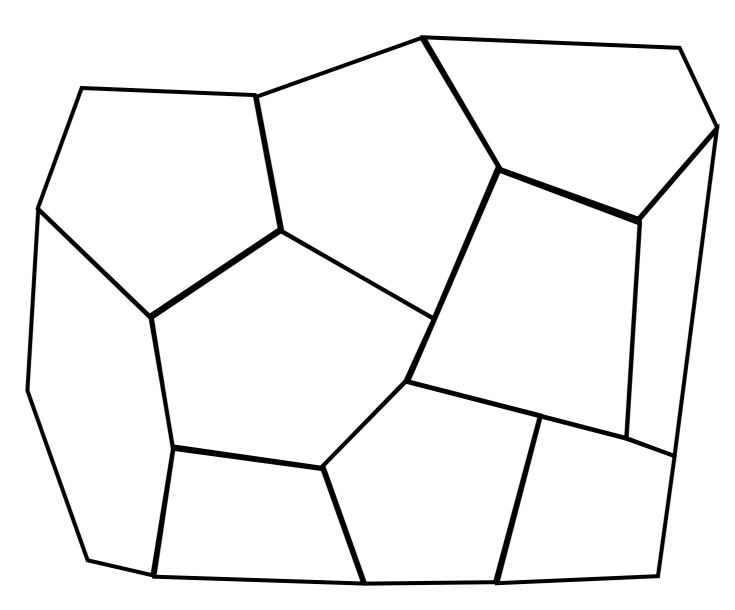
Graph Coloring

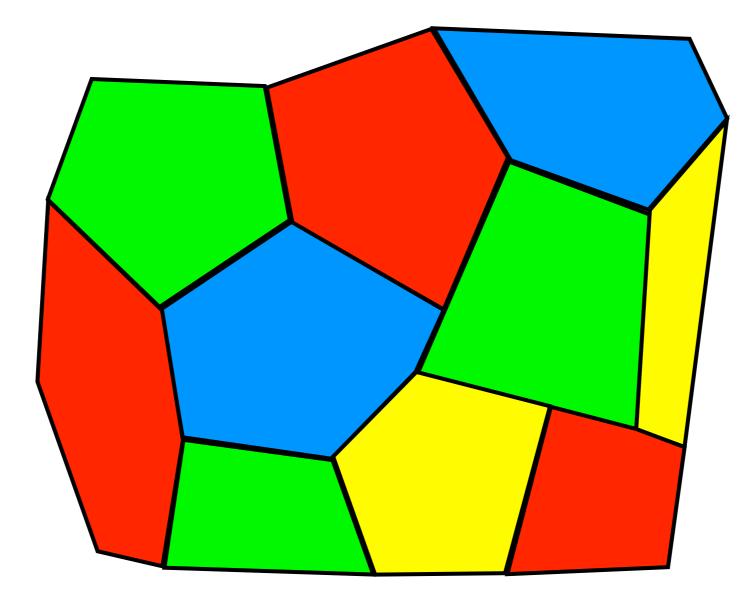
Andreas Björklund

Coloring a Map

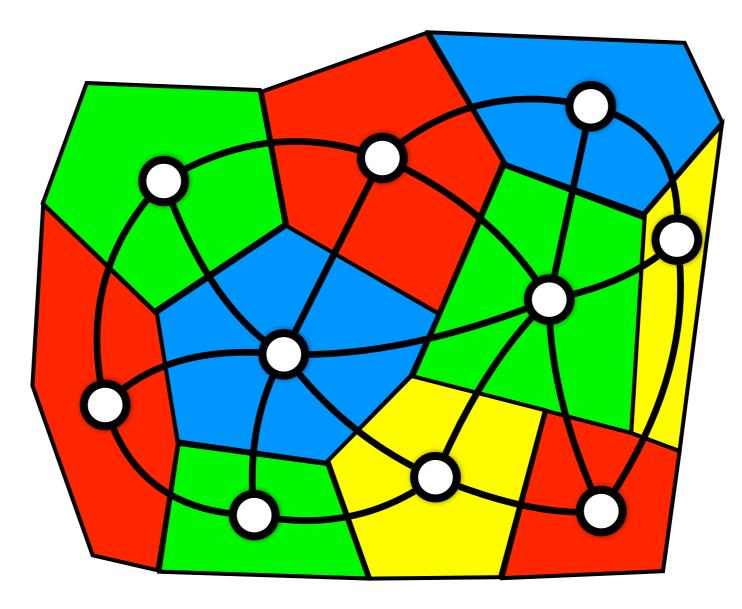
[Francis Guthrie 1852]

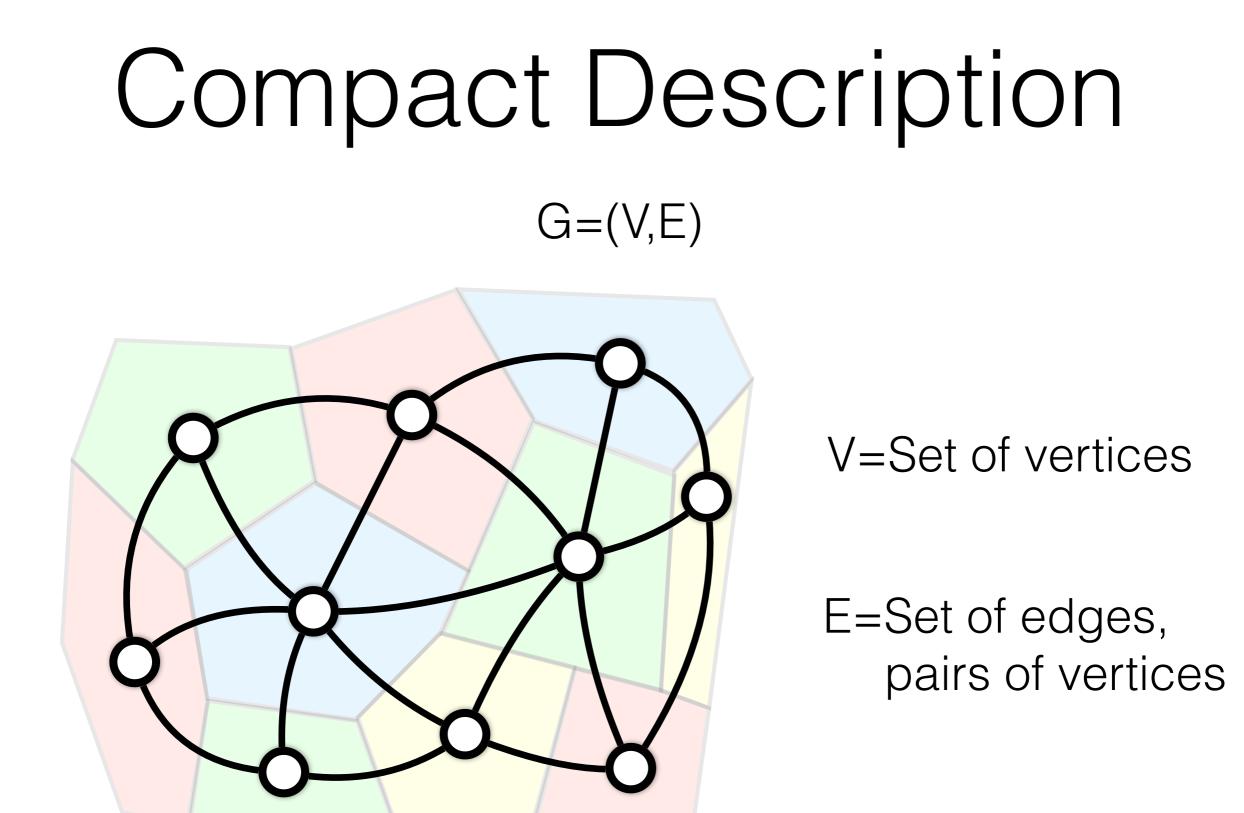


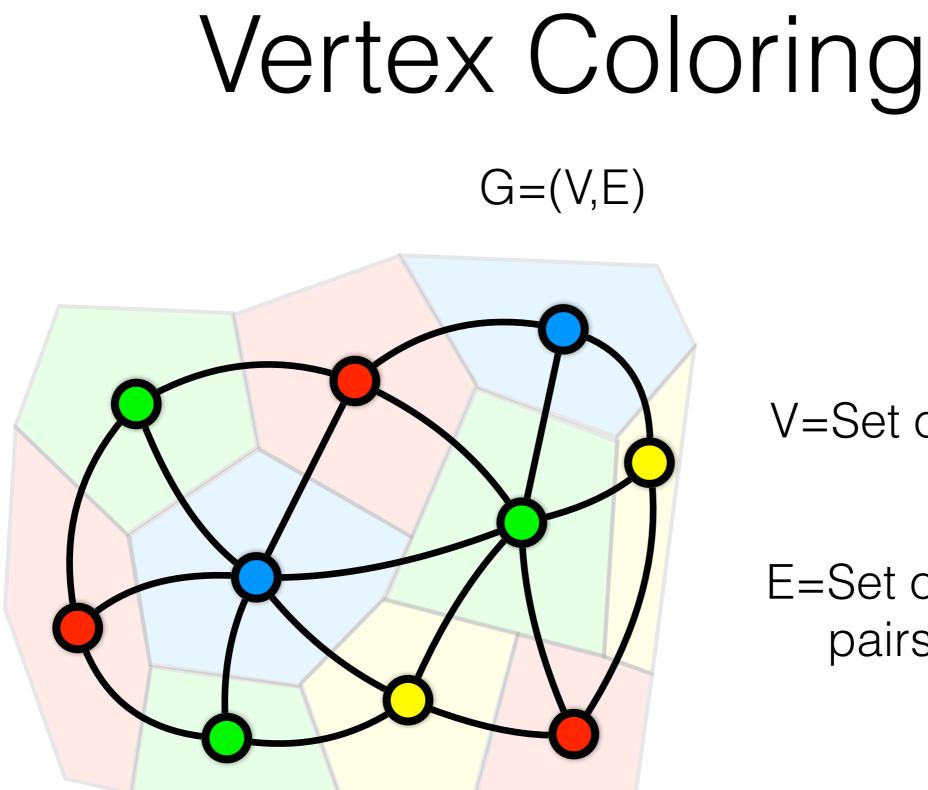
Coloring a Map



Graph Representation







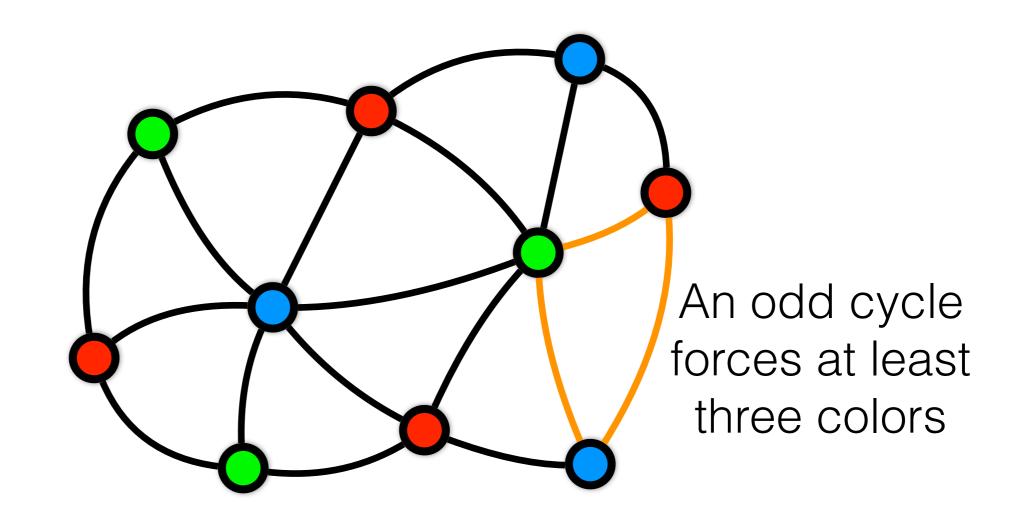
V=Set of vertices

E=Set of edges, pairs of vertices

Chromatic Number

Given a graph G=(V,E), the chromatic number χ(G) is the smallest number of colors needed to color the vertices V so that for every edge e in E, the endpoints have different colors.

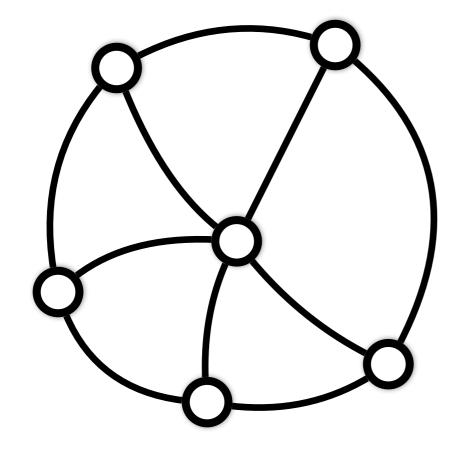
The Chromatic Number is Three



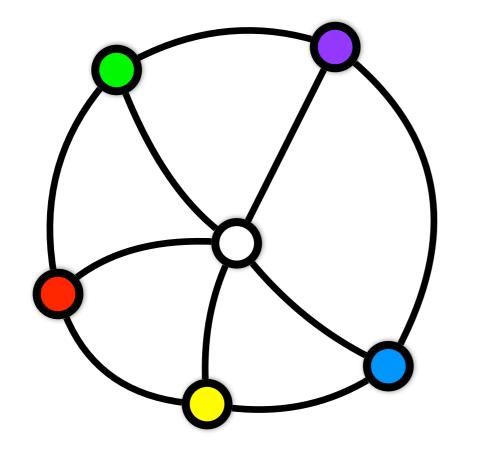
Planar Graphs

- A graph is planar if it can be drawn in the plane without any edges crossing each other.
- [Appel&Haken 1976] The chromatic number of a planar graph is at most four.
 - Proof through computer assisted case analysis, it gives a (complicated) polynomial time algorithm.

Simple Argument $\chi(G) < 6$ [Heawood 1890]



There must be a vertex of degree at most 5.



Assume its neighbors are colored in 5 colors.

U

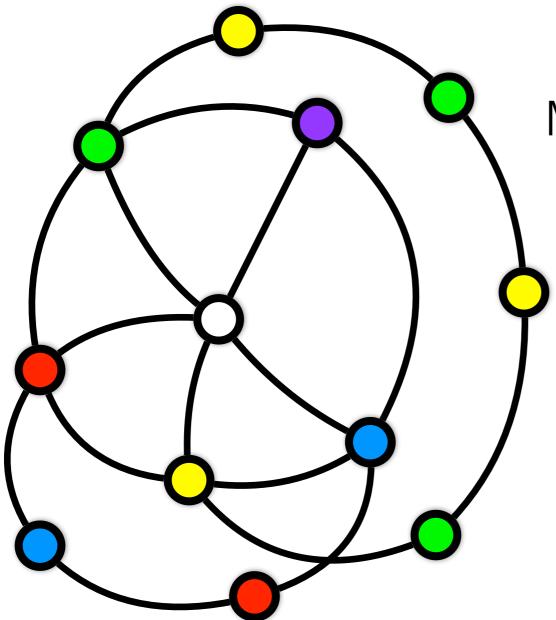
W

If one neighbor u is in alternating colored component that is not connected to neighbor w of the other color, then Recoloring is possible!

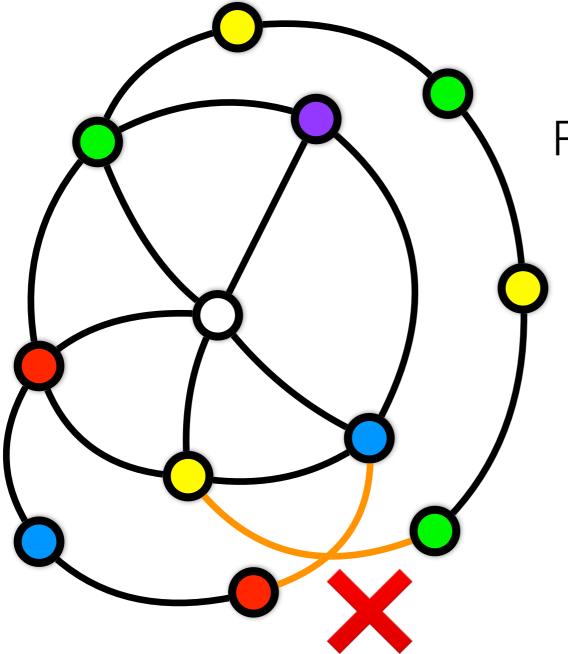
U

W

If one neighbor u is in alternating colored component that is not connected to neighbor w of the other color, then Recoloring is possible!



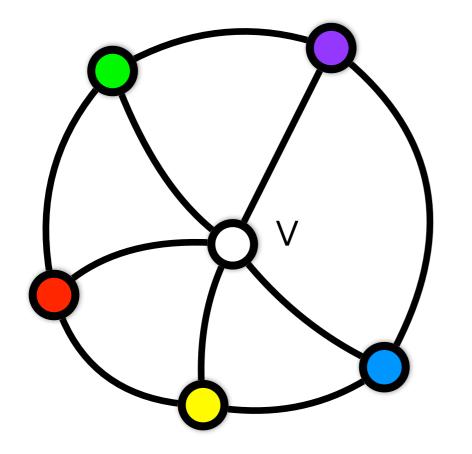
Must be alternatingly colored paths between neighbors.



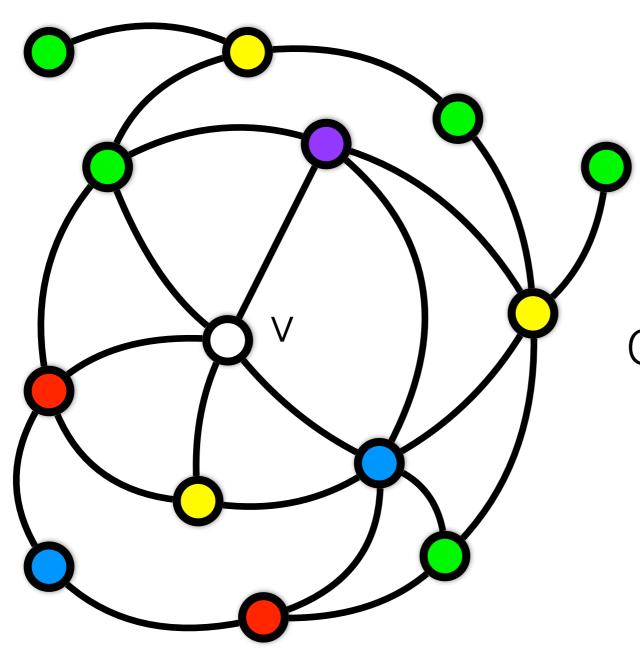
Paths must cross each other => contradiction!

Polynomial Time Algorithm for Five Coloring Planar Graphs

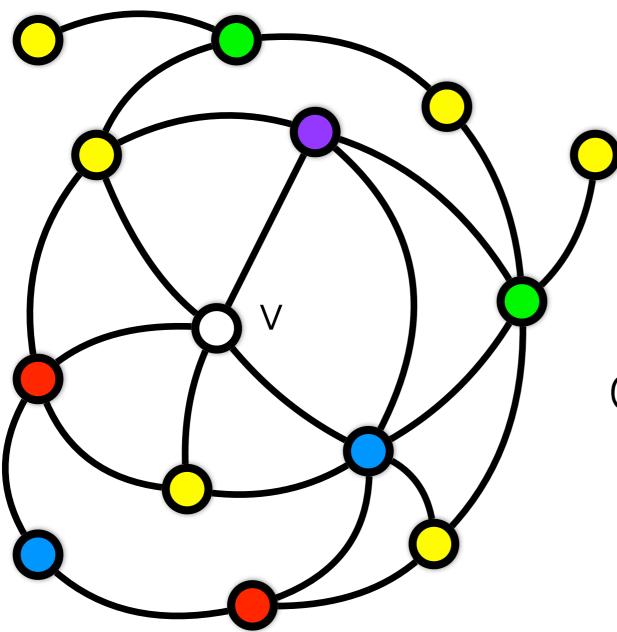
- [**Preprocessing**] Remove the vertex of smallest degree and put it on a stack. Repeat until all vertices are on the stack.
- [Coloring] As long as not all vertices have been colored, pop the stack and color the current vertex with the first available valid color given the already coloured vertices.
 - If no valid color is available, it must be possible to recolor a colored neighbor by Heawood's argument.
 - Find a vertex that can be recolored, do that and continue.



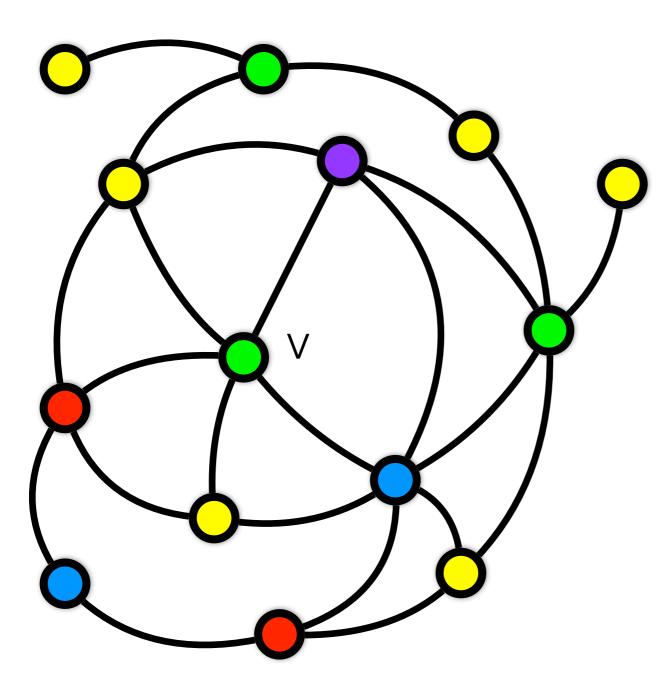
None of the five colors are valid for v.



Green-Yellow component only incident with one neighbor of v.



Swap colors on Green-Yellow component.



Green color is now valid for v.

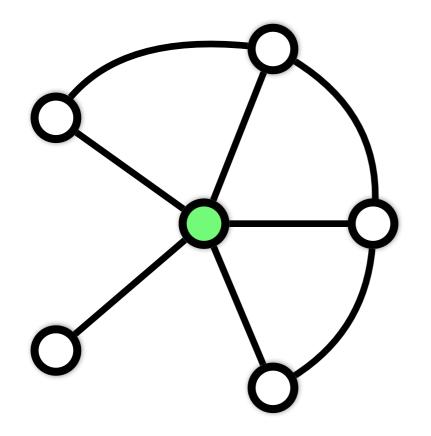
Hardness of Coloring

- Computing the chromatic number in a general graph is NP-complete. In fact deciding if χ(G)=3 in a planar graph is NP-complete.
- The best polynomial time algorithms for coloring a 3-colorable graph uses more than n^{1/6} colors!

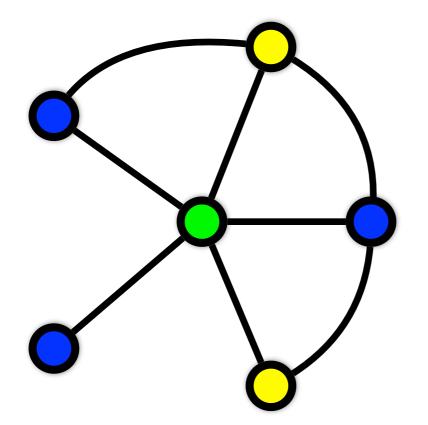
Coloring a 3-colorable Graph with O(n^{1/2}) Colors in Polynomial Time

[Wigderson 1982]

Note: Graphs need not be planar, (they are just easier to visualise).

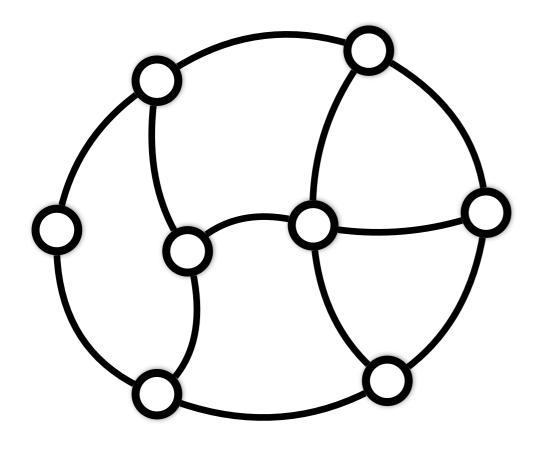


If there exists vertex of degree more than n^{1/2}, color it and its neighbours with three fresh colors.

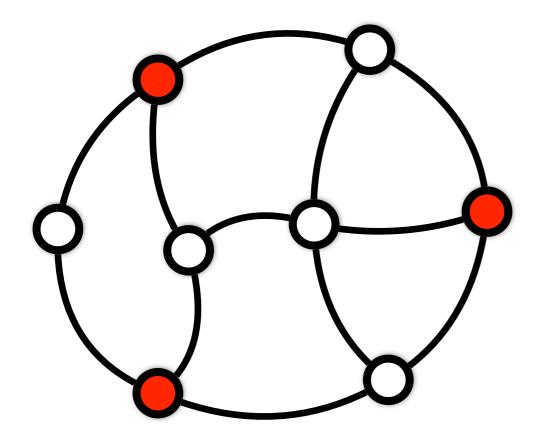


If there exists vertex of degree more than n^{1/2}, color it and its neighbours with three fresh colors.

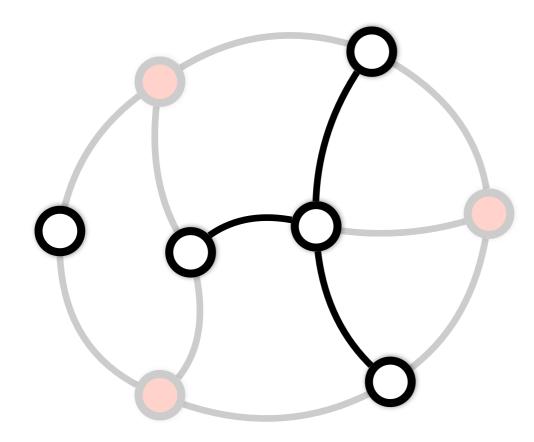
The neighbourhood must be bipartite, and hence it is easy to two-color.



If no vertex exist with degree more than n^{1/2}, we can find a maximal independent set of size n^{1/2}. Color it with one fresh color.



If no vertex exist with degree more than n^{1/2}, we can find a maximal independent set of size n^{1/2}. Color it with one fresh color.



If no vertex exist with degree more than n^{1/2}, we can find a maximal independent set of size n^{1/2}. Color it with one fresh color.

Repeat strategy on remaining graph.

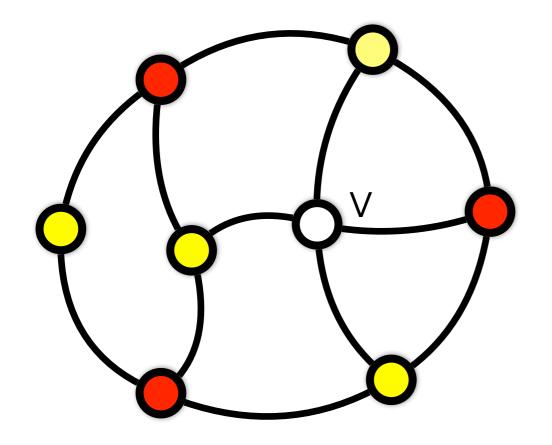
Color Usage Analysis

- In the first rule, we color n^{1/2} vertices with 3 new colors.
- In the second rule, we color n^{1/2} vertices with 1 new color.
- There can be at most n^{1/2} steps before all vertices have been colored, in total O(n^{1/2}) colors used.

Exponential Time Algorithms

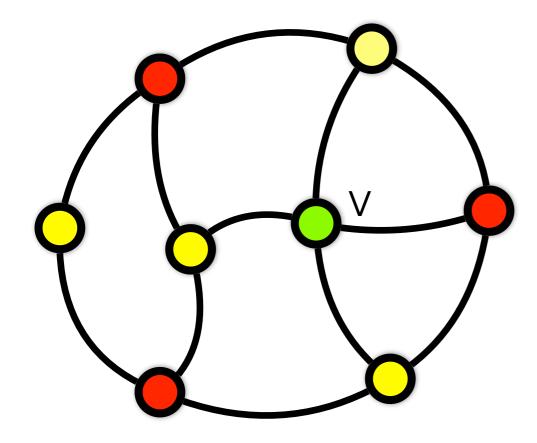
- What is the fastest worst case running time algorithm we can guarantee for *exactly* computing the chromatic number?
 - We want to make sure that if a k-coloring exists the algorithm will learn about it, not just an approximation.
 - We want to guarantee that the running time is bounded by as small as possible an (exponential) function in n, the number of vertices.

Naive algorithm uses kⁿ time.

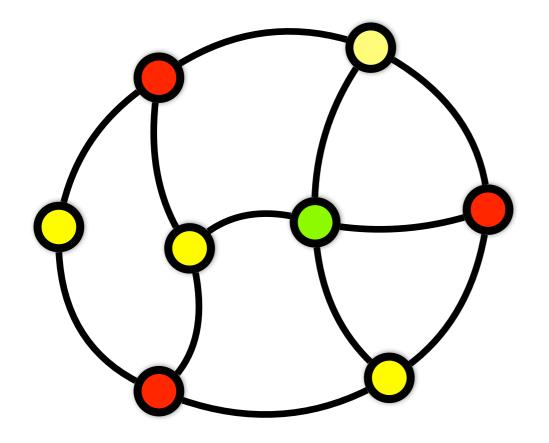


For every vertex, try each of the k colors.

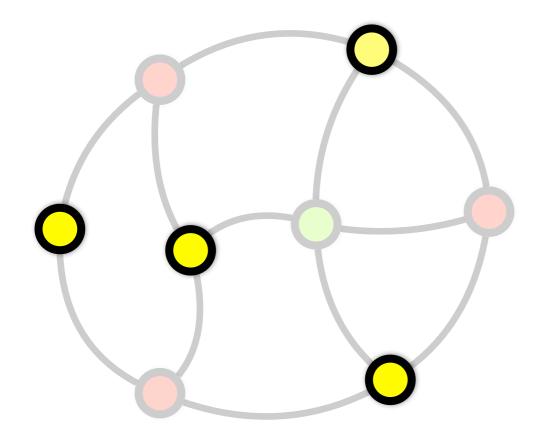
Naive algorithm uses kⁿ time.



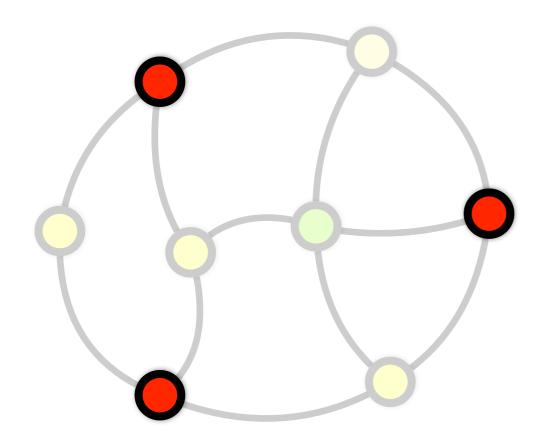
v cannot be yellow or red =>
we might need to check k
colors for many vertices, and
 backtrack many times.



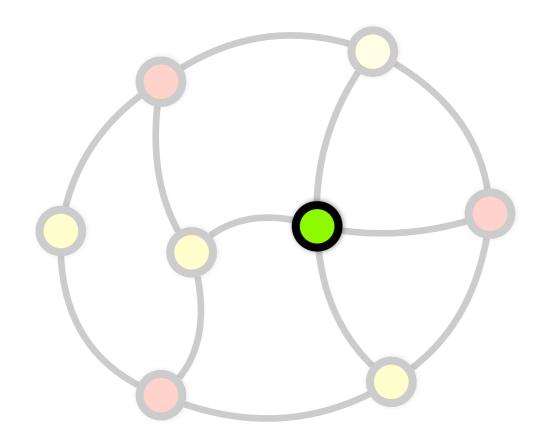
A *colorclass* is the set of vertices colored by the same color. A k-coloring consists of k disjoint colorclasses.



The Yellow colorclass

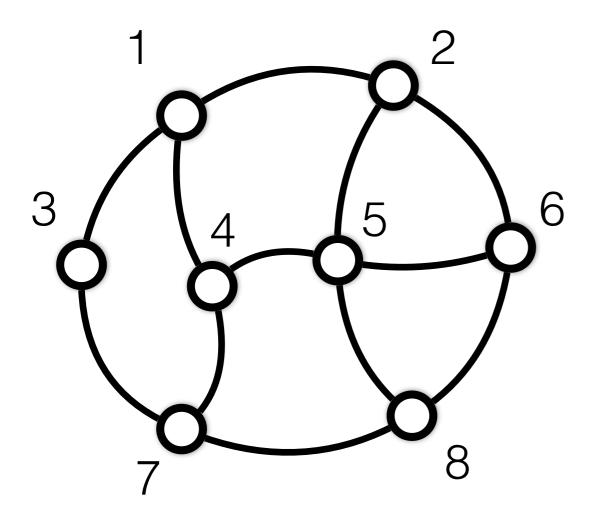


The Red colorclass.

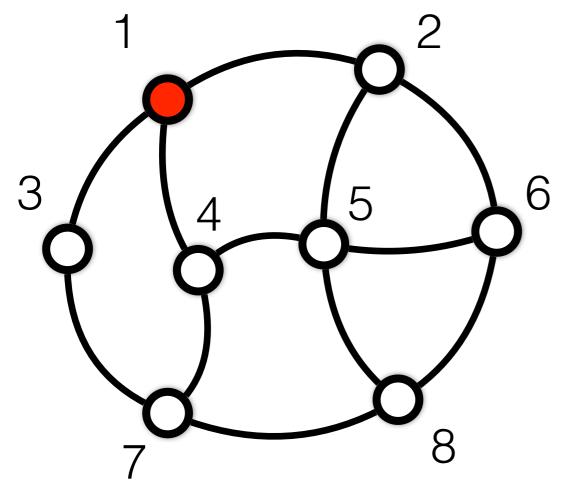


The Green colorclass.

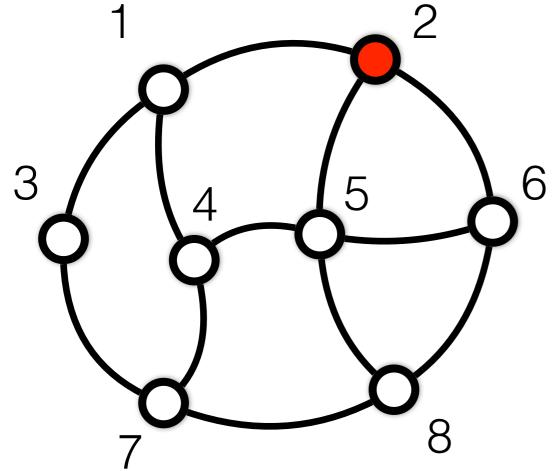
All Candidate Colorclasses



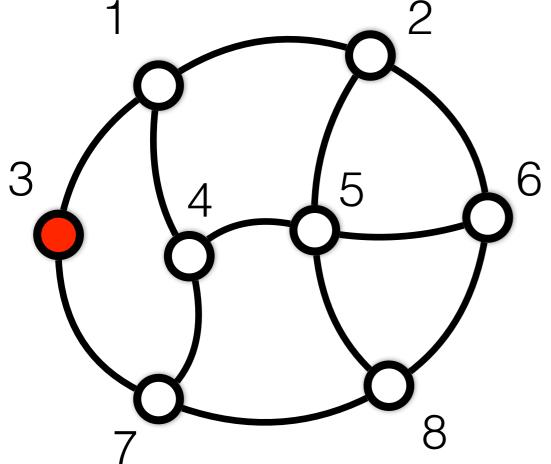
All Candidate Colorclasses $\frac{12345678|12345678|}{10000000}$



<u>12345678 12345678</u> 10000000 01000000



<u>12345678 12345678</u> 10000000 01000000 00100000



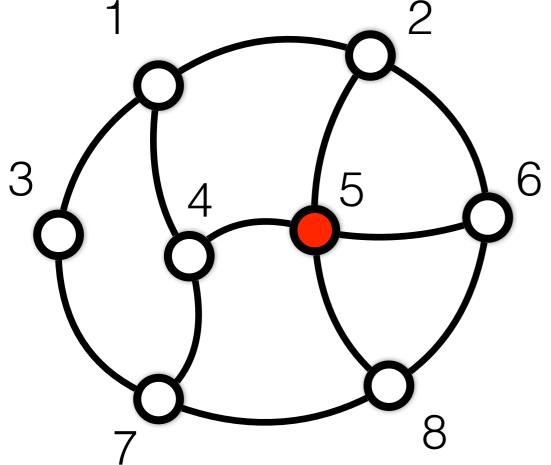
123

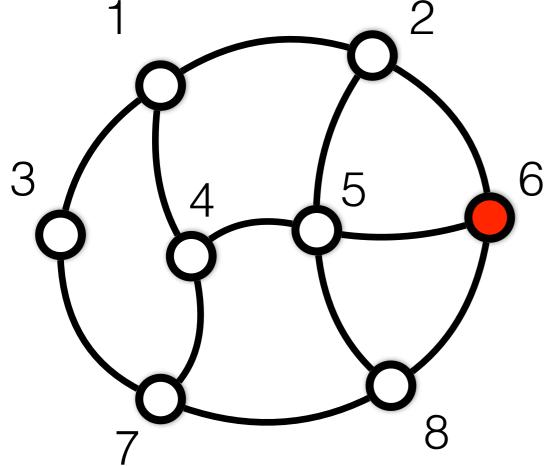
45678 | 12345678

()

8

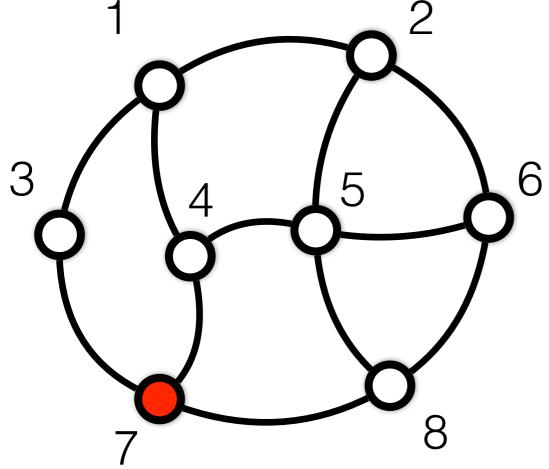
1





123

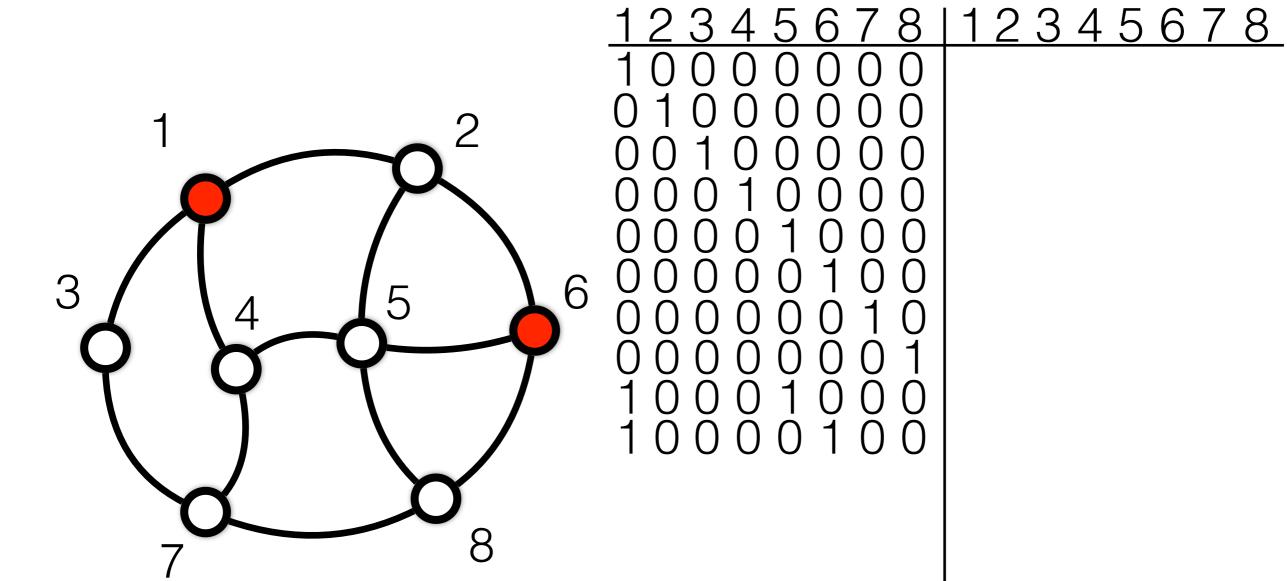
45678 | 12345678 6

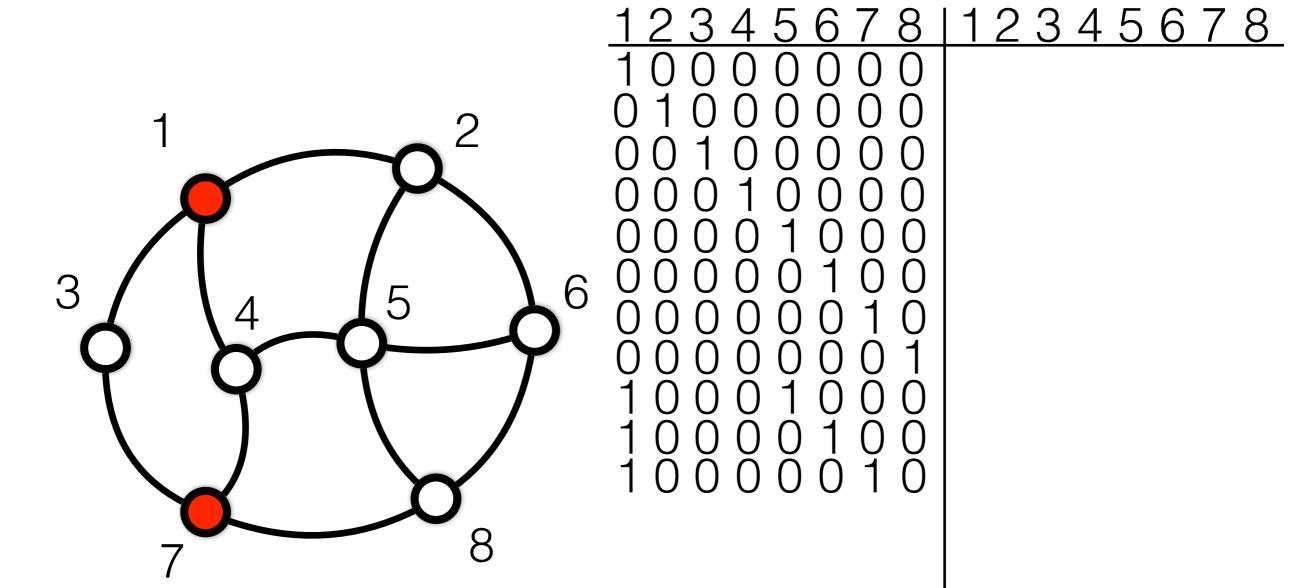


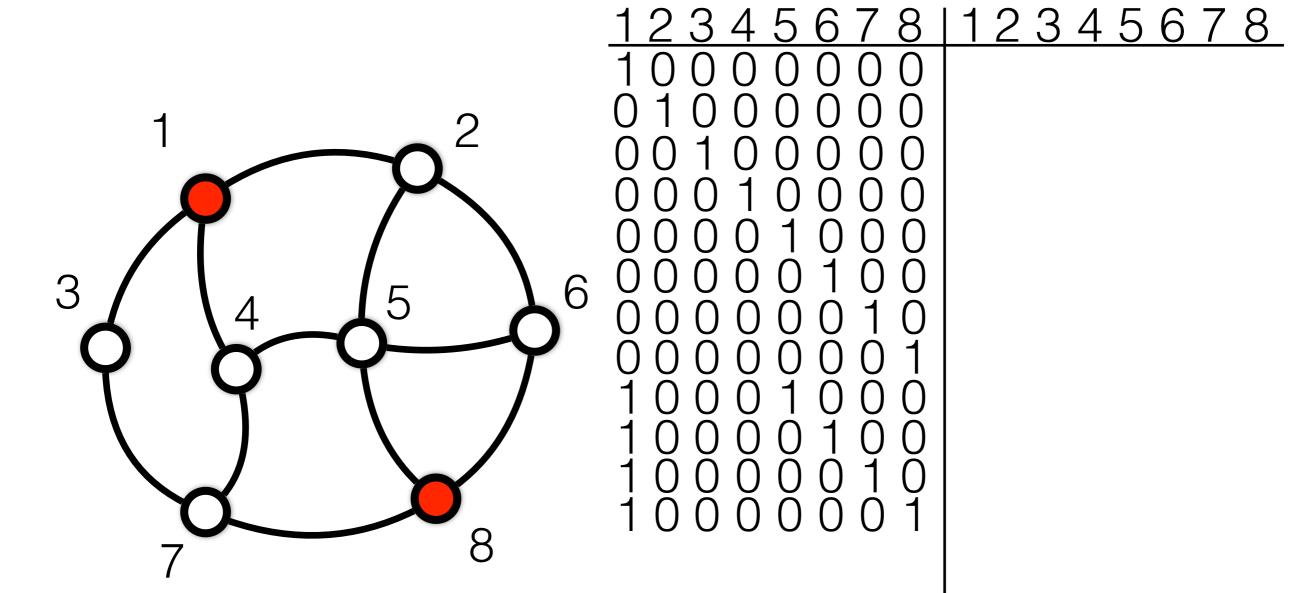
45678 | 12345678

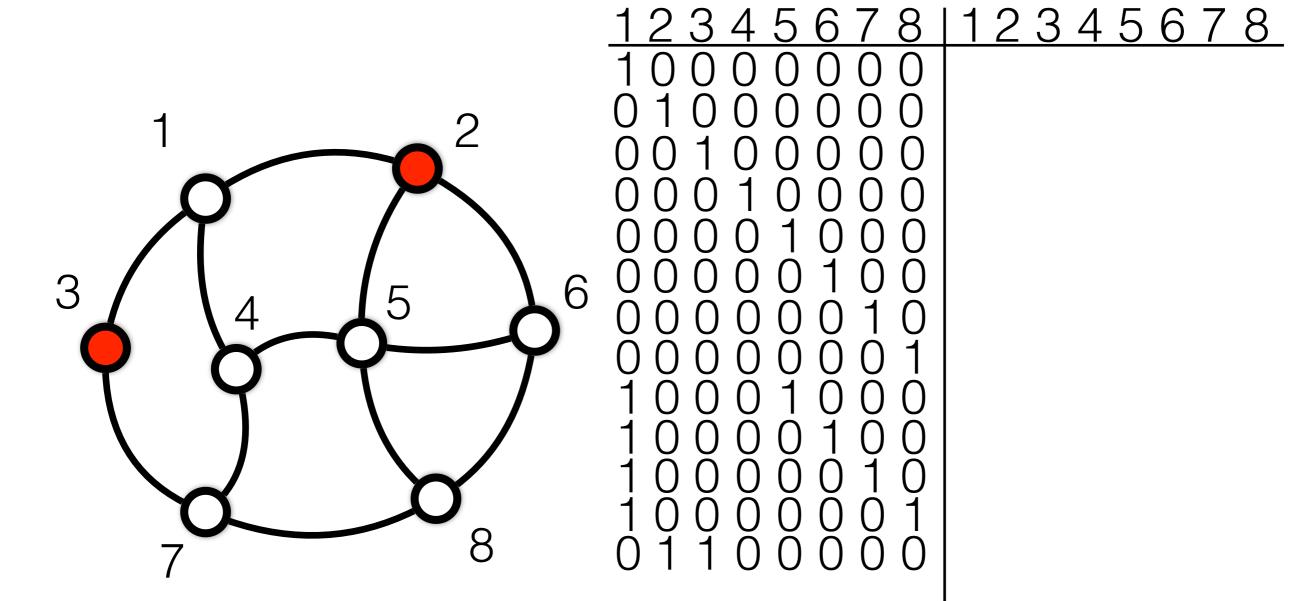
123

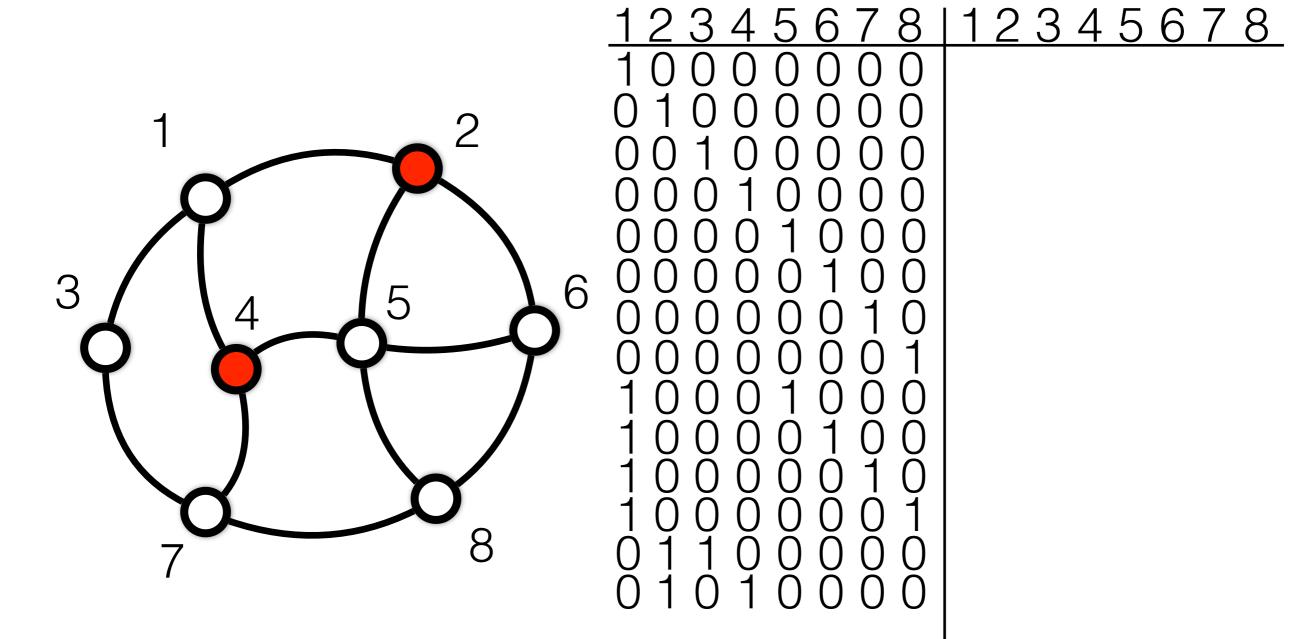
45678 | 12345678

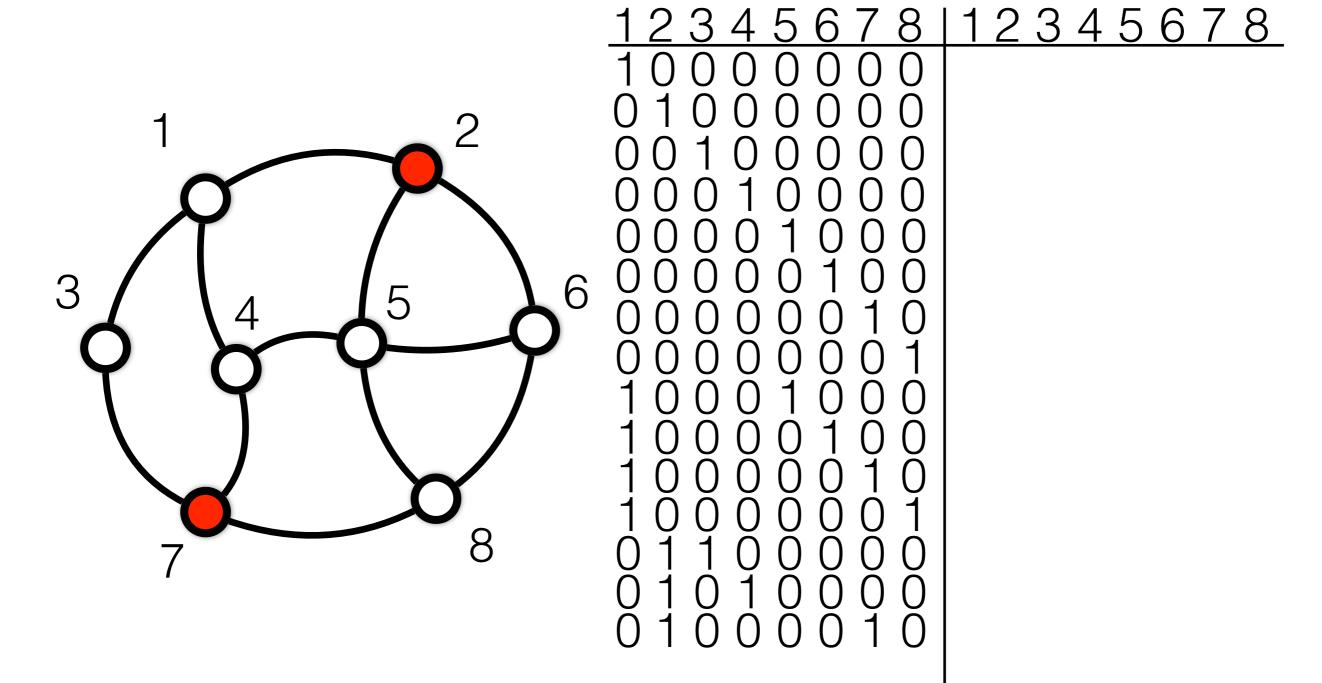


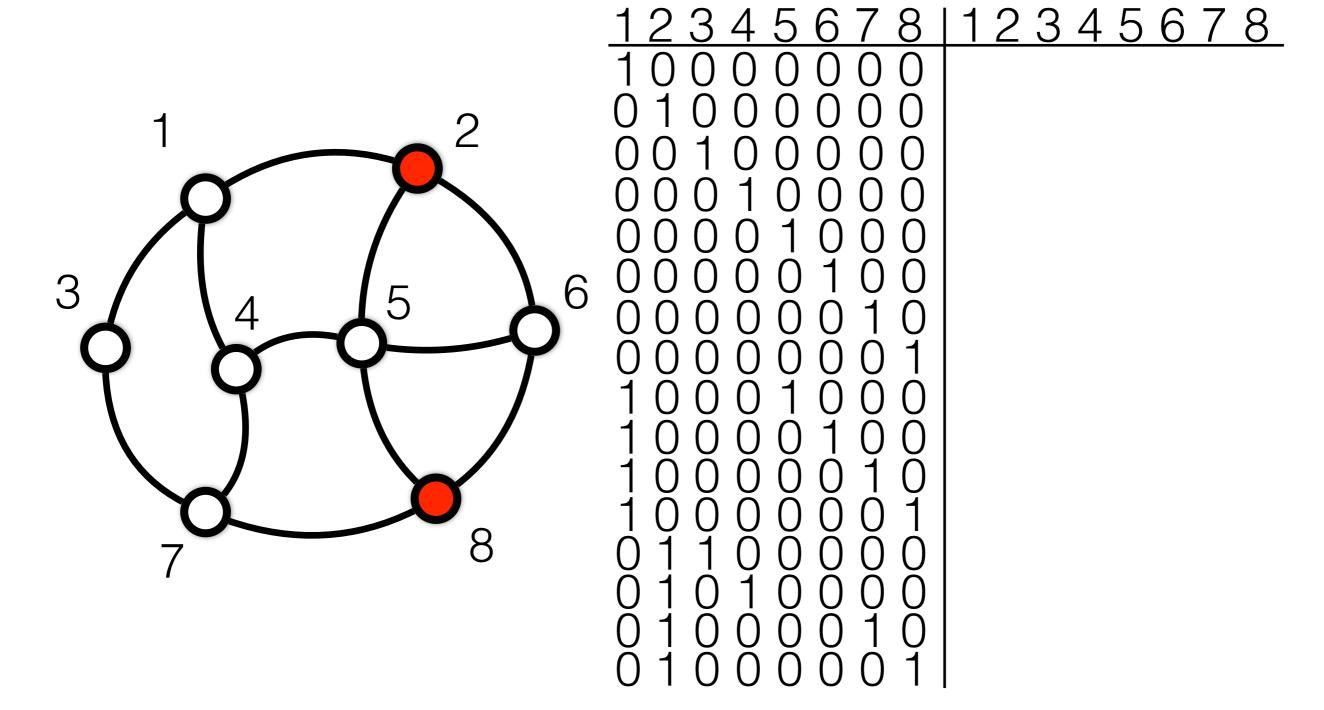


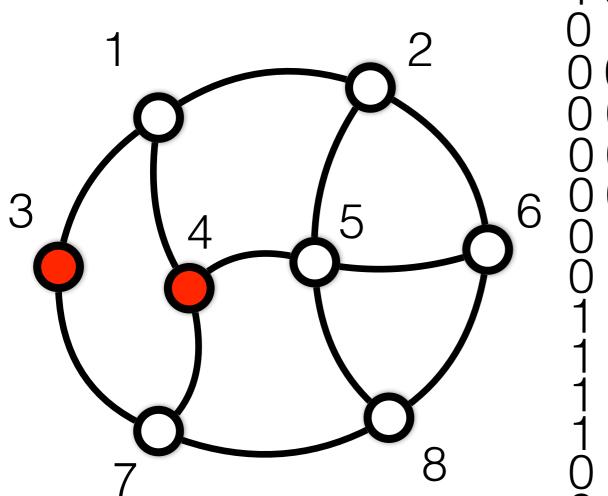












45678 12345678 23 ()

 $\left(\right)$

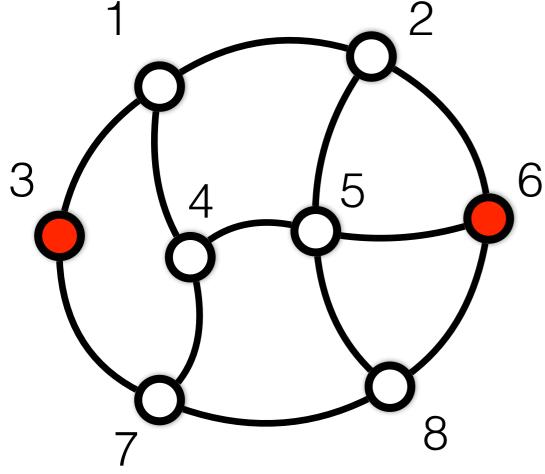
 $\left(\right)$

()

()

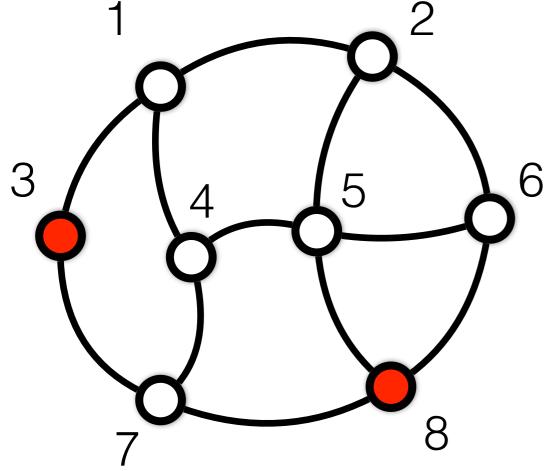
()() () ()

() () () ()

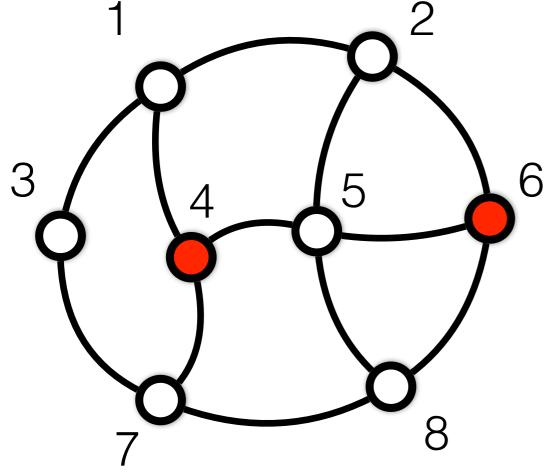


()() ()

()

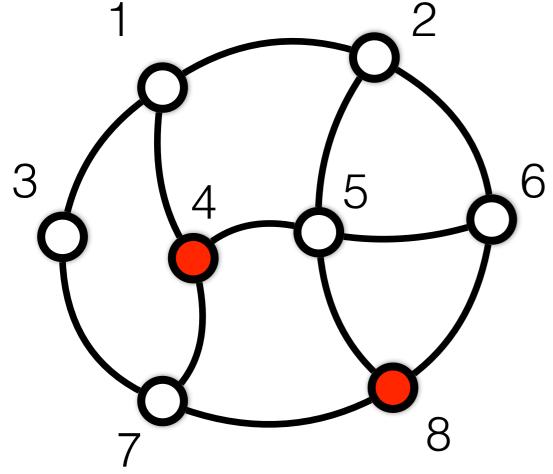


()() () ()



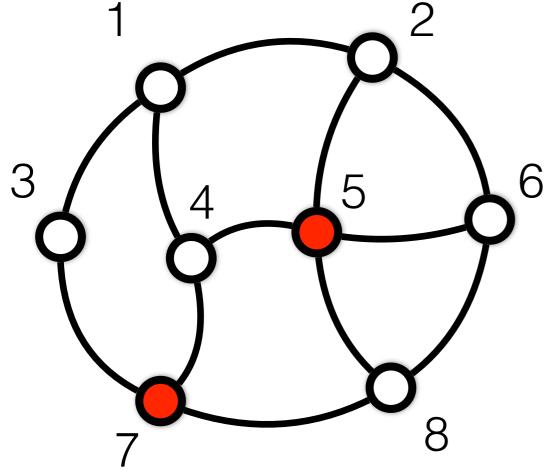
123456 8 4567 23 () () ()() 6

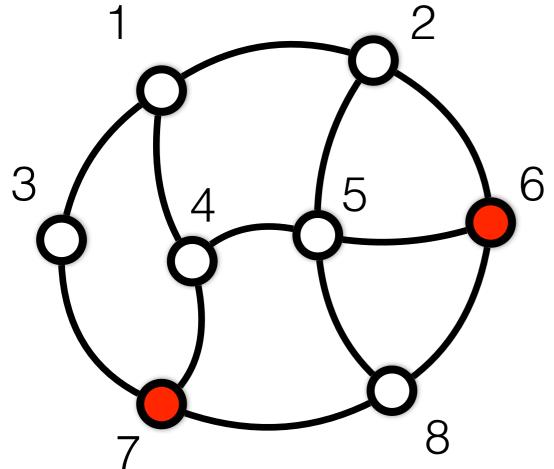
8

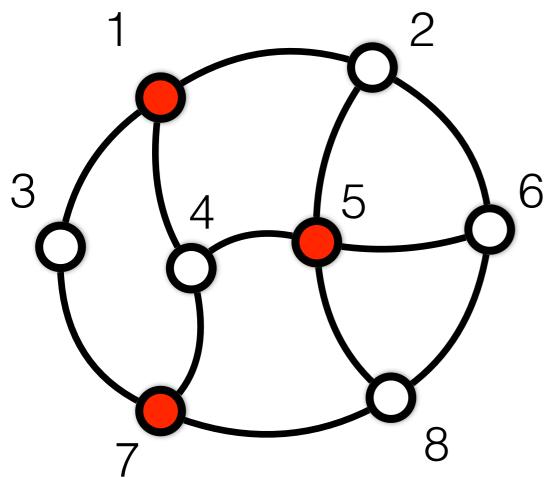


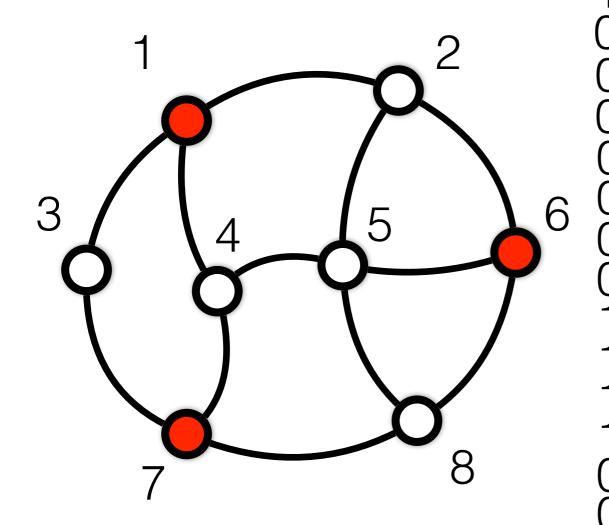
123456 8 4567 23 ()() ()6 ()

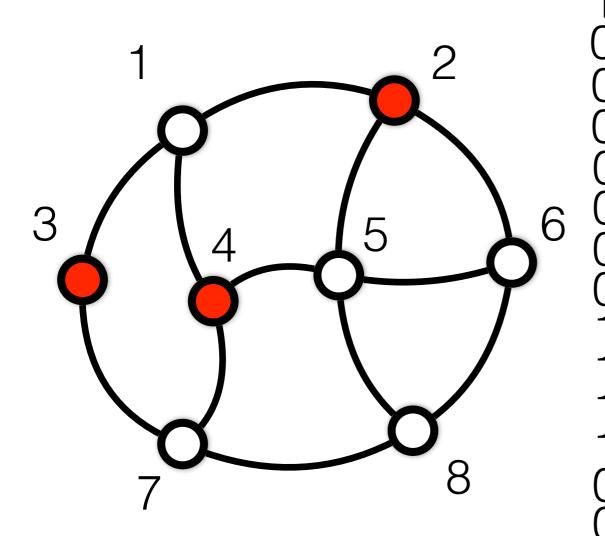
8

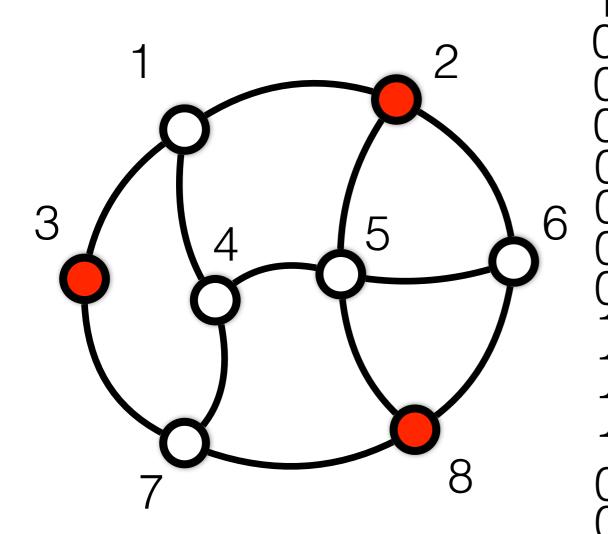


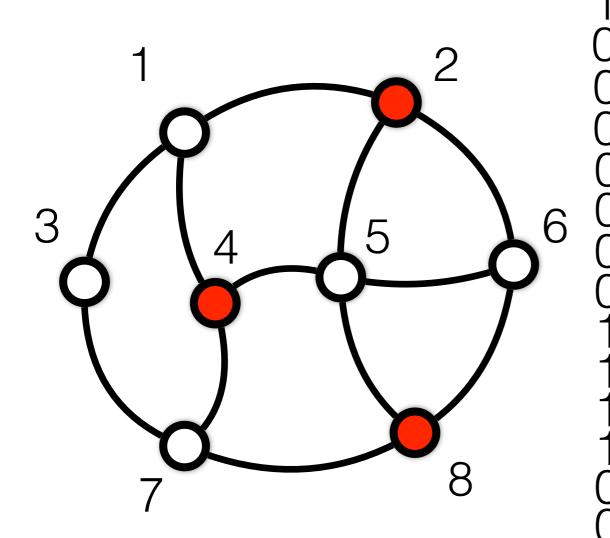




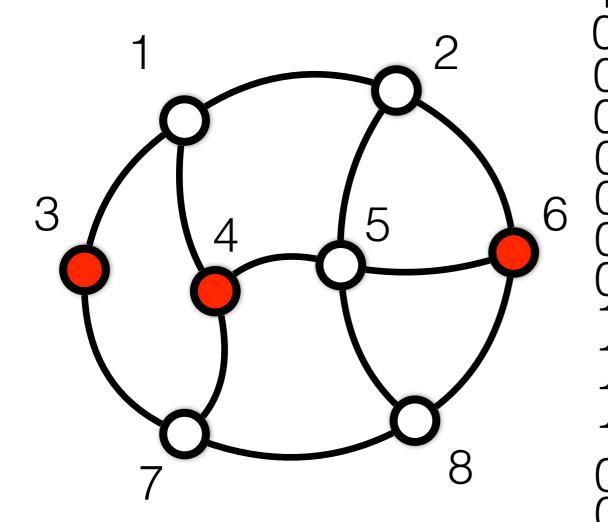




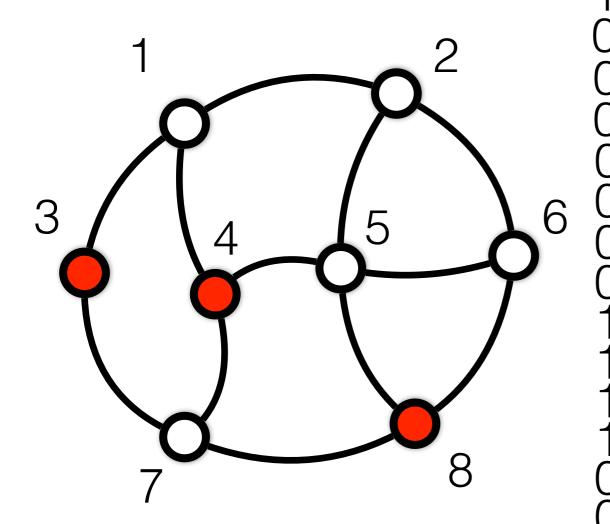




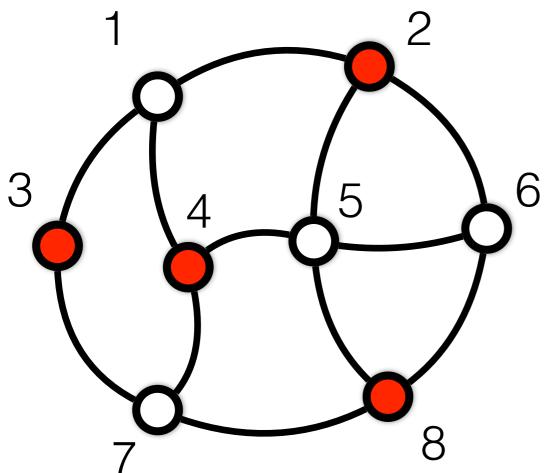
123456 8 456 7 8 23 7 ()() () ()



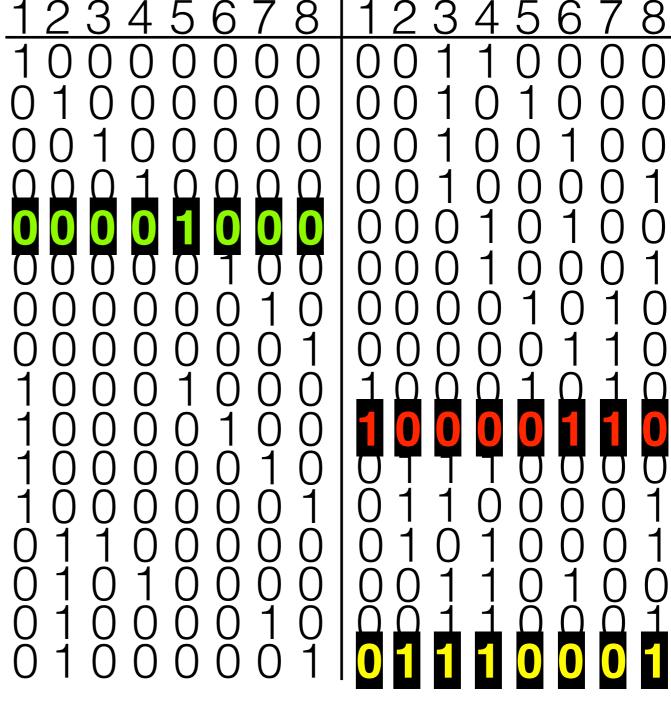
123456 8 456 7 8 23 7 ()() () ()

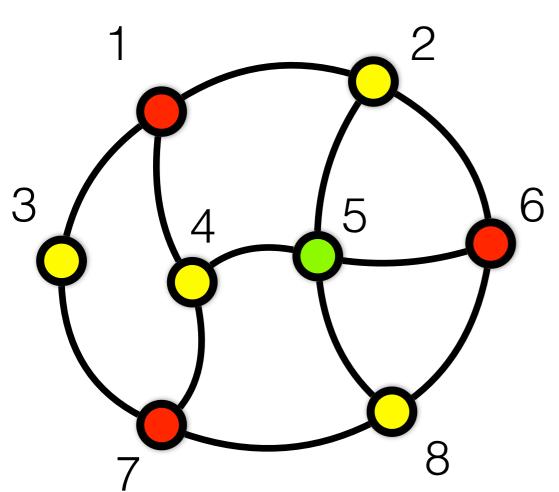


7 8 23456 456 1 8 23 7 ()() ()() () ()



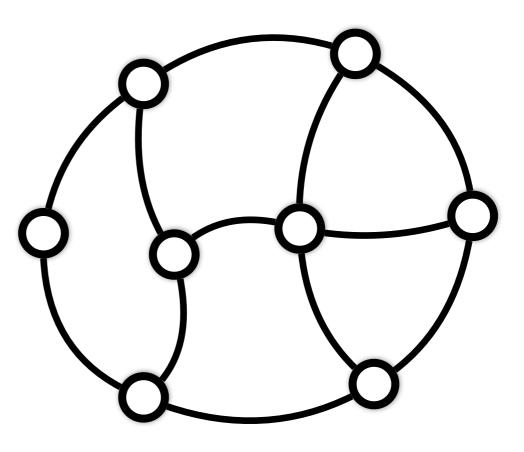
A Coloring is a Set of Disjoint Colorclasses





Dynamic Programming across Vertex Subsets

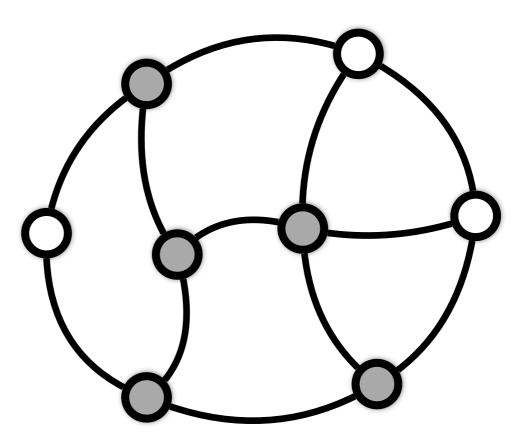
 For a vertex subset X, define d(X) as the smallest number of colors needed in a proper coloring of G[X], the graph *induced* by X.



The graph G.

Dynamic Programming across Vertex Subsets

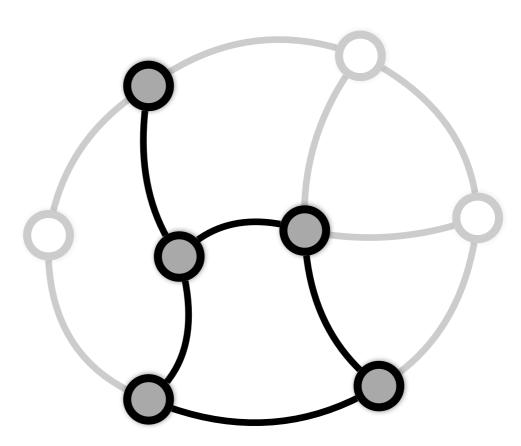
 For a vertex subset X, define d(X) as the smallest number of colors needed in a proper coloring of G[X], the graph *induced* by X.



X is the grey vertices.

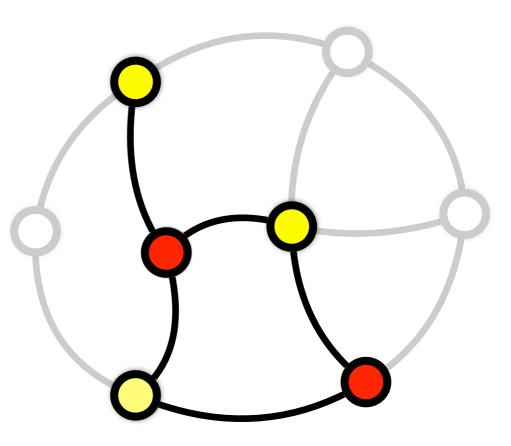
Dynamic Programming across Vertex Subsets

 For a vertex subset X, define d(X) as the smallest number of colors needed in a proper coloring of G[X], the graph *induced* by X.



The induced graph G[X] is X and all edges between vertices In X.

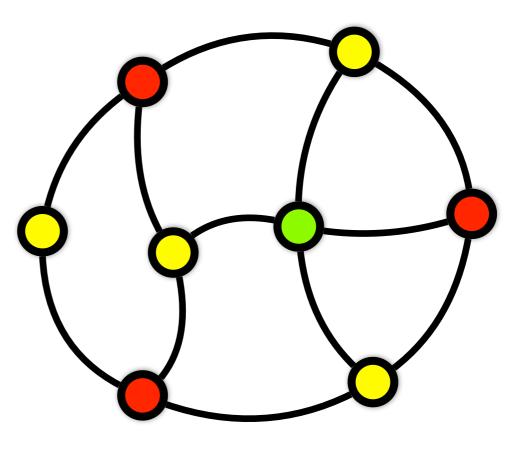
 For a vertex subset X, define d(X) as the smallest number of colors needed in a proper coloring of G[X], the graph *induced* by X.



d(X)=2.

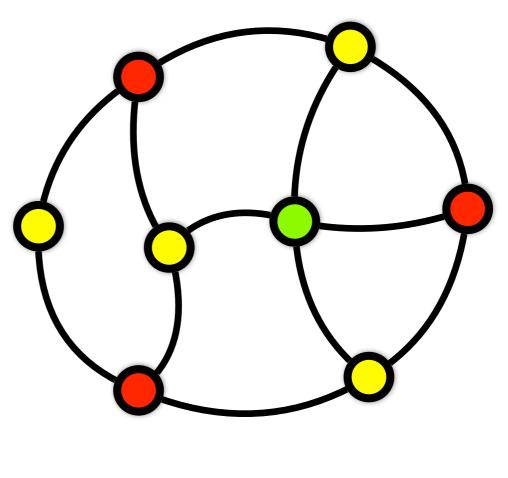
- d(0)=0.
- d(X)=min_Y d(X-Y)+1.

Y is a colorclass candidate in G[X]



• Clearly,

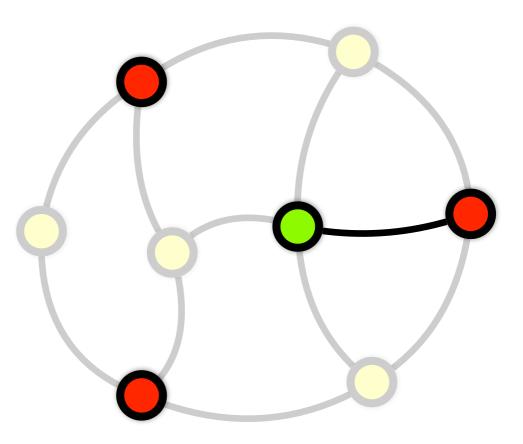
 $d(V) = \chi(G).$



d(V)=3.

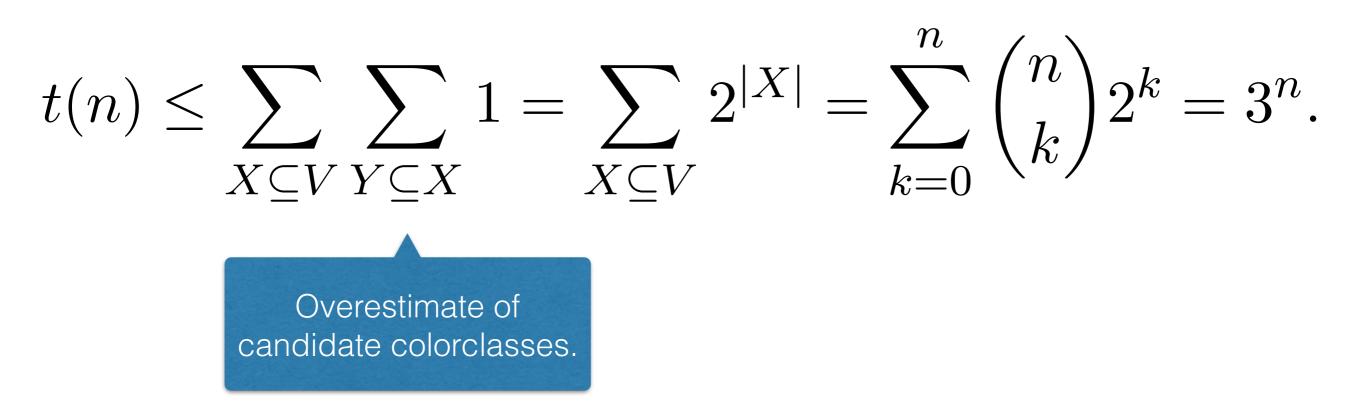
- d(0)=0.
- d(X)=min_Y d(X-Y)+1.

Y is a colorclass candidate in G[X]



X=V, Y=Yellow colorclass

Running Time Analysis



Improved Bounds for the Dynamic Programming Approach

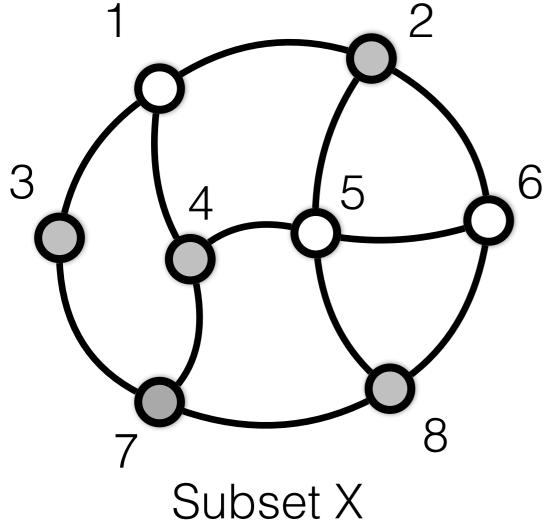
- [Lawler 1976] O(2.44ⁿ) by looping over maximal independent sets as colorclasses.
- [Byskov 2003] O(2.40ⁿ) by more careful analysis.

2ⁿpoly(n) time algorithm for chromatic number [B., Husfeldt, and Koivisto 2006]

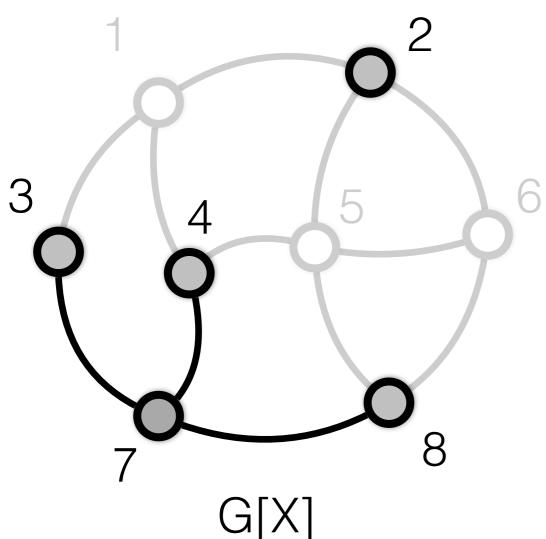
- Use inclusion-exclusion summation to count kcolorings.
- Use the fast zeta transform (a variant of the Fast Fourier transform) to efficiently count candidate colorclasses in every induced subgraph G[X] at once.

 Let a(X) for X a subset of the vertices V be the number of candidate color classes in the induced graph G[X].

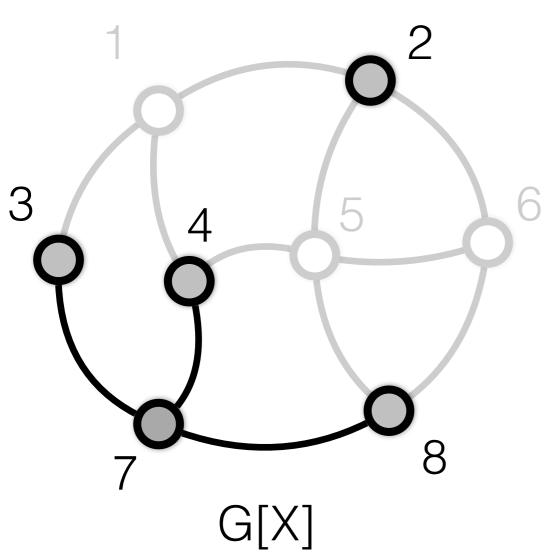
()() () ()



8 2 3 2 3 8 4 4 ()() ()() () ()



()() ()Ó () $\left(\right)$ $\left(\right)$ ()



8 23 8 23 4 a(X) = 170 0 \mathbf{O} $\left(\right)$ () 0 Û 0 Q Û 0 \mathbf{O} () () 3 6 \mathbf{O} 8 0 0 0 0 G[X]0 0 0 0 ()

Inclusion-Exclusion

$$p(k) = \sum_{X \subseteq V} (-1)^{|V-X|} a(X)^k.$$

- p(k) is zero if there is no k-coloring,
- p(k) is non-zero if there are k-colorings.

Meaning of Powers of a(X)

 a(X)^k counts the number of ways to pick k color classes (with repetition) in G[X].

Meaning of Powers of a(X)

3

2

8

2

3

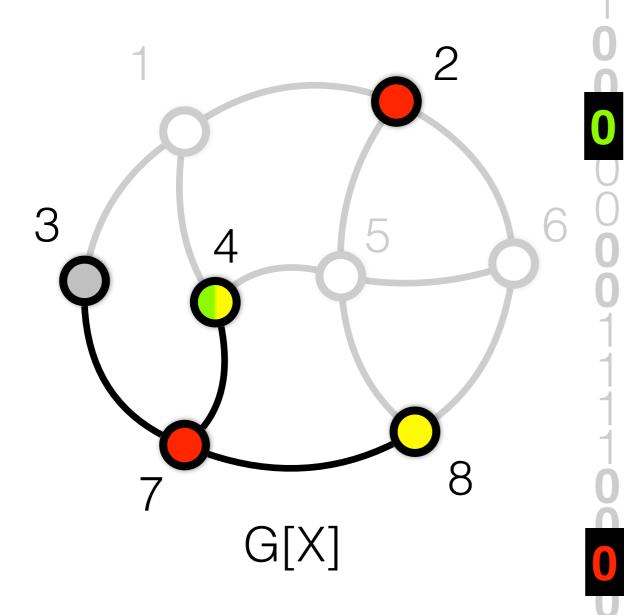
4

8

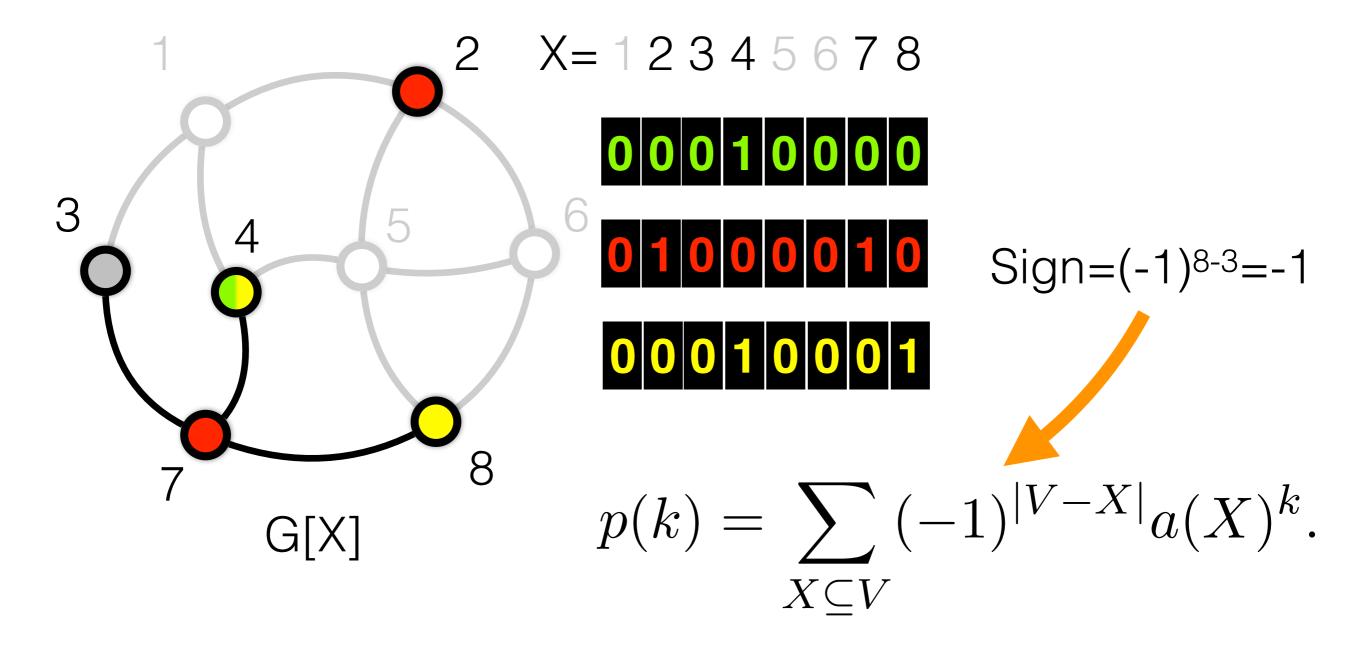
k=3

 a(X)^k counts the number of ways to pick k color classes (with repetition) in G[X].

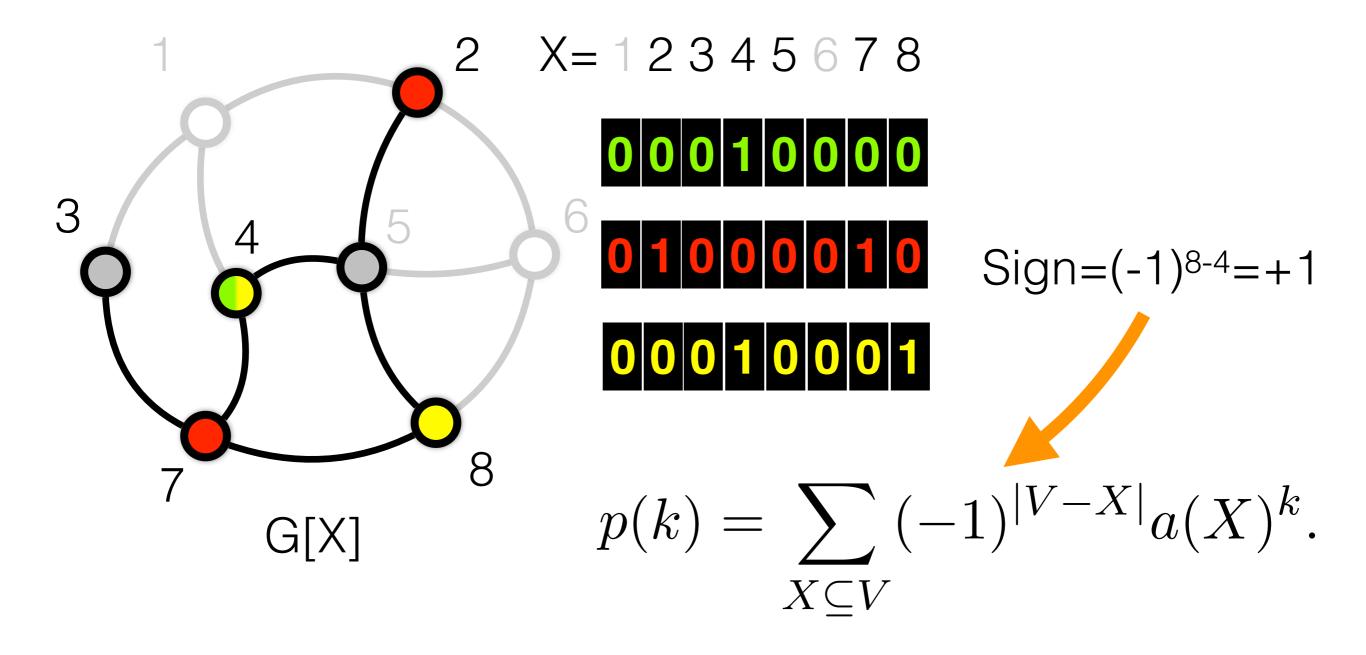
Meaning of Powers of a(X)



A k-tuple of Colorclasses will be Counted in Many G[X]'s



A k-tuple of Colorclasses will be Counted in Many G[X]'s



K-tuples of Colorclasses

$$p(k) = \sum_{X \subseteq V} (-1)^{|V-X|} a(X)^k.$$

 Will be counted 2^{#of uncolored vertices} times, but equally many times with sign factor -1 as +1. Hence, they will cancel each other in the sum unless all vertices are colored.

Fast Zeta Transform

$a(X) = \sum_{Y \subseteq X} [Y \text{ is a candidate colorclass}].$

[Yates 1937] A table containing a(X) for all subsets
 X of V can be computed in O(n2ⁿ) time.

BHK'06 x(G)-Algorithm

• Compute by Yates's algorithm

 $a(X) = \sum_{Y \subseteq X} [Y \text{ is a candidate colorclass}].$ 2^npoly(n) time.

• For k=1:n, evaluate

$$p(k) = \sum_{X \subseteq V} (-1)^{|V-X|} a(X)^k.$$

until p(k)≠0, then return k.
$$2^n \text{poly(n) time.}$$