WPRD LADDERS

Find paths between given words among the five-letter words of English

How words connect

You can go from one word to another if each of the last four letters of the former word appears in the latter word. For example, you can go from "yodel" to "lodes", but you can't go from "lodes" to "yodel" because the latter contains no S. On the other hand, you can go from "sharp" to "graph" and back. All four letters have to appear with repetitions, so there is an edge from "where" to "ether" (both Es appear) but not to "retch" (E appears only once).

As an example, here's a pretty long path in the graph: climb blimp \rightarrow limps \rightarrow pismo \rightarrow moist \rightarrow stoic \rightarrow ioctl \rightarrow colts \rightarrow lotsa \rightarrow stoae \rightarrow oaten \rightarrow neath \rightarrow hated \rightarrow dated \rightarrow dater \rightarrow rater \rightarrow tread \rightarrow dared \rightarrow dread \rightarrow drear \rightarrow rarer \rightarrow reran \rightarrow arena \rightarrow earns \rightarrow snarf \rightarrow franc \rightarrow narco \rightarrow orcas \rightarrow scare \rightarrow raced \rightarrow decaf \rightarrow fecal \rightarrow eclat \rightarrow talcs \rightarrow clasp \rightarrow psalm \rightarrow slams \rightarrow small \rightarrow llama \rightarrow lamas \rightarrow amass \rightarrow smash \rightarrow shame \rightarrow hames

Files

The files for this exercise are in

/usr/local/cs/edaf05/lab2/

The ".dat" files just contain 5-letter words, one per line. They come in various sizes, the big one has 5757 words.

Input test files contain just pairs of words, one pair per line. Output test files contain the distance (counted in number of edges) from the first to the second word in these pairs. If no such path exists, the test file reports "-1." There are test files for various sizes of graph (but not for all).

there	
which	
their	
about	
these	
words	
would	t,
other	Р.
write	1
could	prds
	Ιž

l	other	there	
l	other	their	
l	could	would	
l	would	could	
l	there	other	
l	about	there	
ļ			

Solution quality

Minimal solution

You build a directed graph representing the adjacency structure of the words, and run BFS on it. In particular, your algorithm works correctly on all test inputs.

Good solution

vords-10-test.in

The running time of your algorithm is be O(n+m), where n and m refer to the number of nodes and arcs in the underlying directed graph. In particular, you're not supposed to use quadratic time to build the graph, even though it's tempting. (Of course, for dense graphs, O(n+m) would be quadratic time, but the input graph is not dense.)

WPRD LADDERS

words-250 as a graph, but without the singleton nodes