
[6/7]

CLOSEST PAIRS IN THE PLANE
EDAF05 Lab exercise 4

Description
Implement a divide-and-conquer

algorithm to find a closest pair of
points in the plane.

Inputs
The data directory contains a bunch of files called *.tsp taken

from the TSPLIB, a library of instances from various sources
originally intended for Traveling Salesman algorithms. Some are
huge.

I also uploaded six files called “closest-pair-*.in” that contain
some really simple instances that you may find useful for
testing in the beginning. In each of them, the closest pair is
“romeo” and “juliet”, and their distance is 1. (You may want to
rename the city names to indices for parsing purposes. Do
what you want.)

Output
My file “closest-pairs.out” contains the output of my

algorithm for all the *.tsp files. It shows, in each line, the name
of the input file, the number of points in that file, and the
closest distance between those points. I need under a minute
to process all of them.

Requirements
Minimal solution

Your algorithm needs to find the right answer for all the
“*.tsp” files, using the algorithm described in the book. You are
welcome to implement an O(n log2n) version that sorts the sets
like S, Q, R anew in every recursive iteration.

Better solution
Implement the “clever” algorithm (i.e., with running time

O(n log n). I found it just as easy to write.

NAME : a280
COMMENT : drilling problem (Ludwig)
TYPE : TSP
DIMENSION: 280
EDGE_WEIGHT_TYPE : EUC_2D
NODE_COORD_SECTION
 1 288 149
 2 288 129
 3 270 133
 4 256 141
... Fi

rs
t f

ew
 li

ne
s

of
 a

28
0.

ts
p

Th
or

e
H

us
fe

ld
t

29
 A

pr
il

20
09

 1
0:

22

NAME: gr96
TYPE: TSP
COMMENT: Africa-Subproblem of 666-city TSP (Groetschel)
DIMENSION: 96
EDGE_WEIGHT_TYPE: GEO
DISPLAY_DATA_TYPE: COORD_DISPLAY
NODE_COORD_SECTION
 1 14.55 -23.31
 2 28.06 -15.24
 3 32.38 -16.54
 4 31.38 -8.00
...

Fi
rs

t f
ew

 li
ne

s
of

 g
r9

6.
ts

p

Tips
Have a look at the files – the format is easy enough to parse,

but note that the positions of points in the plane is sometimes
given as a floating-point number, and sometimes even in
scientific notation. Most programming languages have good
support for this, e.g., Java’s Double.parseDouble method is
happy to process them. Also, note that the values are
sometimes delimited by more than one space character. Again,
Java’s String.split class could be used to break them up.

I like to do things by hand, so I used the following regex (in
Perl):
$number = '[-+]?\d*\.?\d+(?:[eE][-+]?\d+)?’;
/(\d+)\s+($number)\s+($number)/;

Another thing: It’s probably a good idea to write the naïve
O(n2) algorithm first. It’s nice to have access to The Truth for
testing, and you need pretty much the exact same code at the
bottom of the divide-and-conquer recursion anyway.

...
8 7.21100e+03 1.19020e+04
9 1.53280e+04 7.87600e+03
10 1.05760e+04 5.21400e+03
11 1.25600e+04 2.42000e+03
12 1.63680e+04 4.31200e+03
...

So
m

e
lin

es
 o

f r
l1

18
49

.ts
p

http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

