
Graph Coloring
Andreas Björklund

Coloring a Map
[Francis Guthrie 1852]

Coloring a Map

Graph Representation

Compact Description
G=(V,E)

V=Set of vertices

E=Set of edges,
 pairs of vertices

Vertex Coloring
G=(V,E)

V=Set of vertices

E=Set of edges,
 pairs of vertices

Chromatic Number

• Given a graph G=(V,E), the chromatic number χ(G)
is the smallest number of colors needed to color
the vertices V so that for every edge e in E, the
endpoints have different colors.

The Chromatic Number is
Three

An odd cycle
forces at least
three colors

Planar Graphs
• A graph is planar if it can be drawn in the plane

without any edges crossing each other.

• [Appel&Haken 1976] The chromatic number of a
planar graph is at most four.

• Proof through computer assisted case analysis,  
it gives a (complicated) polynomial time
algorithm.

Simple Argument χ(G)<6

There must be a vertex
of degree at most 5.

[Heawood 1890]

Simple Argument χ(G)<6

Assume its neighbors are
colored in 5 colors.

u

Simple Argument χ(G)<6

If one neighbor u is in
alternating colored
component that is

not connected to neighbor w
of the other color, then
Recoloring is possible!

w

u

Simple Argument χ(G)<6

If one neighbor u is in
alternating colored
component that is

not connected to neighbor w
of the other color, then
Recoloring is possible!

w

Simple Argument χ(G)<6

Must be alternatingly colored
paths between neighbors.

Simple Argument χ(G)<6

Paths must cross each other
=> contradiction!

❌

Polynomial Time Algorithm for
Five Coloring Planar Graphs

• [Preprocessing] Remove the vertex of smallest degree
and put it on a stack. Repeat until all vertices are on the
stack.

• [Coloring] As long as not all vertices have been colored,
pop the stack and color the current vertex with the first
available valid color given the already coloured vertices.

• If no valid color is available, it must be possible to
recolor a colored neighbor by Heawood’s argument.

• Find a vertex that can be recolored, do that and
continue.

Recoloring a Neighbor

None of the five colors
are valid for v.v

Recoloring a Neighbor

Green-Yellow component
only incident with one

neighbor of v.

v

Recoloring a Neighbor

Swap colors on
Green-Yellow component.

v

Recoloring a Neighbor

Green color is now
valid for v.

v

Hardness of Coloring

• Computing the chromatic number in a general
graph is NP-complete. In fact deciding if χ(G)=3 in
a planar graph is NP-complete.

• The best polynomial time algorithms for coloring a
3-colorable graph uses more than n1/6 colors!

Coloring a 3-colorable Graph with
O(n1/2) Colors in Polynomial Time

[Wigderson 1982]

Note: Graphs need not be planar,
 (they are just easier to visualise).

Coloring a 3-colorable
Graph with O(n1/2) Colors

If there exists vertex of
degree more than n1/2,

color it and its neighbours
with three fresh colors.

Coloring a 3-colorable
Graph with O(n1/2) Colors

If there exists vertex of
degree more than n1/2,

color it and its neighbours
with three fresh colors.

The neighbourhood must be bipartite,
and hence it is easy to two-color.

Coloring a 3-colorable
Graph with O(n1/2) Colors

If no vertex exist with
degree more than n1/2,
we can find a maximal

independent set of size n1/2.
Color it with one fresh color.

Coloring a 3-colorable
Graph with O(n1/2) Colors

If no vertex exist with
degree more than n1/2,
we can find a maximal

independent set of size n1/2.
Color it with one fresh color.

Coloring a 3-colorable
Graph with O(n1/2) Colors

If no vertex exist with
degree more than n1/2,
we can find a maximal

independent set of size n1/2.
Color it with one fresh color.

Repeat strategy on remaining graph.

Color Usage Analysis

• In the first rule, we color n1/2 vertices with 3 new
colors.

• In the second rule, we color n1/2 vertices with 1 new
color.

• There can be at most n1/2 steps before all vertices
have been colored, in total O(n1/2) colors used.

Exponential Time Algorithms
• What is the fastest worst case running time

algorithm we can guarantee for exactly computing
the chromatic number?

• We want to make sure that if a k-coloring exists
the algorithm will learn about it, not just an
approximation.

• We want to guarantee that the running time is
bounded by as small as possible an (exponential)
function in n, the number of vertices.

Naive algorithm uses kn
time.

For every vertex, try each
of the k colors.v

Naive algorithm uses kn
time.

v cannot be yellow or red =>
we might need to check k

colors for many vertices, and
backtrack many times.

v

Colorclasses

A colorclass is the set of vertices
colored by the same color.

A k-coloring consists of
k disjoint colorclasses.

Colorclasses

The Yellow colorclass

Colorclasses

The Red colorclass.

Colorclasses

The Green colorclass.

All Candidate Colorclasses

1 2

3 4 5 6

7 8

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

All Candidate Colorclasses

1 2

3 4 5 6

7 8

1 2 3 4 5 6 7 8
1 0 0 0 00 0 0

1 2 3 4 5 6 7 8

All Candidate Colorclasses

1 2

3 4 5 6

7 8

1 2 3 4 5 6 7 8
1 0 0 0 00 0 0

1 2 3 4 5 6 7 8
0 1 0 0 00 0 0

All Candidate Colorclasses

1 2

3 4 5 6

7 8

1 2 3 4 5 6 7 8
1 0 0 0 00 0 0

1 2 3 4 5 6 7 8
0 1 0 0 00 0 0
0 0 1 0 00 0 0

All Candidate Colorclasses

1 2

3 4 5 6

7 8

1 2 3 4 5 6 7 8
1 0 0 0 00 0 0

1 2 3 4 5 6 7 8
0 1 0 0 00 0 0
0 0 1 0 00 0 0
0 0 0 1 00 0 0

All Candidate Colorclasses

1 2

3 4 5 6

7 8

1 2 3 4 5 6 7 8
1 0 0 0 00 0 0

1 2 3 4 5 6 7 8
0 1 0 0 00 0 0
0 0 1 0 00 0 0
0 0 0 1 00 0 0
0 0 0 0 01 0 0

All Candidate Colorclasses

1 2

3 4 5 6

7 8

1 2 3 4 5 6 7 8
1 0 0 0 00 0 0

1 2 3 4 5 6 7 8
0 1 0 0 00 0 0
0 0 1 0 00 0 0
0 0 0 1 00 0 0
0 0 0 0 01 0 0
0 0 0 0 10 0 0

All Candidate Colorclasses

1 2

3 4 5 6

7 8

1 2 3 4 5 6 7 8
1 0 0 0 00 0 0

1 2 3 4 5 6 7 8
0 1 0 0 00 0 0
0 0 1 0 00 0 0
0 0 0 1 00 0 0
0 0 0 0 01 0 0
0 0 0 0 10 0 0
0 0 0 0 00 1 0

All Candidate Colorclasses

1 2

3 4 5 6

7 8

1 2 3 4 5 6 7 8
1 0 0 0 00 0 0

1 2 3 4 5 6 7 8
0 1 0 0 00 0 0
0 0 1 0 00 0 0
0 0 0 1 00 0 0
0 0 0 0 01 0 0
0 0 0 0 10 0 0
0 0 0 0 00 1 0
0 0 0 0 00 0 1

All Candidate Colorclasses

1 2

3 4 5 6

7 8

1 2 3 4 5 6 7 8
1 0 0 0 00 0 0

1 2 3 4 5 6 7 8
0 1 0 0 00 0 0
0 0 1 0 00 0 0
0 0 0 1 00 0 0
0 0 0 0 01 0 0
0 0 0 0 10 0 0
0 0 0 0 00 1 0
0 0 0 0 00 0 1
1 0 0 0 01 0 0

All Candidate Colorclasses

1 2

3 4 5 6

7 8

1 2 3 4 5 6 7 8
1 0 0 0 00 0 0

1 2 3 4 5 6 7 8
0 1 0 0 00 0 0
0 0 1 0 00 0 0
0 0 0 1 00 0 0
0 0 0 0 01 0 0
0 0 0 0 10 0 0
0 0 0 0 00 1 0
0 0 0 0 00 0 1
1 0 0 0 01 0 0
1 0 0 0 10 0 0

All Candidate Colorclasses

1 2

3 4 5 6

7 8

1 2 3 4 5 6 7 8
1 0 0 0 00 0 0

1 2 3 4 5 6 7 8
0 1 0 0 00 0 0
0 0 1 0 00 0 0
0 0 0 1 00 0 0
0 0 0 0 01 0 0
0 0 0 0 10 0 0
0 0 0 0 00 1 0
0 0 0 0 00 0 1
1 0 0 0 01 0 0
1 0 0 0 10 0 0
1 0 0 0 00 1 0

All Candidate Colorclasses

1 2

3 4 5 6

7 8

1 2 3 4 5 6 7 8
1 0 0 0 00 0 0

1 2 3 4 5 6 7 8
0 1 0 0 00 0 0
0 0 1 0 00 0 0
0 0 0 1 00 0 0
0 0 0 0 01 0 0
0 0 0 0 10 0 0
0 0 0 0 00 1 0
0 0 0 0 00 0 1
1 0 0 0 01 0 0
1 0 0 0 10 0 0
1 0 0 0 00 1 0
1 0 0 0 00 0 1

All Candidate Colorclasses

1 2

3 4 5 6

7 8

1 2 3 4 5 6 7 8
1 0 0 0 00 0 0

1 2 3 4 5 6 7 8
0 1 0 0 00 0 0
0 0 1 0 00 0 0
0 0 0 1 00 0 0
0 0 0 0 01 0 0
0 0 0 0 10 0 0
0 0 0 0 00 1 0
0 0 0 0 00 0 1
1 0 0 0 01 0 0
1 0 0 0 10 0 0
1 0 0 0 00 1 0
1 0 0 0 00 0 1
0 1 1 0 00 0 0

All Candidate Colorclasses

1 2

3 4 5 6

7 8

1 2 3 4 5 6 7 8
1 0 0 0 00 0 0

1 2 3 4 5 6 7 8
0 1 0 0 00 0 0
0 0 1 0 00 0 0
0 0 0 1 00 0 0
0 0 0 0 01 0 0
0 0 0 0 10 0 0
0 0 0 0 00 1 0
0 0 0 0 00 0 1
1 0 0 0 01 0 0
1 0 0 0 10 0 0
1 0 0 0 00 1 0
1 0 0 0 00 0 1
0 1 1 0 00 0 0
0 1 0 1 00 0 0

All Candidate Colorclasses

1 2

3 4 5 6

7 8

1 2 3 4 5 6 7 8
1 0 0 0 00 0 0

1 2 3 4 5 6 7 8
0 1 0 0 00 0 0
0 0 1 0 00 0 0
0 0 0 1 00 0 0
0 0 0 0 01 0 0
0 0 0 0 10 0 0
0 0 0 0 00 1 0
0 0 0 0 00 0 1
1 0 0 0 01 0 0
1 0 0 0 10 0 0
1 0 0 0 00 1 0
1 0 0 0 00 0 1
0 1 1 0 00 0 0
0 1 0 1 00 0 0
0 1 0 0 00 1 0

All Candidate Colorclasses

1 2

3 4 5 6

7 8

1 2 3 4 5 6 7 8
1 0 0 0 00 0 0

1 2 3 4 5 6 7 8
0 1 0 0 00 0 0
0 0 1 0 00 0 0
0 0 0 1 00 0 0
0 0 0 0 01 0 0
0 0 0 0 10 0 0
0 0 0 0 00 1 0
0 0 0 0 00 0 1
1 0 0 0 01 0 0
1 0 0 0 10 0 0
1 0 0 0 00 1 0
1 0 0 0 00 0 1
0 1 1 0 00 0 0
0 1 0 1 00 0 0
0 1 0 0 00 1 0
0 1 0 0 00 0 1

All Candidate Colorclasses

1 2

3 4 5 6

7 8

1 2 3 4 5 6 7 8
1 0 0 0 00 0 0

1 2 3 4 5 6 7 8
0 1 0 0 00 0 0
0 0 1 0 00 0 0
0 0 0 1 00 0 0
0 0 0 0 01 0 0
0 0 0 0 10 0 0
0 0 0 0 00 1 0
0 0 0 0 00 0 1
1 0 0 0 01 0 0
1 0 0 0 10 0 0
1 0 0 0 00 1 0
1 0 0 0 00 0 1
0 1 1 0 00 0 0
0 1 0 1 00 0 0
0 1 0 0 00 1 0
0 1 0 0 00 0 1

0 0 1 1 00 0 0

All Candidate Colorclasses

1 2

3 4 5 6

7 8

1 2 3 4 5 6 7 8
1 0 0 0 00 0 0

1 2 3 4 5 6 7 8
0 1 0 0 00 0 0
0 0 1 0 00 0 0
0 0 0 1 00 0 0
0 0 0 0 01 0 0
0 0 0 0 10 0 0
0 0 0 0 00 1 0
0 0 0 0 00 0 1
1 0 0 0 01 0 0
1 0 0 0 10 0 0
1 0 0 0 00 1 0
1 0 0 0 00 0 1
0 1 1 0 00 0 0
0 1 0 1 00 0 0
0 1 0 0 00 1 0
0 1 0 0 00 0 1

0 0 1 1 00 0 0
0 0 1 0 01 0 0

All Candidate Colorclasses

1 2

3 4 5 6

7 8

1 2 3 4 5 6 7 8
1 0 0 0 00 0 0

1 2 3 4 5 6 7 8
0 1 0 0 00 0 0
0 0 1 0 00 0 0
0 0 0 1 00 0 0
0 0 0 0 01 0 0
0 0 0 0 10 0 0
0 0 0 0 00 1 0
0 0 0 0 00 0 1
1 0 0 0 01 0 0
1 0 0 0 10 0 0
1 0 0 0 00 1 0
1 0 0 0 00 0 1
0 1 1 0 00 0 0
0 1 0 1 00 0 0
0 1 0 0 00 1 0
0 1 0 0 00 0 1

0 0 1 1 00 0 0
0 0 1 0 01 0 0
0 0 1 0 10 0 0

All Candidate Colorclasses

1 2

3 4 5 6

7 8

1 2 3 4 5 6 7 8
1 0 0 0 00 0 0

1 2 3 4 5 6 7 8
0 1 0 0 00 0 0
0 0 1 0 00 0 0
0 0 0 1 00 0 0
0 0 0 0 01 0 0
0 0 0 0 10 0 0
0 0 0 0 00 1 0
0 0 0 0 00 0 1
1 0 0 0 01 0 0
1 0 0 0 10 0 0
1 0 0 0 00 1 0
1 0 0 0 00 0 1
0 1 1 0 00 0 0
0 1 0 1 00 0 0
0 1 0 0 00 1 0
0 1 0 0 00 0 1

0 0 1 1 00 0 0
0 0 1 0 01 0 0
0 0 1 0 10 0 0
0 0 1 0 00 0 1

All Candidate Colorclasses

1 2

3 4 5 6

7 8

1 2 3 4 5 6 7 8
1 0 0 0 00 0 0

1 2 3 4 5 6 7 8
0 1 0 0 00 0 0
0 0 1 0 00 0 0
0 0 0 1 00 0 0
0 0 0 0 01 0 0
0 0 0 0 10 0 0
0 0 0 0 00 1 0
0 0 0 0 00 0 1
1 0 0 0 01 0 0
1 0 0 0 10 0 0
1 0 0 0 00 1 0
1 0 0 0 00 0 1
0 1 1 0 00 0 0
0 1 0 1 00 0 0
0 1 0 0 00 1 0
0 1 0 0 00 0 1

0 0 1 1 00 0 0
0 0 1 0 01 0 0
0 0 1 0 10 0 0
0 0 1 0 00 0 1
0 0 0 1 10 0 0

All Candidate Colorclasses

1 2

3 4 5 6

7 8

1 2 3 4 5 6 7 8
1 0 0 0 00 0 0

1 2 3 4 5 6 7 8
0 1 0 0 00 0 0
0 0 1 0 00 0 0
0 0 0 1 00 0 0
0 0 0 0 01 0 0
0 0 0 0 10 0 0
0 0 0 0 00 1 0
0 0 0 0 00 0 1
1 0 0 0 01 0 0
1 0 0 0 10 0 0
1 0 0 0 00 1 0
1 0 0 0 00 0 1
0 1 1 0 00 0 0
0 1 0 1 00 0 0
0 1 0 0 00 1 0
0 1 0 0 00 0 1

0 0 1 1 00 0 0
0 0 1 0 01 0 0
0 0 1 0 10 0 0
0 0 1 0 00 0 1
0 0 0 1 10 0 0
0 0 0 1 00 0 1

All Candidate Colorclasses

1 2

3 4 5 6

7 8

1 2 3 4 5 6 7 8
1 0 0 0 00 0 0

1 2 3 4 5 6 7 8
0 1 0 0 00 0 0
0 0 1 0 00 0 0
0 0 0 1 00 0 0
0 0 0 0 01 0 0
0 0 0 0 10 0 0
0 0 0 0 00 1 0
0 0 0 0 00 0 1
1 0 0 0 01 0 0
1 0 0 0 10 0 0
1 0 0 0 00 1 0
1 0 0 0 00 0 1
0 1 1 0 00 0 0
0 1 0 1 00 0 0
0 1 0 0 00 1 0
0 1 0 0 00 0 1

0 0 1 1 00 0 0
0 0 1 0 01 0 0
0 0 1 0 10 0 0
0 0 1 0 00 0 1
0 0 0 1 10 0 0
0 0 0 1 00 0 1
0 0 0 0 01 1 0

All Candidate Colorclasses

1 2

3 4 5 6

7 8

1 2 3 4 5 6 7 8
1 0 0 0 00 0 0

1 2 3 4 5 6 7 8
0 1 0 0 00 0 0
0 0 1 0 00 0 0
0 0 0 1 00 0 0
0 0 0 0 01 0 0
0 0 0 0 10 0 0
0 0 0 0 00 1 0
0 0 0 0 00 0 1
1 0 0 0 01 0 0
1 0 0 0 10 0 0
1 0 0 0 00 1 0
1 0 0 0 00 0 1
0 1 1 0 00 0 0
0 1 0 1 00 0 0
0 1 0 0 00 1 0
0 1 0 0 00 0 1

0 0 1 1 00 0 0
0 0 1 0 01 0 0
0 0 1 0 10 0 0
0 0 1 0 00 0 1
0 0 0 1 10 0 0
0 0 0 1 00 0 1
0 0 0 0 01 1 0
0 0 0 0 10 1 0

All Candidate Colorclasses

1 2

3 4 5 6

7 8

1 2 3 4 5 6 7 8
1 0 0 0 00 0 0

1 2 3 4 5 6 7 8
0 1 0 0 00 0 0
0 0 1 0 00 0 0
0 0 0 1 00 0 0
0 0 0 0 01 0 0
0 0 0 0 10 0 0
0 0 0 0 00 1 0
0 0 0 0 00 0 1
1 0 0 0 01 0 0
1 0 0 0 10 0 0
1 0 0 0 00 1 0
1 0 0 0 00 0 1
0 1 1 0 00 0 0
0 1 0 1 00 0 0
0 1 0 0 00 1 0
0 1 0 0 00 0 1

0 0 1 1 00 0 0
0 0 1 0 01 0 0
0 0 1 0 10 0 0
0 0 1 0 00 0 1
0 0 0 1 10 0 0
0 0 0 1 00 0 1
0 0 0 0 01 1 0
0 0 0 0 10 1 0
1 0 0 0 01 1 0

All Candidate Colorclasses

1 2

3 4 5 6

7 8

1 2 3 4 5 6 7 8
1 0 0 0 00 0 0

1 2 3 4 5 6 7 8
0 1 0 0 00 0 0
0 0 1 0 00 0 0
0 0 0 1 00 0 0
0 0 0 0 01 0 0
0 0 0 0 10 0 0
0 0 0 0 00 1 0
0 0 0 0 00 0 1
1 0 0 0 01 0 0
1 0 0 0 10 0 0
1 0 0 0 00 1 0
1 0 0 0 00 0 1
0 1 1 0 00 0 0
0 1 0 1 00 0 0
0 1 0 0 00 1 0
0 1 0 0 00 0 1

0 0 1 1 00 0 0
0 0 1 0 01 0 0
0 0 1 0 10 0 0
0 0 1 0 00 0 1
0 0 0 1 10 0 0
0 0 0 1 00 0 1
0 0 0 0 01 1 0
0 0 0 0 10 1 0
1 0 0 0 01 1 0
1 0 0 0 10 1 0

All Candidate Colorclasses

1 2

3 4 5 6

7 8

1 2 3 4 5 6 7 8
1 0 0 0 00 0 0

1 2 3 4 5 6 7 8
0 1 0 0 00 0 0
0 0 1 0 00 0 0
0 0 0 1 00 0 0
0 0 0 0 01 0 0
0 0 0 0 10 0 0
0 0 0 0 00 1 0
0 0 0 0 00 0 1
1 0 0 0 01 0 0
1 0 0 0 10 0 0
1 0 0 0 00 1 0
1 0 0 0 00 0 1
0 1 1 0 00 0 0
0 1 0 1 00 0 0
0 1 0 0 00 1 0
0 1 0 0 00 0 1

0 0 1 1 00 0 0
0 0 1 0 01 0 0
0 0 1 0 10 0 0
0 0 1 0 00 0 1
0 0 0 1 10 0 0
0 0 0 1 00 0 1
0 0 0 0 01 1 0
0 0 0 0 10 1 0
1 0 0 0 01 1 0
1 0 0 0 10 1 0
0 1 1 1 00 0 0

All Candidate Colorclasses

1 2

3 4 5 6

7 8

1 2 3 4 5 6 7 8
1 0 0 0 00 0 0

1 2 3 4 5 6 7 8
0 1 0 0 00 0 0
0 0 1 0 00 0 0
0 0 0 1 00 0 0
0 0 0 0 01 0 0
0 0 0 0 10 0 0
0 0 0 0 00 1 0
0 0 0 0 00 0 1
1 0 0 0 01 0 0
1 0 0 0 10 0 0
1 0 0 0 00 1 0
1 0 0 0 00 0 1
0 1 1 0 00 0 0
0 1 0 1 00 0 0
0 1 0 0 00 1 0
0 1 0 0 00 0 1

0 0 1 1 00 0 0
0 0 1 0 01 0 0
0 0 1 0 10 0 0
0 0 1 0 00 0 1
0 0 0 1 10 0 0
0 0 0 1 00 0 1
0 0 0 0 01 1 0
0 0 0 0 10 1 0
1 0 0 0 01 1 0
1 0 0 0 10 1 0
0 1 1 1 00 0 0
0 1 1 0 00 0 1

All Candidate Colorclasses

1 2

3 4 5 6

7 8

1 2 3 4 5 6 7 8
1 0 0 0 00 0 0

1 2 3 4 5 6 7 8
0 1 0 0 00 0 0
0 0 1 0 00 0 0
0 0 0 1 00 0 0
0 0 0 0 01 0 0
0 0 0 0 10 0 0
0 0 0 0 00 1 0
0 0 0 0 00 0 1
1 0 0 0 01 0 0
1 0 0 0 10 0 0
1 0 0 0 00 1 0
1 0 0 0 00 0 1
0 1 1 0 00 0 0
0 1 0 1 00 0 0
0 1 0 0 00 1 0
0 1 0 0 00 0 1

0 0 1 1 00 0 0
0 0 1 0 01 0 0
0 0 1 0 10 0 0
0 0 1 0 00 0 1
0 0 0 1 10 0 0
0 0 0 1 00 0 1
0 0 0 0 01 1 0
0 0 0 0 10 1 0
1 0 0 0 01 1 0
1 0 0 0 10 1 0
0 1 1 1 00 0 0
0 1 1 0 00 0 1
0 1 0 1 00 0 1

All Candidate Colorclasses

1 2

3 4 5 6

7 8

1 2 3 4 5 6 7 8
1 0 0 0 00 0 0

1 2 3 4 5 6 7 8
0 1 0 0 00 0 0
0 0 1 0 00 0 0
0 0 0 1 00 0 0
0 0 0 0 01 0 0
0 0 0 0 10 0 0
0 0 0 0 00 1 0
0 0 0 0 00 0 1
1 0 0 0 01 0 0
1 0 0 0 10 0 0
1 0 0 0 00 1 0
1 0 0 0 00 0 1
0 1 1 0 00 0 0
0 1 0 1 00 0 0
0 1 0 0 00 1 0
0 1 0 0 00 0 1

0 0 1 1 00 0 0
0 0 1 0 01 0 0
0 0 1 0 10 0 0
0 0 1 0 00 0 1
0 0 0 1 10 0 0
0 0 0 1 00 0 1
0 0 0 0 01 1 0
0 0 0 0 10 1 0
1 0 0 0 01 1 0
1 0 0 0 10 1 0
0 1 1 1 00 0 0
0 1 1 0 00 0 1
0 1 0 1 00 0 1
0 0 1 1 10 0 0

All Candidate Colorclasses

1 2

3 4 5 6

7 8

1 2 3 4 5 6 7 8
1 0 0 0 00 0 0

1 2 3 4 5 6 7 8
0 1 0 0 00 0 0
0 0 1 0 00 0 0
0 0 0 1 00 0 0
0 0 0 0 01 0 0
0 0 0 0 10 0 0
0 0 0 0 00 1 0
0 0 0 0 00 0 1
1 0 0 0 01 0 0
1 0 0 0 10 0 0
1 0 0 0 00 1 0
1 0 0 0 00 0 1
0 1 1 0 00 0 0
0 1 0 1 00 0 0
0 1 0 0 00 1 0
0 1 0 0 00 0 1

0 0 1 1 00 0 0
0 0 1 0 01 0 0
0 0 1 0 10 0 0
0 0 1 0 00 0 1
0 0 0 1 10 0 0
0 0 0 1 00 0 1
0 0 0 0 01 1 0
0 0 0 0 10 1 0
1 0 0 0 01 1 0
1 0 0 0 10 1 0
0 1 1 1 00 0 0
0 1 1 0 00 0 1
0 1 0 1 00 0 1
0 0 1 1 10 0 0
0 0 1 1 00 0 1

All Candidate Colorclasses

1 2

3 4 5 6

7 8

1 2 3 4 5 6 7 8
1 0 0 0 00 0 0

1 2 3 4 5 6 7 8
0 1 0 0 00 0 0
0 0 1 0 00 0 0
0 0 0 1 00 0 0
0 0 0 0 01 0 0
0 0 0 0 10 0 0
0 0 0 0 00 1 0
0 0 0 0 00 0 1
1 0 0 0 01 0 0
1 0 0 0 10 0 0
1 0 0 0 00 1 0
1 0 0 0 00 0 1
0 1 1 0 00 0 0
0 1 0 1 00 0 0
0 1 0 0 00 1 0
0 1 0 0 00 0 1

0 0 1 1 00 0 0
0 0 1 0 01 0 0
0 0 1 0 10 0 0
0 0 1 0 00 0 1
0 0 0 1 10 0 0
0 0 0 1 00 0 1
0 0 0 0 01 1 0
0 0 0 0 10 1 0
1 0 0 0 01 1 0
1 0 0 0 10 1 0
0 1 1 1 00 0 0
0 1 1 0 00 0 1
0 1 0 1 00 0 1
0 0 1 1 10 0 0
0 0 1 1 00 0 1
0 1 1 1 00 0 1

A Coloring is a Set of
Disjoint Colorclasses

1 2

3 4 5 6

7 8

1 2 3 4 5 6 7 8
1 0 0 0 00 0 0

1 2 3 4 5 6 7 8
0 1 0 0 00 0 0
0 0 1 0 00 0 0
0 0 0 1 00 0 0
0 0 0 0 01 0 0
0 0 0 0 10 0 0
0 0 0 0 00 1 0
0 0 0 0 00 0 1
1 0 0 0 01 0 0
1 0 0 0 10 0 0
1 0 0 0 00 1 0
1 0 0 0 00 0 1
0 1 1 0 00 0 0
0 1 0 1 00 0 0
0 1 0 0 00 1 0
0 1 0 0 00 0 1

0 0 1 1 00 0 0
0 0 1 0 01 0 0
0 0 1 0 10 0 0
0 0 1 0 00 0 1
0 0 0 1 10 0 0
0 0 0 1 00 0 1
0 0 0 0 01 1 0
0 0 0 0 10 1 0
1 0 0 0 01 1 0
1 0 0 0 10 1 0
0 1 1 1 00 0 0
0 1 1 0 00 0 1
0 1 0 1 00 0 1
0 0 1 1 10 0 0
0 0 1 1 00 0 1
0 1 1 1 00 0 1

Dynamic Programming
across Vertex Subsets

• For a vertex subset
X, define d(X) as
the smallest
number of colors
needed in a proper
coloring of G[X],
the graph induced
by X.

The graph G.

Dynamic Programming
across Vertex Subsets

• For a vertex subset
X, define d(X) as
the smallest
number of colors
needed in a proper
coloring of G[X],
the graph induced
by X.

X is the grey vertices.

Dynamic Programming
across Vertex Subsets

• For a vertex subset
X, define d(X) as
the smallest
number of colors
needed in a proper
coloring of G[X],
the graph induced
by X.

The induced graph G[X] is
X and all edges between vertices

In X.

Dynamic Programming
across Vertex Subsets

• For a vertex subset
X, define d(X) as
the smallest
number of colors
needed in a proper
coloring of G[X],
the graph induced
by X.

d(X)=2.

Dynamic Programming
across Vertex Subsets

• d(0)=0.

• d(X)=minY d(X-Y)+1. 
 Y is a colorclass  
 candidate in G[X]

Dynamic Programming
across Vertex Subsets

• Clearly,  
 
d(V)= χ(G).

d(V)=3.

Dynamic Programming
across Vertex Subsets

• d(0)=0.

• d(X)=minY d(X-Y)+1. 
 Y is a colorclass  
 candidate in G[X]

X=V, Y=Yellow colorclass

Running Time Analysis

THE POLYNOMIAL SCORE BOARDING METHOD 3

2. Applications

We provide two applications of the method. The first one is from [1] but was there

expressed with the fast rectangular matrix multiplication of Coppersmith instead of fast

zeta transforms. We note that our bound here is better. The second one is from [2] but

our result here is slightly better.

2.1. Orthogonal vectors.

2.2. Quadratic equation systems.

t(n)
X

X✓V

X

Y✓X

1 =

X

X✓V

2
|X|

=

nX

k=0

✓
n

k

◆
2
k
= 3

n
.

References

[1] A. Abboud, R. Williams, and H. Yu. SODA, 2015.
[2] D. Lokshtanov, R. Paturi, R. Williams, and H. Yu. SODA, 2017.

Overestimate of
candidate colorclasses.

Improved Bounds for the
Dynamic Programming Approach

• [Lawler 1976] O(2.44n) by looping over maximal
independent sets as colorclasses.

• [Byskov 2003] O(2.40n) by more careful analysis.

2npoly(n) time algorithm for
chromatic number

• Use inclusion-exclusion summation to count k-
colorings.

• Use the fast zeta transform (a variant of the Fast
Fourier transform) to efficiently count candidate
colorclasses in every induced subgraph G[X] at
once.

[B., Husfeldt, and Koivisto 2006]

Subset Induced
Colorclasses

• Let a(X) for X a subset of the vertices V be the
number of candidate color classes in the induced
graph G[X].

Subset Induced Colorclasses

1 2

3 4 5 6

7 8

1 2 3 4 5 6 7 8
1 0 0 0 00 0 0

1 2 3 4 5 6 7 8
0 1 0 0 00 0 0
0 0 1 0 00 0 0
0 0 0 1 00 0 0
0 0 0 0 01 0 0
0 0 0 0 10 0 0
0 0 0 0 00 1 0
0 0 0 0 00 0 1
1 0 0 0 01 0 0
1 0 0 0 10 0 0
1 0 0 0 00 1 0
1 0 0 0 00 0 1
0 1 1 0 00 0 0
0 1 0 1 00 0 0
0 1 0 0 00 1 0
0 1 0 0 00 0 1

0 0 1 1 00 0 0
0 0 1 0 01 0 0
0 0 1 0 10 0 0
0 0 1 0 00 0 1
0 0 0 1 10 0 0
0 0 0 1 00 0 1
0 0 0 0 01 1 0
0 0 0 0 10 1 0
1 0 0 0 01 1 0
1 0 0 0 10 1 0
0 1 1 1 00 0 0
0 1 1 0 00 0 1
0 1 0 1 00 0 1
0 0 1 1 10 0 0
0 0 1 1 00 0 1
0 1 1 1 00 0 1

Subset X

Subset Induced Colorclasses

1 2

3 4 5 6

7 8

1 2 3 4 5 6 7 8
1 0 0 0 00 0 0

1 2 3 4 5 6 7 8
0 1 0 0 00 0 0
0 0 1 0 00 0 0
0 0 0 1 00 0 0
0 0 0 0 01 0 0
0 0 0 0 10 0 0
0 0 0 0 00 1 0
0 0 0 0 00 0 1
1 0 0 0 01 0 0
1 0 0 0 10 0 0
1 0 0 0 00 1 0
1 0 0 0 00 0 1
0 1 1 0 00 0 0
0 1 0 1 00 0 0
0 1 0 0 00 1 0
0 1 0 0 00 0 1

0 0 1 1 00 0 0
0 0 1 0 01 0 0
0 0 1 0 10 0 0
0 0 1 0 00 0 1
0 0 0 1 10 0 0
0 0 0 1 00 0 1
0 0 0 0 01 1 0
0 0 0 0 10 1 0
1 0 0 0 01 1 0
1 0 0 0 10 1 0
0 1 1 1 00 0 0
0 1 1 0 00 0 1
0 1 0 1 00 0 1
0 0 1 1 10 0 0
0 0 1 1 00 0 1
0 1 1 1 00 0 1

G[X]

Subset Induced Colorclasses

1 2

3 4 5 6

7 8

1 2 3 4 5 6 7 8
1 0 0 0 00 0 0

1 2 3 4 5 6 7 8
0 1 0 0 00 0 0
0 0 1 0 00 0 0
0 0 0 1 00 0 0
0 0 0 0 01 0 0
0 0 0 0 10 0 0
0 0 0 0 00 1 0
0 0 0 0 00 0 1
1 0 0 0 01 0 0
1 0 0 0 10 0 0
1 0 0 0 00 1 0
1 0 0 0 00 0 1
0 1 1 0 00 0 0
0 1 0 1 00 0 0
0 1 0 0 00 1 0
0 1 0 0 00 0 1

0 0 1 1 00 0 0
0 0 1 0 01 0 0
0 0 1 0 10 0 0
0 0 1 0 00 0 1
0 0 0 1 10 0 0
0 0 0 1 00 0 1
0 0 0 0 01 1 0
0 0 0 0 10 1 0
1 0 0 0 01 1 0
1 0 0 0 10 1 0
0 1 1 1 00 0 0
0 1 1 0 00 0 1
0 1 0 1 00 0 1
0 0 1 1 10 0 0
0 0 1 1 00 0 1
0 1 1 1 00 0 1

G[X]

Subset Induced Colorclasses

1 2

3 4 5 6

7 8

1 2 3 4 5 6 7 8
1 0 0 0 00 0 0

1 2 3 4 5 6 7 8
0 1 0 0 00 0 0
0 0 1 0 00 0 0
0 0 0 1 00 0 0
0 0 0 0 01 0 0
0 0 0 0 10 0 0
0 0 0 0 00 1 0
0 0 0 0 00 0 1
1 0 0 0 01 0 0
1 0 0 0 10 0 0
1 0 0 0 00 1 0
1 0 0 0 00 0 1
0 1 1 0 00 0 0
0 1 0 1 00 0 0
0 1 0 0 00 1 0
0 1 0 0 00 0 1

0 0 1 1 00 0 0
0 0 1 0 01 0 0
0 0 1 0 10 0 0
0 0 1 0 00 0 1
0 0 0 1 10 0 0
0 0 0 1 00 0 1
0 0 0 0 01 1 0
0 0 0 0 10 1 0
1 0 0 0 01 1 0
1 0 0 0 10 1 0
0 1 1 1 00 0 0
0 1 1 0 00 0 1
0 1 0 1 00 0 1
0 0 1 1 10 0 0
0 0 1 1 00 0 1
0 1 1 1 00 0 1

G[X]

a(X)=17

Inclusion-Exclusion

• p(k) is zero if there is no k-coloring,

• p(k) is non-zero if there are k-colorings.

THE POLYNOMIAL SCORE BOARDING METHOD 3

2. Applications

We provide two applications of the method. The first one is from [1] but was there

expressed with the fast rectangular matrix multiplication of Coppersmith instead of fast

zeta transforms. We note that our bound here is better. The second one is from [2] but

our result here is slightly better.

2.1. Orthogonal vectors.

2.2. Quadratic equation systems.

t(n)
X

X✓V

X

Y✓X

1 =

X

X✓V

2
|X|

=

nX

k=0

✓
n

k

◆
2
k
= 3

n
.

p(k) =

X

X✓V

(�1)
|V�X|

a(X)
k
.

References

[1] A. Abboud, R. Williams, and H. Yu. SODA, 2015.
[2] D. Lokshtanov, R. Paturi, R. Williams, and H. Yu. SODA, 2017.

Meaning of Powers of a(X)

• a(X)k counts the
number of ways to
pick k color classes
(with repetition) in
G[X].

1 2 3 4 5 6 7 8
1 0 0 0 00 0 0

1 2 3 4 5 6 7 8
0 1 0 0 00 0 0
0 0 1 0 00 0 0
0 0 0 1 00 0 0
0 0 0 0 01 0 0
0 0 0 0 10 0 0
0 0 0 0 00 1 0
0 0 0 0 00 0 1
1 0 0 0 01 0 0
1 0 0 0 10 0 0
1 0 0 0 00 1 0
1 0 0 0 00 0 1
0 1 1 0 00 0 0
0 1 0 1 00 0 0
0 1 0 0 00 1 0
0 1 0 0 00 0 1

0 0 1 1 00 0 0
0 0 1 0 01 0 0
0 0 1 0 10 0 0
0 0 1 0 00 0 1
0 0 0 1 10 0 0
0 0 0 1 00 0 1
0 0 0 0 01 1 0
0 0 0 0 10 1 0
1 0 0 0 01 1 0
1 0 0 0 10 1 0
0 1 1 1 00 0 0
0 1 1 0 00 0 1
0 1 0 1 00 0 1
0 0 1 1 10 0 0
0 0 1 1 00 0 1
0 1 1 1 00 0 1

Meaning of Powers of a(X)

• a(X)k counts the
number of ways to
pick k color classes
(with repetition) in
G[X].

1 2 3 4 5 6 7 8
1 0 0 0 00 0 0

1 2 3 4 5 6 7 8
0 1 0 0 00 0 0
0 0 1 0 00 0 0
0 0 0 1 00 0 0
0 0 0 0 01 0 0
0 0 0 0 10 0 0
0 0 0 0 00 1 0
0 0 0 0 00 0 1
1 0 0 0 01 0 0
1 0 0 0 10 0 0
1 0 0 0 00 1 0
1 0 0 0 00 0 1
0 1 1 0 00 0 0
0 1 0 1 00 0 0
0 1 0 0 00 1 0
0 1 0 0 00 0 1

0 0 1 1 00 0 0
0 0 1 0 01 0 0
0 0 1 0 10 0 0
0 0 1 0 00 0 1
0 0 0 1 10 0 0
0 0 0 1 00 0 1
0 0 0 0 01 1 0
0 0 0 0 10 1 0
1 0 0 0 01 1 0
1 0 0 0 10 1 0
0 1 1 1 00 0 0
0 1 1 0 00 0 1
0 1 0 1 00 0 1
0 0 1 1 10 0 0
0 0 1 1 00 0 1
0 1 1 1 00 0 1

k=3

1 2

3 4 5 6

7 8
G[X]

Meaning of Powers of a(X)
1 2 3 4 5 6 7 8
1 0 0 0 00 0 0

1 2 3 4 5 6 7 8
0 1 0 0 00 0 0
0 0 1 0 00 0 0
0 0 0 1 00 0 0
0 0 0 0 01 0 0
0 0 0 0 10 0 0
0 0 0 0 00 1 0
0 0 0 0 00 0 1
1 0 0 0 01 0 0
1 0 0 0 10 0 0
1 0 0 0 00 1 0
1 0 0 0 00 0 1
0 1 1 0 00 0 0
0 1 0 1 00 0 0
0 1 0 0 00 1 0
0 1 0 0 00 0 1

0 0 1 1 00 0 0
0 0 1 0 01 0 0
0 0 1 0 10 0 0
0 0 1 0 00 0 1
0 0 0 1 10 0 0
0 0 0 1 00 0 1
0 0 0 0 01 1 0
0 0 0 0 10 1 0
1 0 0 0 01 1 0
1 0 0 0 10 1 0
0 1 1 1 00 0 0
0 1 1 0 00 0 1
0 1 0 1 00 0 1
0 0 1 1 10 0 0
0 0 1 1 00 0 1
0 1 1 1 00 0 1

1 2

3 4 5 6

7 8
G[X]

A k-tuple of Colorclasses will
be Counted in Many G[X]’s

0 0 0 1 00 0 0

0 1 0 0 00 1 0

0 0 0 1 00 0 1

1 2 3 4 5 6 7 8X=

THE POLYNOMIAL SCORE BOARDING METHOD 3

2. Applications

We provide two applications of the method. The first one is from [1] but was there

expressed with the fast rectangular matrix multiplication of Coppersmith instead of fast

zeta transforms. We note that our bound here is better. The second one is from [2] but

our result here is slightly better.

2.1. Orthogonal vectors.

2.2. Quadratic equation systems.

t(n)
X

X✓V

X

Y✓X

1 =

X

X✓V

2
|X|

=

nX

k=0

✓
n

k

◆
2
k
= 3

n
.

p(k) =

X

X✓V

(�1)
|V�X|

a(X)
k
.

References

[1] A. Abboud, R. Williams, and H. Yu. SODA, 2015.
[2] D. Lokshtanov, R. Paturi, R. Williams, and H. Yu. SODA, 2017.

Sign=(-1)8-3=-1

1 2

3 4 5 6

7 8
G[X]

A k-tuple of Colorclasses will
be Counted in Many G[X]’s

0 0 0 1 00 0 0

0 1 0 0 00 1 0

0 0 0 1 00 0 1

1 2 3 4 5 6 7 8X=

THE POLYNOMIAL SCORE BOARDING METHOD 3

2. Applications

We provide two applications of the method. The first one is from [1] but was there

expressed with the fast rectangular matrix multiplication of Coppersmith instead of fast

zeta transforms. We note that our bound here is better. The second one is from [2] but

our result here is slightly better.

2.1. Orthogonal vectors.

2.2. Quadratic equation systems.

t(n)
X

X✓V

X

Y✓X

1 =

X

X✓V

2
|X|

=

nX

k=0

✓
n

k

◆
2
k
= 3

n
.

p(k) =

X

X✓V

(�1)
|V�X|

a(X)
k
.

References

[1] A. Abboud, R. Williams, and H. Yu. SODA, 2015.
[2] D. Lokshtanov, R. Paturi, R. Williams, and H. Yu. SODA, 2017.

Sign=(-1)8-4=+1

K-tuples of Colorclasses

• Will be counted 2#of uncolored vertices times, but equally
many times with sign factor -1 as +1. Hence, they
will cancel each other in the sum unless all vertices
are colored.

THE POLYNOMIAL SCORE BOARDING METHOD 3

2. Applications

We provide two applications of the method. The first one is from [1] but was there

expressed with the fast rectangular matrix multiplication of Coppersmith instead of fast

zeta transforms. We note that our bound here is better. The second one is from [2] but

our result here is slightly better.

2.1. Orthogonal vectors.

2.2. Quadratic equation systems.

t(n)
X

X✓V

X

Y✓X

1 =

X

X✓V

2
|X|

=

nX

k=0

✓
n

k

◆
2
k
= 3

n
.

p(k) =

X

X✓V

(�1)
|V�X|

a(X)
k
.

References

[1] A. Abboud, R. Williams, and H. Yu. SODA, 2015.
[2] D. Lokshtanov, R. Paturi, R. Williams, and H. Yu. SODA, 2017.

Fast Zeta Transform

• [Yates 1937] A table containing a(X) for all subsets
X of V can be computed in O(n2n) time.

THE POLYNOMIAL SCORE BOARDING METHOD 3

2. Applications

We provide two applications of the method. The first one is from [?] but was there

expressed with the fast rectangular matrix multiplication of Coppersmith instead of fast

zeta transforms. We note that our bound here is better. The second one is from [?] but
our result here is slightly better.

2.1. Orthogonal vectors.

2.2. Quadratic equation systems.

t(n)
X

X✓V

X

Y✓X

1 =

X

X✓V

2
|X|

=

nX

k=0

✓
n

k

◆
2
k
= 3

n
.

p(k) =

X

X✓V

(�1)
|V�X|

a(X)
k
.

a(X) =

X

Y✓X

[Y is a candidate colorclass].

References

[1] A. Abboud, R. Williams, and H. Yu. SODA, 2015.
[2] D. Lokshtanov, R. Paturi, R. Williams, and H. Yu. SODA, 2017.

BHK’06 χ(G)-Algorithm
• Compute by Yates’s algorithm 
 
 

• For k=1:n, evaluate  
 
 
 
until p(k)=0, then return k.

THE POLYNOMIAL SCORE BOARDING METHOD 3

2. Applications

We provide two applications of the method. The first one is from [?] but was there

expressed with the fast rectangular matrix multiplication of Coppersmith instead of fast

zeta transforms. We note that our bound here is better. The second one is from [?] but
our result here is slightly better.

2.1. Orthogonal vectors.

2.2. Quadratic equation systems.

t(n)
X

X✓V

X

Y✓X

1 =

X

X✓V

2
|X|

=

nX

k=0

✓
n

k

◆
2
k
= 3

n
.

p(k) =

X

X✓V

(�1)
|V�X|

a(X)
k
.

a(X) =

X

Y✓X

[Y is a candidate colorclass].

References

[1] A. Abboud, R. Williams, and H. Yu. SODA, 2015.
[2] D. Lokshtanov, R. Paturi, R. Williams, and H. Yu. SODA, 2017.

THE POLYNOMIAL SCORE BOARDING METHOD 3

2. Applications

We provide two applications of the method. The first one is from [1] but was there

expressed with the fast rectangular matrix multiplication of Coppersmith instead of fast

zeta transforms. We note that our bound here is better. The second one is from [2] but

our result here is slightly better.

2.1. Orthogonal vectors.

2.2. Quadratic equation systems.

t(n)
X

X✓V

X

Y✓X

1 =

X

X✓V

2
|X|

=

nX

k=0

✓
n

k

◆
2
k
= 3

n
.

p(k) =

X

X✓V

(�1)
|V�X|

a(X)
k
.

References

[1] A. Abboud, R. Williams, and H. Yu. SODA, 2015.
[2] D. Lokshtanov, R. Paturi, R. Williams, and H. Yu. SODA, 2017.

2npoly(n) time.

2npoly(n) time.

