
[1/2]

STABLE MARRIAGE
EDAF05 Lab exercise 1

Description
Implement Gale–Shapley’s
algorithm for stable matching
and run it on several test
inputs.

Files
The files for this exercise are in

/usr/local/cs/edaf05/lab1/

Input
A typical input file is shown below.
The first zero or more lines start with
“#” and are ignored. Then comes a line of the form “n=int” (no
whitespace around the equality sign) defining n.

The following 2n lines describe m1, w1, … mn, wn, in that
order. Every line starts with an identifying integer id, starting
with 1, followed by a single space, followed by a nonempty
string name of non-whitespace characters (such as letters,
digits, punctuation). Odd-numbered lines are men, even-
numbered lines are women.

Then follows a blank line.
Finally, there is a line for every id (in order) that describes a

preference list. The line starts with id, followed by a colon and a

single space.
Then follows a permutation of the ids of the opposite gender,
separated by a single space.

Output
The expected output contains one line for every matching.
Every line contains the name of the man, followed by space,
two hyphens, space, and the name of the matched woman.

Requirements
Language
Java.

Infrastructure
Your programme has to take its input either from standard input
(STDIN) or from a specified file. It has to write to standard
output (STDOUT). Assuming all the files are in the right place,
we must be able to run the programme from the command line
with at least one of the following two commands:
% java GS < sm-kt-p-4.in
% java GS sm-kt-p-4.in
(Your’re welcome to write your code in Eclipse or whatever
rocks your boat. But the above has to work.)

Correctness
The course data file directory (linked from the course home
page) contains a number of pairs of files called “sm-*.in” and
“sm-*.out” that contain matching input and expected output.
Your solution must be consistent with these files.

What to show
When you’re done, show the code to your lab assistant. You
need to demonstrate that your progamme handles all the test

Jealousy and Flirtation (detail), Haynes King (1831-1904)

Stable marriage instance
based on NBC's show "Friends"
#
n=3
1 Ross
2 Monica
3 Chandler
4 Phoebe
5 Joey
6 Rachel

1: 6 4 2
2: 3 5 1
3: 2 6 4
4: 5 1 3
5: 6 4 2
6: 1 5 3

Ty
pi

ca
l i

np
ut

Ross -- Rachel
Chandler -- Monica
Joey -- Phoebe

Ty
pi

ca
l o

ut
pu

t

Th
or

e
H

us
fe

ld
t

18
 M

ar
ch

 2
00

9
10

:3
0

[2/2]

cases correctly, preferably you have prepared this part as a
small separate programme that does this automatically. Also,
you need to be able to explain what happens in your code, and
where, and argue for your implementation choices (e.g., how to
represent M and W.)

Solution quality
Minimal, acceptable solution
Implement the Gale–Shapley algorithm so that it works

correctly. Especially, your programme shall give the correct

answer on all test cases, except for the two big files. Write code

that is as short and clear and crisp as possible. This solution

will earn you full credit for this lab.

Better solution
Make your algorithm run in time O(n2). Especially, that means

that you must be able to handle a woman’s comparison of two

male ranks in constant time. Section [KT, 2.3] explains how to

do this; the modification to your code should be minimal — it

didn’t cost me a single line of extra code.

Good solution
Solve the large instance, gs-random-5000.in. Note that his file

is huge. The problem isn’t so much the running time, but that

Java’s Scanner class chokes on the file and runs out of

memory. At least, that’s what happens on my machine.

Questions
What about coding paradigms? I don’t much care. You can

follow the book and make an array-based solution, where

people are basically integers that are used as indices into

various arrays. You can also try for an object-oriented approach

where people are objects, and the data structures use Java’s

collections package. I’ve done both.

Style? You code should be as neat as you can make it.

Don’t declare variables or methods that you never use.

What about documentation? I don’t much care. I’d much

rather have your code be as short and sweet as possible,

instead of full of comments. Especially, don’t waste time

explaining the algorithm. My largest solution doesn’t use much

more than 100 lines of code, and neither should yours.

FILE N DESCRIPTION

sm-friends 3 Based on the popular US TV show Friends

sm-illiad 62 Based on Homer’s Illiad

sm-kt-p-* 2 Examples in [KT] on page 4 and 5

sm-random-* 5, 50, 500, 5000 Random instances of various sizes

sm-worst-* 5, 50, 500 Worst case instances of various sizes

STABLE MARRIAGE

Tips
Algorithmically, this is supposed to be an easy exercise. The

algorithm is simple and spelt out in detail on p. 6 in the book, and

many implementation issues are addressed in section 2.3.

However, what is probably going to take you a lot of time is

reading the input, especially if you haven’t done that kind of thing

before. I suggest the following:

1) First, hard-code the input, in a convenient data structure, while

you get the algorithm to work. This will allow you to change

your mind about how the data structures should look. Only

when everything seems to look OK, read (and parse!) your input

from standard input.

2) Learn java.util.Scanner. You want something like

Scanner SC = new Scanner(System.in)

3) When debugging, don’t throw away you test cases! Instead,

make additional input–output file pairs.

4) Write another program that runs your Gale–Shapley

implementation on all test files (both the ones I have made and

those you may have produced during debugging) and checks

them against the corresponding output files. This requires

nontrivial file operations (opening matching filenames, reading

directories, comparing files), and Java may not be the best

language to do that in. (You could learn Perl or shell scripting.)

5) What annoyed me most about input are the indices. In my

array-based solution, after changing my minds a million times, I

settled for indexing the men 0,…,n-1 and the women 0,…,n-1.

This made the parsing stage slightly more complicated,

because the input file uses a different convention, but cleaned

up the rest of my code a lot.

