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Coloring a Map
[Francis Guthrie 1852]



Coloring a Map



Graph Representation



Compact Description
G=(V,E)

V=Set of vertices

E=Set of edges,  
         pairs of vertices



Vertex Coloring
G=(V,E)

V=Set of vertices

E=Set of edges,  
         pairs of vertices



Chromatic Number

• Given a graph G=(V,E), the chromatic number χ(G) 
is the smallest number of colors needed to color 
the vertices V so that for every edge e in E, the 
endpoints have different colors.



The Chromatic Number is 
Three

An odd cycle  
forces at least  
three colors



Planar Graphs
• A graph is planar if it can be drawn in the plane 

without any edges crossing each other. 

• [Appel&Haken 1976] The chromatic number of a 
planar graph is at most four. 

• Proof through computer assisted case analysis,  
it gives a (complicated) polynomial time 
algorithm.



Simple Argument χ(G)<6

There must be a vertex  
of degree at most 5.

[Heawood 1890]



Simple Argument χ(G)<6

Assume its neighbors are 
colored in 5 colors.



u

Simple Argument χ(G)<6

If one neighbor u is in  
alternating colored 
component that is  

not connected to neighbor w 
of the other color, then 
Recoloring is possible!

w
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If one neighbor u is in  
alternating colored 
component that is  

not connected to neighbor w 
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Simple Argument χ(G)<6

Must be alternatingly colored  
paths between neighbors.



Simple Argument χ(G)<6

Paths must cross each other  
=> contradiction!

❌



Polynomial Time Algorithm for 
Five Coloring Planar Graphs

• [Preprocessing] Remove the vertex of smallest degree 
and put it on a stack. Repeat until all vertices are on the 
stack. 

• [Coloring] As long as not all vertices have been colored, 
pop the stack and color the current vertex with the first 
available valid color given the already coloured vertices. 

• If no valid color is available, it must be possible to 
recolor a colored neighbor by Heawood’s argument. 

• Find a vertex that can be recolored, do that and 
continue.



Recoloring a Neighbor

None of the five colors  
are valid for v.v



Recoloring a Neighbor

Green-Yellow component 
only incident with one  

neighbor of v.

v



Recoloring a Neighbor

Swap colors on  
Green-Yellow component. 

v



Recoloring a Neighbor

Green color is now  
valid for v. 

v



Hardness of Coloring

• Computing the chromatic number in a general 
graph is NP-complete. In fact deciding if χ(G)=3 in 
a planar graph is NP-complete. 

• The best polynomial time algorithms for coloring a 
3-colorable graph uses more than n1/6 colors!



Coloring a 3-colorable Graph with 
O(n1/2) Colors in Polynomial Time

[Wigderson 1982]

Note: Graphs need not be planar, 
 (they are just easier to visualise).



Coloring a 3-colorable 
Graph with O(n1/2) Colors

If there exists vertex of 
degree more than n1/2, 

color it and its neighbours  
with three fresh colors.



Coloring a 3-colorable 
Graph with O(n1/2) Colors

If there exists vertex of 
degree more than n1/2, 

color it and its neighbours  
with three fresh colors.

The neighbourhood must be bipartite,  
and hence it is easy to two-color.



Coloring a 3-colorable 
Graph with O(n1/2) Colors

If no vertex exist with 
degree more than n1/2, 
we can find a maximal  

independent set of size n1/2. 
Color it with one fresh color.



Coloring a 3-colorable 
Graph with O(n1/2) Colors

If no vertex exist with 
degree more than n1/2, 
we can find a maximal  

independent set of size n1/2. 
Color it with one fresh color.



Coloring a 3-colorable 
Graph with O(n1/2) Colors

If no vertex exist with 
degree more than n1/2, 
we can find a maximal  

independent set of size n1/2. 
Color it with one fresh color.

Repeat strategy on remaining graph.



Color Usage Analysis

• In the first rule, we color n1/2 vertices with 3 new 
colors. 

• In the second rule, we color n1/2 vertices with 1 new 
color. 

• There can be at most n1/2 steps before all vertices 
have been colored, in total O(n1/2) colors used.



Exponential Time Algorithms
• What is the fastest worst case running time 

algorithm we can guarantee for exactly computing 
the chromatic number? 

• We want to make sure that if a k-coloring exists 
the algorithm will learn about it, not just an 
approximation. 

• We want to guarantee that the running time is 
bounded by as small as possible an (exponential) 
function in n, the number of vertices.



Naive algorithm uses kn 
time.

For every vertex, try each  
of the k colors.v



Naive algorithm uses kn 
time.

v cannot be yellow or red => 
we might need to check k 

colors for many vertices, and 
backtrack many times.

v



Colorclasses

A colorclass is the set of vertices 
colored by the same color. 

A k-coloring consists of  
k disjoint colorclasses.



Colorclasses

The Yellow colorclass



Colorclasses

The Red colorclass.



Colorclasses

The Green colorclass.
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Dynamic Programming 
across Vertex Subsets

• For a vertex subset 
X, define d(X) as 
the smallest 
number of colors 
needed in a proper 
coloring of G[X], 
the graph induced 
by X.

The graph G.
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Dynamic Programming 
across Vertex Subsets

• For a vertex subset 
X, define d(X) as 
the smallest 
number of colors 
needed in a proper 
coloring of G[X], 
the graph induced 
by X.

The induced graph G[X] is 
X and all edges between vertices 

In X.



Dynamic Programming 
across Vertex Subsets

• For a vertex subset 
X, define d(X) as 
the smallest 
number of colors 
needed in a proper 
coloring of G[X], 
the graph induced 
by X.

d(X)=2.



Dynamic Programming 
across Vertex Subsets

• d(0)=0. 

• d(X)=minY d(X-Y)+1. 
    Y is a colorclass  
      candidate in G[X]



Dynamic Programming 
across Vertex Subsets

• Clearly,  
 
d(V)= χ(G).

d(V)=3.



Dynamic Programming 
across Vertex Subsets

• d(0)=0. 

• d(X)=minY d(X-Y)+1. 
    Y is a colorclass  
      candidate in G[X]

X=V, Y=Yellow colorclass
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2. Applications

We provide two applications of the method. The first one is from [1] but was there

expressed with the fast rectangular matrix multiplication of Coppersmith instead of fast

zeta transforms. We note that our bound here is better. The second one is from [2] but

our result here is slightly better.

2.1. Orthogonal vectors.

2.2. Quadratic equation systems.

t(n) 
X

X✓V

X

Y✓X

1 =

X

X✓V

2
|X|

=

nX

k=0

✓
n
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Overestimate of 
candidate colorclasses.



Improved Bounds for the  
Dynamic Programming Approach

• [Lawler 1976] O(2.44n) by looping over maximal 
independent sets as colorclasses. 

• [Byskov 2003] O(2.40n) by more careful analysis.



2npoly(n) time algorithm for 
chromatic number

• Use inclusion-exclusion summation to count k-
colorings. 

• Use the fast zeta transform (a variant of the Fast 
Fourier transform) to efficiently count candidate 
colorclasses in every induced subgraph G[X] at 
once.

[B., Husfeldt, and Koivisto 2006]



Subset Induced 
Colorclasses

• Let a(X) for X a subset of the vertices V be the 
number of candidate color classes in the induced 
graph G[X].
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a(X)=17



Inclusion-Exclusion

• p(k) is zero if there is no k-coloring, 

• p(k) is non-zero if there are k-colorings.
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2. Applications

We provide two applications of the method. The first one is from [1] but was there

expressed with the fast rectangular matrix multiplication of Coppersmith instead of fast

zeta transforms. We note that our bound here is better. The second one is from [2] but

our result here is slightly better.

2.1. Orthogonal vectors.

2.2. Quadratic equation systems.
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Meaning of Powers of a(X)

• a(X)k counts the 
number of ways to 
pick k color classes 
(with repetition) in 
G[X].
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• a(X)k counts the 
number of ways to 
pick k color classes 
(with repetition) in 
G[X].
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1 2

3 4 5 6

7 8
G[X]

A k-tuple of Colorclasses will 
be Counted in Many G[X]’s
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1 2 3 4 5 6 7 8X=
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2. Applications

We provide two applications of the method. The first one is from [1] but was there

expressed with the fast rectangular matrix multiplication of Coppersmith instead of fast

zeta transforms. We note that our bound here is better. The second one is from [2] but

our result here is slightly better.
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K-tuples of Colorclasses

• Will be counted 2#of uncolored vertices times, but equally 
many times with sign factor -1 as +1. Hence, they 
will cancel each other in the sum unless all vertices 
are colored.
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2. Applications

We provide two applications of the method. The first one is from [1] but was there
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Fast Zeta Transform

• [Yates 1937] A table containing a(X) for all subsets 
X of V can be computed in O(n2n) time.
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2. Applications

We provide two applications of the method. The first one is from [?] but was there

expressed with the fast rectangular matrix multiplication of Coppersmith instead of fast
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BHK’06 χ(G)-Algorithm
• Compute by Yates’s algorithm 
 
 

• For k=1:n, evaluate  
 
 
 
until p(k)=0, then return k.
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