
Exam in EDAF15 Algorithm Implementation

May 30, 2011, 14-19

Inga hjälpmedel!

Examinator: Jonas Skeppstedt, tel 0767 888 124

30 out of 60p are needed to pass the exam.

1. (10p) Explain the following terms and why they are essential in fast pipelined

processors which can start executing multiple instructions every clock cy-

cle, i.e. superscalar processors.

• (4p) Branch-prediction

• (3p) Rename registers

• (3p) Reorder buffer

Answer See book.

2. (10p) Compare a direct mapped and a 2-way set associate cache. Why is

not a processor’s data cache fully associative?

Answer See book about direct mapped vs associative cache. The reason

a processor’s data cache is not fully associative is that too many compara-

tors would be required which would be a waste of chip area (transistors).

It is not that it would take too much time to search through the entire

cache since that is not done due to the replication of comparators.

3. (10p) Implement a stack of integers of type int. Your implementation

should have the following functions:

• (2p) a function new_stack to create a new and empty stack.

• (2p) a function free_stack to deallocate the stack.

• (2p) a function push to push a new integer on the top of the stack.

• (2p) a function pop to remove and return the value on the top of the

stack.

• (2p) a function top to return the value on the top of the stack without

removing it.

Both pop and top must check that there is something to return, and call

error otherwise. Your implementation should use malloc and free but

1

not every time an integer is pushed or popped. If malloc returns NULL

you should also call error.

For example, if you have created a new stack, and then push first 11, then

13, and finally 44, then top should return 44. If you then call pop once it

should return 44, and if you call pop again it should return 13. If you call

pop again it should return 11. If you then call pop, it should call error.

Answer Since malloc is not allowed to be called on every push, and not

free on every pop, you can for instance represent the stack as a list and

rely on using a free-list to full the requirement above. Alternatively the

stack can be represented using an array such as in the book on page 99.

4. (10p) Suppose you are part of a team which needs to define a struct which

contains quite a number of both scalar variables and arrays. Your team’s C

program, which needs to be very fast, will use many such structs in many

different functions. In the discussion on in which order the members of

the struct should be declared, one person says:

”We can just let the compiler optimize the layout!”

Your remark starts with ”No, that’s impossible, because...”

• (2p) How would you continue that sentence?

Answer C compilers are not permitted to change the order of at-

tributes in a struct. It is forbidden by the language definition.

• (8p) What would instead be your opinion about how to proceed?

Answer We should instead check which attributes are used at ap-

proximately the same time so we can benefit from both temporal and

spatial locality. Furthermore, to reduce the amount of padding be-

tween variables, we should put variables (i.e. attributes) that are

going into the same cache block in an order so that the padding is

minimized — for instance in an order of descending size. We should

first read all source code and then use the gprof and gcov tools to

profile the program to get more insights into what the program does,

and then use cachegrind or oprofile to measure the number of cache

misses for different proposed struct layouts. Then we pick the best

struct layout.

5. (6p) Suppose you have a C program which needs to be very fast, which,

however, it currently is not. Your profiling shows it spends more than 30%

of the execution time in malloc and free. Under which circumstances

would you consider using each of the following functions/approaches, and

why?

2

• (2p) alloca

Answer The data size is reasonable and it needs not to be returned

from the allocating function.

• (2p) one or more arenas

Answer We can find objects which can be deallocated (i.e. not

needed any more — we cannot deallocate individual objects from an

arena, unless it was the most recently allocated object) at approxi-

mately the same time such as after processing some work. Then the

entire arena can be deallocated after that work is completed. If the

objects will be needed at unpredictable lengths of time, arenas are

less suitable since they can contain lots of unused objects but not be

deallocated since some object still is needed.

If we can classify objects into classes which can be thrown away at

specific points in the program then with multiple arenas, each arena

can take care of one such class.

• (2p) free-lists of recently used objects

Answer If it often happens that objects of the same size are allocated

and deallocated then they can be put on a free-list instead of deallo-

cating them using free. If the objects are of different sizes or only

deallocated near the end of an execution, free-lists are not useful.

6. (4p) If you have coded the inner loop the best you can, timed it, but cannot

understand why it still is much slower than you had expected, what would

you do?

Answer Assuming the inner loop was coded the best you can means you

have already taken the cache into account, the best thing to do is to read

the assembler code and see if the compiler produces inefficient code. If

you still cannot understand the reason, it’s time to use detailed pipeline

simulators which will show you what actually happened.

7. (10p) The C code on the next page is the initialization of a program, which

calls a function work that is not shown. Assume that the only optimization

your C compiler is allowed to perform is register allocation of local vari-

ables whose address has not been taken. Improve the speed of the code as

much as you can for a RISC processor, on which all instructions except the

following take one clock cycle (i.e. one clock cycle in the execute pipeline

stage). Note that C compilers need to use several instructions for the %

operator (remainder).

3

Instruction Clock cycles

Divide 30

Multiplication 4

Memory load 2

Mispredicted branch 4

The function rand generates a random number (which you must use).

4

#include <stdio.h>

unsigned int x = 0;

void work(void);

void error(const char*);

static unsigned int f(unsigned int a, unsigned int b)

{

unsigned int c = 1;

while (b-- > 0)

c = c * a;

return c;

}

static void g(unsigned int s, unsigned int r)

{

x = 15 * x + r % s;

x += x / s;

}

int main(int argc, char** argv)

{

unsigned int i;

unsigned int s;

unsigned int n;

if (argc != 2 || 1 != sscanf(argv[1], "%u", &n))

error("expected a number");

for (i = 0; i < n; ++i) {

s = f(2, i);

g(s, rand());

}

work();

return 0;

}

Answer See the file 20110530.c for original and optimized versions. Re-

marks on the optimized code:

5

• Both f and g can be inlined by the programmer.

• The global variable x can be copied to a local variable y which can

be register allocated — according to the question the global variable

could not be register allocated.

• The function f is not really needed and what it calculates can be done

more efficiently, as can seen.

6

