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Hard problems

We define an algorithm to be efficient if it has a polynomial running
time complexity O(nk) for some k

Informally, a well-known problem is hard if nobody knows an efficient
algorithm to solve it
Note: we do not say ”a problem for which there cannot exist an
efficient algorithm!”
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Complexity classes

Complexity classes are used to categorize problems into how difficult
they are to solve
The easiest problems are solvable by polynomial time algorithms
This complexity class is simply called P
Another complexity class consists of the NP-complete problems,
which most likely are hard to solve
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Why is NP-completeness useful to know about?

Many think NP-completeness is ”mysterious” but it is not...
Except that nobody knows if P = NP

If you need to solve a problem which you can prove is NP-complete,
then you know that you most likely should not try to solve it, at least
not in its most general form
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Classic book on NP theory

Next three figures from this book

jonasskeppstedt.net Lecture 9 2023 5 / 74



Wrong answer 1
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Wrong answer 2 (at least we think so)
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Correct answer
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Why is NP-completeness useful to know about?

Two approaches when we need to solve an NP-complete problem
1 Solve a less general problem by exploiting some special knowledge

about the input
2 Solve a simpler problem which approximates the optimal solution
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An example of a hard problem: graph coloring

Consider an undirected graph G (V ,E )

A k-coloring is an assignment of a color to each node using at most k
colors and such that no neighbors are assigned the same color
If you can invent a polynomial time algorithm for graph coloring you
win a prize of USD 1,000,000 from the Clay Institute of Mathematics
Actually, you win the prize even your answer simply is ”impossible”
plus a proof
Graph coloring is one of thousands of NP-complete problems

jonasskeppstedt.net Lecture 9 2023 10 / 74



Optimization versus decision problems

To make life simpler, we are happy with yes or no answer
So we formulate our problems as decision problems instead of
optimization problems
We don’t ask for a mapping of node to color using the minimum
number of colors
Decision problem: ”does a k-coloring exist for G?”
The complexities of answering these two kinds of questions are
expected to be similar, i.e. either both hard or both simple
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Solving a problem versus checking a solution

In the general case, for a sufficiently large graph G it would take
billions of years to find a coloring with current algorithms
If somebody has guessed a solution, it is trivial to check if it is correct
For example, an example solution to the question ”is G 3-colorable?”
for the graph below can be (a=red,b=green,c=blue,d=blue)

a b

c d

It is then trivial to check in polynomial time that no neighbors have
the same color
We also say it is easy to verify whether a solution is a valid coloring
— even for huge graphs
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The NP complexity class

The complexity class NP consists of all problems for which there exists
a polynomial time verification algorithm
Note that each problem in P also is in NP:

P ⊆ NP

Also e.g. sorting is in NP because it is easy to check that an array is
sorted
We will come to NP-completeness later but first some new concepts
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Polynomial time reduction

Consider two decision problems P1 and P2, and assume:
You already know an algorithm A2 for solving problem P2
You want to have an algorithm A1 for problem P1
The input to P1 is x
You have a function f (x) which can map A1 input to A2 input

If A2(f (x)) = A1(x), you have just created an algorithm A1:
when A1(x) should return 0, A2(f (x)) = 0, and
when A1(x) should return 1, A2(f (x)) = 1

If f is efficient, you have created a polynomial time reduction from
P1 to P2, and we write P1 ≤P P2
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Y ≤P X

What can we do when we have reduced Y to X with a polynomial
time function f ?
We can compare the relative complexity of the problems X and Y

Which one is hardest to solve, X or Y ?
Since we know we can solve Y using X but we don’t know if we can
solve X using Y , it must be the case that X is at least as hard to
solve as Y — possibly much harder
This means we can use ≤P to compare the complexity of problems
just as we can use ≤ to compare integers
Consequences:

If X is easy to solve, then Y must also be easy to solve
If Y is hard to solve, then X must also be hard to solve

”Easy” above means polynomial time, and ”hard” not in polynomial
time
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X ≡P Y

If Y ≤P X and X ≤P Y then we write X ≡P Y

As expected it means we can solve X in polynomial time if and only if
we can solve Y in polynomial time
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Summary of the complexity classes P and NP

P is the set of all problems which can be solved in polynomial time
NP is the set of all problems which can be verified in polynomial time
(i.e. a proposed solution can be checked in
Nobody knows if P = NP
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Definition of NP-completeness

Consider a problem X ∈ NP

Assume every problem Y ∈ NP can be reduced to X

Then X is NP-complete
That is, there are two conditions for a problem X to be NP-complete:

1 X ∈ NP
2 For all Y ∈ NP we have Y ≤P X

Therefore, NP-complete problems are the hardest problems in NP
A valid question quickly becomes: are there any NP-complete
problems? Yes, proved in 1971 by Cook
NP-complete problems belong to the complexity class NPC
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Definition of NP-hard

Consider a problem X , which possibly is or is not in NP
Assume every problem Y ∈ NP can be reduced to X

Then X is NP-hard
Therefore, NP-hard problems are even harder than NP-complete
problems
The difference between NP-complete and NP-hard is that it must be
easy to verify a proposed solution to an NP-complete problem, which
is not necessary for an NP-hard problem.
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Summary so far and a what to do next

Four complexity classes P, NP, NPC, and NP-hard:
X ∈ P X can be solved in polynomial time
X ∈ NP X can be verified in polynomial time
X ∈ NPC X ∈ NP and Y ∈ NP ⇒ Y ≤P X

X is NP-hard Y ∈ NP ⇒ Y ≤P X

Y ≤P X can be used to show that Y is easy or X is hard
Next we will demonstrate some reductions
After that will prove that a problem called Circuit satisfiability is
NP-complete
Finally we will use reductions to prove that some other problems also
are NP-complete — using reductions may make this relatively
convenient
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Problem: Independent set

Consider an undirected graph G (V ,E )

Let S ⊆ V such that for no nodes u, v ∈ S we have (u, v) ∈ E

S is called an independent set
Trivially S = {v} for any v ∈ V

The problem is to find an S with maximum size, |S |
a b

c d g

he f

Any suggestions?
Of course we want to find and print such an S

But our decision problem only is: is there an independent set S such
that |S | = k ?
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Continued: Independent set

Again:
Let S ⊆ V such that for no nodes u, v ∈ S we have (u, v) ∈ E
The problem is to find an S with maximum size, |S |

a b

c d g

he f

Two independent sets of size four:
S1 = {b, c , e, g}
S2 = {a, e, f , g}
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Problem: Vertex cover

Consider an undirected graph G (V ,E )

Let S ⊆ V such that for every edge (u, v) ∈ E we have u ∈ S ∨ v ∈ S

In other words: every edge e ∈ E has at least one end in S

S is called a vertex cover
Note: it is the vertices that perform the covering of edges.
Trivially S = V

The problem is to find an S with minimum size, |S |
a b

c d g

he f

Any suggestions?
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Continued: Vertex cover

Let S ⊆ V such that for every edge (u, v) ∈ E we have u ∈ S ∨ v ∈ S

In other words: every edge e ∈ E has at least one end in S

a b

c d g

he f

S = {a, d , f , g}
With this S every edge e ∈ E has one end in S

Is there a smaller vertex cover?
Which problem is harder? Independent set or Vertex cover, or equally
simple or hard?
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A reduction from Independent set to Vertex cover

Is there an independent set A of size k?
Is there a Vertex cover B of size k?
We are not interested in A or B — only the ’yes’ or ’no’ answers
Let us try to show: Independent set ≤P Vertex cover
How are these problems related?
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Independent set and Vertex cover are related

Lemma
In a graph G = (V ,E ), S is an independent set ⇔ V − S is a vertex cover.

Proof.
We first prove the ⇒ direction, so assume S is an independent set
Consider any edge (u, v) ∈ E

Since S is an independent set, not both of u and v are in S

Therefore at least one of u and v are in V − S which therefore is a
vertex cover
To prove the ⇐ direction, assume V − S is a vertex cover
Consider any edge (u, v) ∈ E .
Since V − S is a vertex cover, at least one of u and v is in V − S

Therefore both u and v cannot be in S which therefore is an
independent set
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A reduction from Independent set to Vertex cover

We now know that S is an independent set if and only if V − S is a
vertex cover
Back to our decision problems:

Is there an independent set of size k?
Is there a vertex cover of size k?

These questions refer to different k so we can instead write:
Is there an independent set of size x?
Is there a vertex cover of size y?

To reduce Independent set to Vertex cover, we can use the polynomial
time reduction function f (V , x) = |V | − x

Our polynomial time reduction therefore becomes: is there an
independent set of size x = is there a vertex cover of size |V | − x?
And therefore: Independent set ≤P Vertex cover
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A reduction from Vertex cover to Independent set

We can use a similar reduction in the other direction
Also, these two problems are equally hard — or easy — to solve
Note: we only compare the relative complexity
We do not know if there exists a polynomial time algorithm for these
problems
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Another reduction: from Vertex cover to Set cover

We know vertex cover selects a minimal number of vertices S so that
for all edges (u, v) ∈ E at least one of u and v are in S

In set cover we have a set S and subsets S1, S2, . . . ,Sm of S
We want a minimal number of subsets such that their union is S

So assume we have an algorithm A for Set cover and want to use it to
solve Vertex cover.
We construct an instance f (x) of Set cover from our instance x of
vertex cover.
Then we use A to determine if we can use only k of the subsets?
What should the reduction function f be?
Think about this one minute!
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A reduction function f from Vertex cover to Set cover

a b

c d

e f g h

i j

Our instance of vertex cover is called x and has a graph G (V ,E )

Since it is edges we want to cover (using nodes), let S = E

Define a subset Sv = {(v ,w) | (v ,w) ∈ E}
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Continued

Sa = {(a, b)}
Sb = {(a, b), (b, d), (b, h)}
Sc = {(c , d), (c , e), (c , f )}
...
Sj = {(i , j), (g , j)}

We have now constructed an instance f (x) of Set cover
This looks reasonable and we can therefore try to prove this is a
correct reduction
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Correctness of the reduction f

Lemma
There exists a vertex cover of G (V ,E ) using at most k nodes ⇔ there
exists a set cover of S using at most k subsets of S created by f .

Proof.
We prove the ⇐ direction first.
Assume A(f (x), k) = 1. Then there is a set cover using subsets
Sv1 , Sv2 , . . . ∪ Svi such that i ≤ k .
Therefore every edge e ∈ E is incident to at least one of the nodes
{v1, v2, . . . , vi}, which means the nodes {v1, v2, . . . , vi}, is a vertex
cover of size at most k .
To prove the ⇒ direction, assume {v1, v2, . . . , vi}, is a vertex cover of
size at most k .
Then the subsets Sv1 ,Sv2 , . . . ∪ Svi such that i ≤ k is a set cover of
size at most k .
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Conclusion and remark

We have proved we can reduce Vertex cover to Set cover
Therefore Vertex cover ≤P Set cover
Our reduction only needed to construct one instance of Set cover
We are allowed to make a polynomial number of calls to A but very
often we can construct an instance which only needs one call
Since both problems are NP-complete we can also reduce from Set
cover to Vertex cover — however, that is much more complicated and
we will not do that
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Proving that a new problem is NP-complete

Consider a new problem Y such that:
We cannot come up with an efficient algorithm for Y
We suspect it is NP-complete

How can we prove it is?
Firstly, does it have a polynomial time verifier so Y ∈ NP?
Can we make a reduction from a problem X which is known to be
NP-complete?
That is: can we solve X using a reduction to Y ? X ≤P Y

If that is the case, we have proved Y is NP-complete
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Circuit satisfiability

The first problem that was shown to be NP-complete is Circuit
satisfiability
A boolean circuit consists of input signals, wires, gates, and output
signals
A gate is one of:
AND x ∧ y output = 1 if all inputs are 1 at least two input signals
OR x ∨ y output = 1 if any input is 1 at least two input signals
NOT ¬x output = negation of input exactly one input signal

All digital circuits can be implemented with these
To build a computer, we also need storage elements, and a clock signal
A digital circuit is an extremely general and powerful concept
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Algorithm versus circuit

In theory we can implement any algorithm using only circuits — the
disadvantage is that it will become too big to be practical for
non-trivial algorithms
And it is nice to be able to run different apps on a computer/phone
and not only one so we prefer using memories so we can put a
different app there and run it instead
What can be computed is the same, however
Another practical difference is that a circuit has a fixed number of
input bits while an algorithm can process any number of input bits
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A simple circuit

Let i1, i2, . . . , in be the n input bits to a circuit.
Assume we only have one output bit
Thus our circuit is a function f (i1, i2, . . . , in) with output 0 or 1
With n = 3 we can for example have f (i1, i2, i3) = (i1 ∧ i2) ∨ ¬i3
Since ∧ has higher precedence than ∨ we write this as:
f (i1, i2, i3) = i1 ∧ i2 ∨ ¬i3
Circuit satisfiability is the following problem: given a circuit with n
inputs, can we select the values of each input bit i1, i2, . . . , in so that
the output becomes 1?
If we can, then we have satisfied the circuit
In our example, f becomes 1 if both i1 and i2 are 1, or i3 is 0, and it
becomes 0 otherwise
Therefore this circuit is satisfiable
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The Cook theorem: Circuit satisfiability is NP-complete

The Cook theorem was published in 1971.
1973 Levin published a similar result in Russian.
The theorem is sometimes called The Cook-Levin theorem but I prefer
the Cook theorem since Cook was first

Theorem
Circuit satisfiability is NP-complete.

jonasskeppstedt.net Lecture 9 2023 38 / 74



The Cook theorem: Circuit satisfiability is NP-complete

Theorem
Circuit satisfiability is NP-complete.

Proof.
We will only sketch a proof because some of the details are too
tedious.
We need to show two things:

1 Circuits satisfiability is in NP, and
2 For all X ∈ NP we have X ≤P Circuit satisfiability.
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Proving Circuit satisfiability is NP-complete

Proof.
1 Circuit satisfiability is in NP, and
2 For all X ∈ NP we have X ≤P Circuit satisfiability.

Assume we have a circuit C and found an assignment of values to all
input variables vi which results in an output of 1 from C .
That is: C is a concrete circuit with some particular gates — and not
any ”abstract” circuit
So we are given a sequence i1, i2, . . . , in.
How can we check if this is a solution to Circuit satisfiability for C?
We can just evaluate C with this sequence as input and check that the
output is 1.
And this is of course trivial to do in polynomial time.
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Proving Circuit satisfiability is NP-complete

Proof.
1 Circuit satisfiability is in NP, and
2 For all X ∈ NP we have X ≤P Circuit satisfiability.

We now need to prove that every problem X in NP can be solved by
reducing X to Circuit satisfiability.
What is needed for that?
For a given problem X and for any input to X we must be able to
solve X using Circuit satisfiability, i.e. determine if X for that input
should be a ”yes” or a ”no” (or, 1 or 0)
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Proving Circuit satisfiability is NP-complete

Proof.
For X to be in NP, it must have a polynomial time verification
algorithm A

A takes two inputs:
the input I to X , and
the proposed solution S to X .

So A(I , S) should in polynomial time determine if S is a solution to X
when the input is I

I is a string of n bits and S is a string of p(n) bits
How can we use Circuit satisfiability for this??
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Proving Circuit satisfiability is NP-complete

Proof.
A(I ,S) determines in polynomial time if S is a solution to X .
We can now create a circuit which implements A(I , S)

With all n + p(n) bits from I and S this circuit C will output 0 or 1
depending on if S was the solution.
There are n + p(n) boolean input variables to C .
To use C to solve X we will let C find S for us!
We do this as follows: let the first n bits to C be I , and the remaining
boolean variables v1, v2, . . . , vp(n) be the unknown variables for which
Circuit satisfiability should find an assignment
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Proving Circuit satisfiability is NP-complete

Proof.
We have just shown the key idea of how we can use Circuit
satisfiability to solve any problem in NP.
The critical sentence I did not explain is:
We can now create a circuit which implements A(I , S)

This proof of Circuit satisfiability being NP-complete relies on that we
actually can take a polynomial time algorithm A and create a circuit C
so that A(I ,S) = C (I , S)

Why should that C exist and why should we be able to create it?
That is the tedious part. We need to translate every step in A down to
gates.
For example: x = a > b ? c * d : e / f will become gates for
evaluating a > b, the multiplication, and the division, and then a
multiplexer which has the outcome > as control input and of the
arithmetic operations as data inputs.
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Proving Circuit satisfiability is NP-complete

Proof.
More complicated code such as x[rand()] = y[rand()] * 2 with
arrays and pseudo random numbers can also be translated to gates
but it is not as straightforward as for simple expressions.
The main reason we can handle any algorithm is that we can view the
state of a computer as a state in a finite state machine which in itself
can be translated to gates, although a huge number of gates.

Cook proved his theorem using Turing machines, which are equivalent
to computers.
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Formula Satisfiability (called SAT)

Instead of digital gates we use operators: ∨, ∧ and ¬.
In circuits the output of one gate can be input to multiple other gates.
Can we easily translate a circuit into a formula?
Can we reduce Circuit satifiability to SAT?
First approach: translate the gates to their corresponding operators in
an obvious way starting with the output.
Obvious way: ”recursively copy gates from each input”
Two problems:

We prefer a formula on the form of a conjunction of clauses, e.g.:
(x1 ∨ x2) ∧ (x3 ∨ x4)
Doing this in an obvious way is not efficient
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Conjunctive normal form

Conjunctive normal form is a conjunction of clauses.
CNF such as: (x1 ∨ x2) ∧ (x3 ∨ x4)

We can achieve this by using DeMorgan’s laws and the distributive
laws to move ¬ and ∨ down
So this is easily solved
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Exponential size of the formula

Recall the output of one gate T can be input of multiple other gates,
g1, g2, ..., gn

Then when each of gi translates their input from T they will create
multiple copies of the same formula
We will next see a way to avoid that.
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Translating each gate

Recall p → q means ¬p ∨ q

So p ↔ q means (¬p ∨ q) ∧ (¬q ∨ p)

We can give a name for each wire that is an output from a gate
For an and-gate with inputs x1 and x2 we can call the output x3

The idea is that x3 represents the value of the gate so only one ”copy
of the gate/formula” is needed
x1 ∧ x2 ↔ x3 for an and-gate
x1 ∨ x2 ↔ x3 for an or-gate
¬x1 ↔ x2 for a not-gate
These new variables that can be used in multiple expressions
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The formula and an example

For each gate in the circuit we make an equivalence operator
Then all equivalence expressions must be true so there is one and with
each as input
In addition, the output should also be true so it is also an input to this
and
Say we have three inputs x1, x2, x3, an and-gate with x1 and x2, the
output of it and x3 input to an or-gate and the output of that input to
a not-gate.
If the output is x4 we have: x4 = ¬((x1 ∧ x2) ∨ x3)

Three equivalences:
x1 ∧ x2 ↔ x5
x5 ∨ x3 ↔ x6
¬x6 ↔ x4

The formula: x4 ∧ (x1 ∧ x2 ↔ x5) ∧ (x5 ∨ x3 ↔ x6) ∧ (¬x6 ↔ x4)

Note we can create this formula in polynomial time
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The formula and an example

The formula: x4 ∧ (x1 ∧ x2 ↔ x5) ∧ (x5 ∨ x3 ↔ x6) ∧ (¬x6 ↔ x4)

Why are the circuit and the formula equivalent?
Given values of the inputs x1, x2, x3 in the circuit that lead to a one as
output, i.e. to x4, will the formula also be true?
Yes, because the new variables have the same values as the wires of
the circuit that resulted in the output one
An example satisfying input to the circuit is x1 = 0, x2 = 1, x3 = 0
Using the same input in the formula, we will have x5 = 0, x6 = 0 and
x4 = 1 just as in the circuit
With a satisfying input to the formula, the circuit will also have output
one
The next step is to make this a conjunction of clauses
Instead of ”moving” ¬ and ∨ down, we can write it in the desired form
almost directly.
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Recall distributive laws

p ∨ (q ∧ r) can be written (p ∨ q) ∧ (p ∨ r)

p ∧ (q ∨ r) can be written (p ∧ q) ∨ (p ∧ r)
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From and-gate to formula

x1 ∧ x2 ↔ x3

Recall p → q means ¬p ∨ q

So p ↔ q means (¬p ∨ q) ∧ (¬q ∨ p)

Here p is x1 ∧ x2 and q is x3

So x1 ∧ x2 ↔ x3 can be written (¬(x1 ∧ x2) ∨ x3) ∧ (¬x3 ∨ (x1 ∧ x2))

DeMorgan’s laws: ((¬x1 ∨ ¬x2) ∨ x3) ∧ (¬x3 ∨ (x1 ∧ x2))

Simplified: (¬x1 ∨ ¬x2 ∨ x3) ∧ (¬x3 ∨ (x1 ∧ x2))

Distributive law: (¬x1 ∨ ¬x2 ∨ x3) ∧ ((¬x3 ∨ x1) ∧ (¬x3 ∨ x2))

Simplified: (¬x1 ∨ ¬x2 ∨ x3) ∧ (¬x3 ∨ x1) ∧ (¬x3 ∨ x2)

So the and-gate can be translated to a conjunction of three clauses
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From or-gate to formula

x1 ∨ x2 ↔ x3

Again: p ↔ q means (¬p ∨ q) ∧ (¬q ∨ p)

So x1 ∨ x2 ↔ x3 can be written (¬(x1 ∨ x2) ∨ x3) ∧ (¬x3 ∨ (x1 ∨ x2))

Simplified: (¬(x1 ∨ x2) ∨ x3) ∧ (¬x3 ∨ x1 ∨ x2)

DeMorgan’s law: ((¬x1 ∧ ¬x2) ∨ x3) ∧ (¬x3 ∨ x1 ∨ x2)

Distributive law: ((¬x1 ∨ x3) ∧ (¬x2 ∨ x3)) ∧ (¬x3 ∨ x1 ∨ x2)

Simplified: (¬x1 ∨ x3) ∧ (¬x2 ∨ x3) ∧ (¬x3 ∨ x1 ∨ x2)

So the or-gate can also be translated to a conjunction of three clauses
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From not-gate to formula

¬x1 ↔ x2

Again: p ↔ q means (¬p ∨ q) ∧ (¬q ∨ p)

So ¬x1 ↔ x2 can be written (¬¬x1 ∨ x2) ∧ (¬x2 ∨ ¬x1)

Simplified: (x1 ∨ x2) ∧ (¬x2 ∨ ¬x1)

The last is true (as expected) when either x1 = 0 and x2 = 1, or when
x1 = 1 and x2 = 0
So the not-gate can be translated to a conjunction of two clauses
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Conjunction of clauses

We started with: x4 ∧ (x1 ∧ x2 ↔ x5) ∧ (x5 ∨ x3 ↔ x6) ∧ (¬x6 ↔ x4)

Since each gate can be translated to a conjunction of clauses, we can
make one big conjunction:
x4
∧ (¬x1 ∨ ¬x2 ∨ x5)
∧ (¬x5 ∨ x1)
∧ (¬x5 ∨ x2)
∧ (¬x5 ∨ x6)
∧ (¬x3 ∨ x6)
∧ (¬x6 ∨ x5 ∨ x3)
∧ (x6 ∨ x4)
∧ (¬x4 ∨ ¬x6)

Above is more complicated than x4 = ¬((x1 ∧ x2) ∨ x3) but always
possible to create in polynomial time plus conjunction of clauses
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3-Satisfiability

3-Satisfiability (3-SAT) is a problem very similar to Satisfiability (SAT)
A clause in 3-SAT always contains three terms, e.g. x1 ∨ x3 ∨ x4

It is easy to translate a SAT instance into a 3-SAT instance, i.e.
reducing SAT to 3-SAT
An example instance of 3-SAT is:
(x1 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x4 ∨ x5) ∧ (x2 ∨ x3 ∨ x4)
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The Hamiltonian Cycle Problem

The Hamiltonian Cycle Problem asks whether there exists a simple
cycle with all nodes of a directed graph.
In other words, each node must be on this path exactly once, and we
must return to the node where we started.
We will next prove that this problem is NP-complete.
How can we do that?
The usual start is:

Prove the problem is in NP, i.e. has a polynomial-time verification.
Find a suitable problem Q known to be NP-complete
Solve Q using the new problem, i.e. reduce from Q

A polynomial time verification of a proposed solution C simply checks
that C is a cycle and that each node is in C exactly once. So the
problem is in NP.
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The Hamiltonian Cycle Problem

It turns out it often is practical to reduce from 3-SAT
Given an instance of 3-SAT we should create a graph G

We then solve the Hamiltonian Cycle problem for G to prove that this
problem is at least as hard as 3-SAT, i.e. NP-complete
Of course, G must be created so that Hamiltonian Cycle has a
solution if and only if the 3-SAT has a solution
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The Hamiltonian Cycle Problem

Assume we have n variables xi and k clauses Cj in the 3-SAT instance
Φ = C1 ∧ C2 ∧ . . .Ck

Cj = tj1 ∨ tj2 ∨ tj3

Each t is a term, or literal, which is either a variable or the negation of
a variable
For example: Φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

n = 3 and k = 2
We will next create a graph from Φ in steps
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The Hamiltonian Cycle Problem

x31 x32 x33 x34

x21 x22 x23 x24

x11 x12 x13 x14

s

t

Φ = (x1∨x2∨x3)∧ (x1∨x2∨x3)

There is one ”row” in the graph
for each 3-SAT input variable xi

Every Hamiltonian cycle must
go from s to either x11 or x14

A row can be passed either in
left or right direction
As the graph looks now, there
are 23 Hamiltonian cycles since
we can select either left or right
direction in each of the three
rows
The number of nodes in each
row is twice the number of
clauses, k
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The Hamiltonian Cycle Problem

x31 x32 x33 x34

x21 x22 x23 x24

x11 x12 x13 x14

s

t

C2C1

Φ = (x1∨x2∨x3)∧ (x1∨x2∨x3)

A Hamiltonian cycle going right
in row i means xi = 1, and
going left means xi = 0
If clause Cj contains xi we
should add an edge from row i
to Cj , and from Cj to row i

Since we have xi , these edges
should be in the right direction
For xi , there should be edges in
the left direction instead
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The Hamiltonian Cycle Problem

x31 x32 x33 x34

x21 x22 x23 x24

x11 x12 x13 x14

s

t

C2C1

Φ = (x1∨x2∨x3)∧ (x1∨x2∨x3)

A Hamiltonian cycle going right
in row i means xi = 1, and
going left means xi = 0
If clause Cj contains xi we
should add an edge from row i
to Cj , and from Cj to row i

Since we have xi , these edges
should be in the right direction
For xi , there should be edges in
the left direction instead
Edges incident to a clause node
are dashed only for visibility and
are not special in any way
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The Traveling Salesperson Problem (TSP)

Another problem in which a sequence of all nodes of a graph is
requested is the Traveling Salesperson Problem (TSP)
Consider a set of cities with distances between every pair of cities
We denote the distance between two cities u and v by d(u, v)

A tour visits all cities and returns to the originating city
The Traveling Salesperson problem asks if there is a tour using a total
distance of at most x
We will next prove that TSP is NP-complete by reduction from
Hamiltonian cycle
If we can solve Hamiltonian cycle using TSP, TSP is at least as hard
as Hamiltonian cycle
It is clear the TSP is in NP
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Reducing Hamilton Cycle to Traveling Salesperson Problem

Given a directed graph G (V ,E ) for the Hamilton Cycle problem, we
construct an instance of TSP as follows
For each each (u, v) ∈ E we assign a distance d(u, v) = 1 and for all
pairs such that (u, v) /∈ E we assign a distance d(u, v) = 2
If and only if there is a solution to TSP for this graph with a total
distance of n, there exists a Hamiltonian cycle for G
The proof of this claim is trivial. If there is such a TSP tour, this tour
constitutes a Hamiltonian cycle, and if G has a Hamiltonian cycle, the
TSP tour must have length n
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The Graph Coloring Problem

Recall the graph coloring problem: for an undirected graph G (V ,E ).
Is there a mapping from node to colors so that neighboring nodes are
assigned different colors and at most k colors are used?
We have already seen that for k = 2 the decision problem is in P
We will next show that for k = 3 the decision problem is NP-complete
Firstly, it is clear the problem is in NP
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Reduction from 3-SAT to 3-coloring

Given a 3-SAT instance I with n variables and k clauses, we will create
a graph which is 3-colorable if and only if I is satisfiable
We start with a triangle consisting of the nodes t, f , and b

Nodes t and f correspond to true and false, or 1 and 0 respectively
Node b is a node, often called base in the literature, which is used to
force nodes corresponding to variables and their negation to be colored
with the same color as t or as f

t f

b

v1 v1 v2 v2 . . . vn vn

For each variable xi , and xi , there are nodes vi and vi
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Reduction from 3-SAT to 3-coloring

t f

b

v1 v1 v2 v2 . . . vn vn

Since each vi and vi is a neighbor of b, a 3-coloring must select the
color of either t or f for them
We will denote the color of t by T , the color of f by F and the color
of b by B below
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Representing clauses in G

We denote the three terms, or literals, in clause Cj by pj , qj and rj

Thus, if Cj = x1 ∨ x2 ∨ xn, then pj = v1, qj = v2, and rj = vn

We need to create a subgraph for each clause which will be colorable if
and only if at least one term is colored with T

Such a subgraph needs to have a certain node which is neighbor to
both f and b so that it can be colored with T (if at least one term
also is colored with T , of course)
Essentially, we want to create the equivalence of an OR-gate, or
disjunction
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Representing an OR-gate

Assume Cj = x1 ∨ x2 ∨ xn, and pj = v1, qj = v2, and rj = vn

t f

b

v1 v1 v2 v2 . . . vn vn yj1 yj2

yj3

yj4 yj5

yj6

A subgraph with these six nodes yjk , 1 ≤ k ≤ 6 is created for each Cj

As can be easily verified node yj6 can be colored with T if at least one
of pj , qj and rj is colored with T
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An example

Let c(v) denote the color of v and assume c(pj) = c(qj) = c(rj) = F

So (c(v1), c(v2), c(v3)) = (F ,T ,F ) and (x1, x2, x3) = (0, 1, 0)

t f

b

v1 v1 v2 v2 . . . vn vn yj1 yj2

yj3

yj4 yj5

yj6
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SAT solving

No efficient algorithm for SAT solving is know in the general case
In practice, there are numerous SAT instances that can be solved even
with millions of variables
We have a set F of clauses in CNF form, using a set V of variables
and |V | = n.
A variable is free when it has not been assigned a value yet
In an assignment no variable is free
In a partial assignment some variables are free
It can be possible to satisfy F with a partial assignment: in
C = x1 ∨ x2 ∨ x4 is satisfied if either x1 = 1, x2 = 1 or x4 = 0
It is too slow to enumerate and check all 2n possible assignments
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SAT solving with backtracking

Much better than enumerating all assignments

function basic_sat (F )
begin

if any clause C in F cannot be satisfied then
/* all variables in C are assigned a value and all literals in C are 0 */
return 0

else if all clauses in F are satisfied then
/* every clause contains a literal with value 1 */
return 1

select a variable xj marked as free
if basic_sat (F with xj = 0) then

return 1
else

s ← basic_sat (F with xj = 1)
mark xj as free
return s

end
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Unit propagation

Try to discover early that a partial assignment cannot satisfy F

The algorithm then can try a different partial assignment
A unit clause is a clause with only one literal that has a free variable
Assume we have C = x1 ∨ x2 ∨ x4

And partial assignments: x1 = 0 and x2 = 0 have been made.
Next try x4 = 0
This approach is called unit propagation.
It is trivial to add it in the select step in the basic SAT solver
When we check if the partial assignment either satisfies F or cannot
satisfy F , we can also collect candidate variables that may be used in
unit propagation
More about SAT: https://jakobnordstrom.github.io
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