = 13;
return x * 2;

}

A pointer is just a variable and it can hold the address of another
variable.
When p points to x, writing *p accesses x.

jonasskeppstedt.net Lecture 1 2020 31 / 50

Memory layout

instruction/data Java comment
0 STORE 6 at 7 MEMORY[7] = 6 &x is put in element 7, ie p
1 READ from 7 into R R = MEMORY[7] read data in p: R=6
2 STORE 13 at R MEMORY[R] = 13 *p = 13
3 READ 6 into R R = MEMORY[6] fetch the value of x
4 MUL 2 R = R * 2 multiply x and R
5 RETURN return R
6 12 x lives here
7 0 p lives here

jonasskeppstedt.net Lecture 1 2020 32 / 50

More about pointers

In Java, you have used pointers all the time, but they are called object
references.
Suppose you have Link p, then p is a pointer.
In Java, pointers can only point at objects.
The address of some object is, as you might know, the location in
memory where that object lives, ie just an integer number.
In Java, new returns the address of a newly created object.
In C, new is a normal function and is called malloc.

jonasskeppstedt.net Lecture 1 2020 33 / 50

More about pointers

In C, but not in Java, the programmer can ask for the address of
almost anything and thus get a pointer to that object (or function).
To change the value of a variable in a function, you need to pass the
address of the variable as a parameter to the function:

void f(int* a) void g()
{ {

*a = 12; int b;
}

f(&b);
}

jonasskeppstedt.net Lecture 1 2020 34 / 50

More about pointers

If the type of the variable is a pointer, then you will need two stars:

void f(int** a) void g()
{ {

a = NULL; int b;
}

f(&b);
}

jonasskeppstedt.net Lecture 1 2020 35 / 50

More about pointers

To return multiple values in Java, you create and return an extra
object.
Option 1 in C: use a plain struct which is allocated on the stack.
Option 2 in C: Pass additional arguments as pointers (preferable).

struct s f() void g(int* x, int* y, int* u)
{ {

struct s a;
a.x = ...; *x = ...;
a.y = ...; *y = ...;
a.u = ...; *u = ...;
return a; }

}

jonasskeppstedt.net Lecture 1 2020 36 / 50

Arrays vs Pointers

Despite common belief, arrays and pointers are not equivalent.
An array declares storage for a number of elements, except when it is
a function parameter:

int fun(int a[], int b[12], int c[3][4]);
int fun(int *a, int *b, int (*c)[4]);
int main()
{

int x, y[12], z[4];
fun(&x, y, &z); // va l id .

}

The compiler changes the first [] to * for array parameters.
Array parameters are not arrays. They are pointers.
Doing so avoids copying large arrays in function calls.

jonasskeppstedt.net Lecture 1 2020 37 / 50

C has row-major matrix memory layout

int c[3][4] = { { 1, 2, 3, 4}, { 5, 6 }, { 7 } };
int i, j;
for (i = 0; i < 3; i++)

for (j = 0; j < 4; j++)
x += c[i][j];

In a two-dimensional array, one row is layed out in memory at a time,
ie row-major.
Could also be called ”rightmost index varies fastest”.

jonasskeppstedt.net Lecture 1 2020 38 / 50

Arrays as parameters

int fun(int c[3][4])
{

printf("%zu %zu\n", sizeof c, sizeof c[0]);
}

If the output is ”8 16”, what conclusions can we draw about the size of
a pointer and the size of an int?
Answer: an pointer is eight bytes and an int is four bytes.
The variable c in the function is simply a pointer: int (*c)[4].

jonasskeppstedt.net Lecture 1 2020 39 / 50

Representation of array references

a[i] is represtented as *(a+i) internally in the compiler.

int main()
{

int a[10], *p, i = 3;

/∗ the fol lowing are equivalent : ∗/

i[a];
a[i];
p = a; p[i]; i[p];
p = a+i; 0[p]; p[0]; *p;

}

jonasskeppstedt.net Lecture 1 2020 40 / 50

Memory allocation in C 1(9)

1 Variables with static storage duration (globals, static).
2 Stack variables.
3 alloca(size_t size); normally adjusts the stack-pointer (no need for

free).
4 Allocate from the heap with malloc/calloc/realloc. Must free

explicitly.

Java has (1) for some static data, (2) for scalars and (4) for objects.

jonasskeppstedt.net Lecture 1 2020 41 / 50

Memory allocation in C 2(9)

Memory allocation is extremely important to master.
Doing it right will lead to a much faster application.
Doing it wrong will certainly introduce painful bugs.
Memory allocation bugs can show up after you think your code works!
However, it is actually quite simple.
As you all know, Java uses garbage collection and this can make life
easier but sometimes you need the exact control.
It is possible to have memory leaks in Java as well: if you accidently
keep the last reference to the root of a tree then the entire tree must
be preserved.

jonasskeppstedt.net Lecture 1 2020 42 / 50

Memory allocation in C 3(9): globals

A variable declared outside all functions is global and is visible from
others source files.
Global variables are automatically initialised with zeros.
Explicit initialisers can also specify values other than zero.
Think of global variables as static variables in Java (ie static in a
class).
Often it is best to avoid global variables due to:

Compilers are not good at putting them in registers.
They sometimes make it more difficult to understand the program.

jonasskeppstedt.net Lecture 1 2020 43 / 50

Memory allocation in C 4(9): static

Precede the type specifier with the static storage-class specifier.
For example: static int a;
Static variables are initialised with zeros (unless initialisers override
that).
A static variable is only visible in the scope where it was declared, ie in
a file, in a function, or in a particular block in a function.
A function can also be declared static making its visibility is limited to
the file.
Unless a variable or function must be ”exported”, you should declare it
static!

jonasskeppstedt.net Lecture 1 2020 44 / 50

Memory allocation in C 5(9): stack/local variables 1(2)

Stack allocated variables are usually allocated registers by the
compiler, hence accessing them becomes more efficient.
Allocating large variables on the stack can cause stack overflow.
Returning and using the address, or contents, of a stack-allocated
variable is an error.
Parameters are stack variables and at function calls they are given
values, as if by assignment (except for arrays; which really are no
arrays as parameters).
Passing a huge struct as a parameter will on some platforms result in
copying the struct and on others result in passing the address (and
letting the called function do the copying only if needed, to preserve
the as if behaviour).

jonasskeppstedt.net Lecture 1 2020 45 / 50

Memory allocation in C 5(9): stack/local variables 2(2)

void f()
{

struct { int a, char b, int c[100]; } s = { 1 };
if (s.b != 0) abort();

}

Initialising a part of a stack variable ensures that the rest become
initialised to zero (NB: only variables, ie not ”padding” between
variables in eg a struct).
Above only s.a is initialised but b and c also becomes initialised, with
zero.
There is typically padding space between b and c and it is not defined
whether that is initialsed to anything.

jonasskeppstedt.net Lecture 1 2020 46 / 50

Memory allocation in C 6(9): alloca

To allocate extra memory on the stack, use alloca.
No need to free such memory explicitly.
Use only if function returns ”sufficiently often”.
Problem 1: alloca is not standard.
Problem 2: if no memory is available, NULL is not returned (as for
malloc/calloc).
Somewhat bad reputation, but nevertheless used.
Much more efficient than malloc/calloc.

jonasskeppstedt.net Lecture 1 2020 47 / 50

Memory allocation in C 7(9): malloc/calloc 1(2)

To allocate memory for lists, trees, etc, use malloc or calloc (or
alloca).
malloc takes one parameter: number of bytes to allocate.
calloc takes two parameters: number of items and size of each item.
calloc returns memory initalised to zero; malloc leaves it undefined.
Potential problem with using malloc (avoided with calloc):

typedef struct { int a, c, d; } info_t;
info_t* info = malloc(sizeof *info);
info->a = ...; info->c = ...; info->d = ...;

Then add b to info_t but forget to initialise it.

jonasskeppstedt.net Lecture 1 2020 48 / 50

Memory allocation in C 8(9): malloc/calloc 2(2)

Allocating memory with malloc/calloc (or new in Java) takes time.
Try to avoid allocation eg by reusing data of old objects, using a
freelist:

When allocating an object, see if there is something on the freelist first.
When deallocating an object, put it first in the freelist instead of
returning the memory to free.
Sometimes the freelist grows to much should be deallocated.

There are numerous implementations of malloc/calloc/free and you
might want to try different ones, or write your own
Using data already freed is illegal —acutally, it is illegal to even look
at the address! (although nothing happens on most systems).

jonasskeppstedt.net Lecture 1 2020 49 / 50

Memory allocation in C 9(9): malloc/calloc 3(3)

Use the sizeof operator when requesting memory.
The sizeof operator either takes a type or an expression as operand:

int* p; p = calloc(n, sizeof(int)); (type in parenthesis)
int* p; p = calloc(n, sizeof *p);

The latter is better because if somebody changes the type, the
compiler will automatically calculate the correct value for sizeof,
otherwise if the type is changed from int to long long and the
operand of sizeof is not also changed to long long someone (eg you)
will suffer from a painful bug at some point in the future.

jonasskeppstedt.net Lecture 1 2020 50 / 50

