Exam in EDAF15 Algorithm Implementation
May 26, 2012, 8-13
Inga hjélpmedel!
Examinator: Jonas Skeppstedt, tel 0767 888 124

30 out of 60p are needed to pass the exam.

1. (4p) In a pipelined RISC processor, an individual instruction does not
execute in fewer clock cycles. How is it then possible that a com-
plete program takes fewer clock cycles with pipelining than without
pipelining? If we have N pipeline stages, will all programs become N

times faster? Why or why not?

Answer See page 148 in the book. No, they will not. Mispredicted
branches (or taken but not predicted at all), cache misses, loads di-
rectly followed by a use of the loaded value, and other situations

cause pipeline stalls.

2. (6p) In a superscalar processor speculative execution is very impor-
tant. What is it, why can it make execution faster, and how is chaos
prevented (for instance, that a register or memory location is modi-

fied only if it should be)?
Answer See pages 149-150 in the book.

3. (10p) What is the purpose of having sets in a cache —

Answer The purpose is to reduce the risk of two or more addresses
(in use at the same time) being mapped to the same row in the cache,
which would result in the data being overwritten many times with the

effect of many cache misses.

(2p) why are caches not ”"simplified” by having only one set?

Answer Then we would need too many comparators (which must op-
erate in parallel in order not to be too slow) which would not be use-

ful. Chip area can be used more cleverly to other things.

Suppose a cache is divided into sets where each set contains four

cache blocks. (1p) What is such a cache called?

Answer 4-way set associative cache.

(2p) With the same cache, can the data at a memory address A be put

in any set? Why or why not?

Answer No, there is a function which maps the address to a specific
set.

(2p) In any of the four cache blocks? Why or why not?
Answer Yes. That’s why we have four comparators.
(2p) What is meant by cache levels and

Answer Two or three levels of caches are used. Level 1 is the smallest
and fastest. The data in level i is a subset of that in level i + 1.

(2p) what could the reason be for having separate first level caches
for data and instructions?

Answer The reason is that both instruction fetch and data fetch should
be performed at the same time, and these two caches only very rarely
have any data in common (the instruction cache does not check what
is put into the data cache — the programmer must use explicit in-
structions to remove stale copies from the instruction cache).

. (10p) Implement the following functions for a stack of void pointers
using the type stack_t, which you should make complete (see be-
low). Your stack struct should contain an array to store the data in,
which you can allocate e.g. using malloc or calloc When there is no
more space left in the stack and push is called, you should somehow
increase the memory area for the array. You can do this either us-
ing realloc (preferable) or malloc (not too good -1 point). Give two
disadvantages with using malloc in this situation.

Recall the declaration of realloc:

voidx realloc(voidx ptr, size_t size);

and that it tries to set the size of the allocated memory pointed to by
ptr to size. If that fails it tries to allocate new memory using malloc,
copying the old data to the newly allocated memory, and then freeing
what ptr points to and finally returning the allocated pointer. If that
also fails, it returns a null pointer.

If top or pop are called with empty stacks, it’s not your problem and
you should not waste execution time checking it.

typedef struct stack_ t stack_t;
struct stack_t {

/* ... */
}i

/* create an empty stack. */

stack_tx new_stack(void) ;

/* deallocate the stack and set what the parameter
* points to to NULL. */
void free_stack(stack_t*x* stack);

/* push data onto the stack. x*/
void push(stack_t* stack, voidx data);

/* remove and return the top of the stack. */
voidx pop(stack_tx* stack);

/* return the top of the stack. =/
voidx top(stack_t* stack);

Answer See book on page 99-101. Two disadvantages of usingmalloc
instead of realloc: you can run out of memory with malloc in a situ-
ation in which realloc would find memory, and realloc has a chance
to be faster.

. (10p) Suppose you wish to understand why one implementation of
an algorithm is faster than another when executed on a particular
machine. How can the following tools be useful?

» cachegrind
* gcov

e gprof

* OProfile

* A pipeline level simulator such as IBM’s clock cycle true simula-
tors for different implementations of the Power processor?

Answer See Chapter 6 in the book.

. (10p) Write a function to check that a void pointer ptr has a value
which is a multiple of size_t a which is a power of two. If this is the
case, you should return one and otherwise return zero.

You will probably find the unsigned integer type uintptr_t useful. It
can hold any address. You are not allowed to use the % operator.

Explain why it works — illustrate with an example.

#include <stdint.h>

int aligned(void* ptr, size_t a)

{

uintptr_t b;

b = (uintptr_t)ptr;

return (b & (a - 1)) == 0;
}

Answer We know that a is a power of two. Assume a = 2*. As a binary
number a is represented by a one followed by k zeroes. Subtracting
one from a results in the number consisting of k ones. If the bitwise
and of ptr and a — 1 is zero, then all the k least significant bits of
ptr are zeroes, i.e. it is a multiple of a. Only integer numbers are
allowed as operands to the bitwise and operator so therefore we cast
the pointer to the unsigned integer type uintptr_t.

For an example, in a similar situation, see page 81 in the book.

. (10p) Write a function count which counts the number of ones in an
unsigned long long (ie. the number of bits with value one in the
binary number) as efficiently as you can. Your function should be
more efficient than iterating through the number as many iterations
as the number of bits in an unsigned long long. Estimate roughly
how many clock cycles your function takes. State any assumptions
you make.

For instance, count(7) = 3
Obviously, there are numerous different correct answers.

Answer The following solution solves the problem by counting the
number of bits (using a table) in each byte of the number. The table
can be generated by the following program:

#include <limits.h>
#include <stdio.h>

int count(unsigned int a)

{
int i;
int ones;
ones = 0;
for (i = 0; i < CHAR_BIT; ++i) {
if ((a & 1) == 1)
ones += 1;
a >=1;
}
return ones;
}
int main(void)
{
unsigned int C;
printf("static int table[1<<CHAR_BIT] = {\n");
for (c = 0; ¢ < (1<<CHAR_BIT); ++c)
printf("\t%d,\n", count(c));
printf("};\n");
}

Having executed that program we get the table so we can write the
count function as follows:

#include <limits.h>

static int table[1<<CHAR_BIT] = {

3,

/* parts of the table skipped to save space ...

71
6,
7,
7,
8,
+
int count(unsigned long long a)
{
int i;
unsigned charx b;
int ones;
b = (unsigned charx)&a;
ones = 0;
for (i = 0; i < sizeof a; ++i)
ones += table[b[il]];
return ones;
}

*/

