
Contents Lecture 8

Review of the heap data structure
Array-based heap (binary heap)
Overview of Fibonacci heap
Hollow heap

jonasskeppstedt.net Lecture 8 2023 1 / 32

Review of the heap data structure

(key , value) pairs are stored
Primarily used for priority queues
Operations:

make heap
insert pair
change key — some heaps only support decrease the value of the key
min
delete min

Efficient search is not supported

jonasskeppstedt.net Lecture 8 2023 2 / 32

Overview of array-based heap data structure

Can store up to n pairs (key , value)

An array indexed from 1 to n is used
Normally best to allocate n + 1 elements and just waste one element
The root is stored at index 1
Let kj denote key of pair stored at index j

The heap order means that kj ≤ k2j and kj ≤ k2j+1

But nothing about k2j vs. k2j+1

jonasskeppstedt.net Lecture 8 2023 3 / 32

Operations on array based heap

Assume the heap contains n pairs
The min pair is at index 1
To delete the min pair it is saved somewhere and the pair at index n is
moved to index 1, and n is decremented
This pair is then moved down which takes O(log n) time
A new pair is inserted at index n + 1
The new pair is then moved up which also takes O(log n) time
Changing the priority takes O(log n) time as well

jonasskeppstedt.net Lecture 8 2023 4 / 32

Initializing a heap from an array

One option: n inserts for O(n log n) total time
Instead view the array as consisting of n heaps with one element each
a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11

k = ⌊n/2⌋ = 5
If both a2k and a2k+1 exist they are roots of valid heaps
Select one of ak , a2k and a2k+1 to be the root of a new heap
consisting of these three
That is done by moving ak down in the heap, if needed
After that ak is the root of a valid heap
Continue with ak−1, ak−2, ..., a1

We need to do this from right to left since the children of ak (a2k and
a2k+1) must be valid heaps which they would not be if we started at a1

jonasskeppstedt.net Lecture 8 2023 5 / 32

An example

initial array
34 3 55 2 13 0 1 8 5 1 21

k = 5, a5 = 13, a10 = 1, a11 = 21 so move down 13
34 3 55 2 1 0 1 8 5 13 21

k = 4, a4 = 2, a8 = 8, a9 = 5 so nothing to do
34 3 55 2 1 0 1 8 5 13 21

k = 3, a3 = 55, a6 = 0, a7 = 1 so move down 55
34 3 0 2 1 55 1 8 5 13 21

k = 2, a2 = 3, a4 = 2, a5 = 1 so move down 3
34 1 0 2 3 55 1 8 5 13 21

k = 1, a1 = 34, a2 = 1, a3 = 0 so move down 34
0 1 34 2 3 55 1 8 5 13 21
0 1 1 2 3 55 34 8 5 13 21

now 34 cannot move any further

jonasskeppstedt.net Lecture 8 2023 6 / 32

Time complexity of initializing a heap

Each move down is O(log n)

We do n/2 move down
Pessimistic time bound: n

2 log n = O(n log n)

But most move down are far less than O(log n)

Can we make a more accurate analysis?

jonasskeppstedt.net Lecture 8 2023 7 / 32

More about binary heap

Consider first a full heap
When we increase the height by one, we double the number of leaves
The height of an n element heap is ⌊log2 n⌋
For n = 15, height h = 3 = ⌊log2 15⌋

The height is 3 for 8 ≤ n ≤ 15 as expected

jonasskeppstedt.net Lecture 8 2023 8 / 32

Number of nodes at a certain height

Again first a full heap, with n = 15
A leaf is at height 0 and we have 8 leaves
We have 4 nodes at height 1, 2 at height 2, and 1 node at height 3

At height i there are ⌈15/2i+1⌉ nodes
For example: i = 0 gives ⌈15/20+1⌉ = ⌈7.5⌉ = 8 nodes
And i = 2 gives ⌈15/22+1⌉ = ⌈1.875⌉ = 2 nodes
In general x ≤ ⌈n/2i+1⌉ nodes at height i

jonasskeppstedt.net Lecture 8 2023 9 / 32

Number of nodes at a certain height

Now a heap that is not full, with n = 13

In general we have x ≤ ⌈n/2i+1⌉ nodes at height i
3 nodes at height 1
3 ≤ ⌈13/21+1⌉ = ⌈3.25⌉ = 4

jonasskeppstedt.net Lecture 8 2023 10 / 32

A note

Recall a geometric series (geometrisk summa)
For |x | < 1 we have:

∞∑
h=0

xh =
1

1 − x

We also see:
d
dx

∞∑
h=0

xh = d
dx

1
1 − x

∞∑
h=0

hxh−1 =
1

(1 − x)2

Multiply by x :

x
∞∑
h=0

hxh−1 =
x

(1 − x)2

With x = 1/2 we get:
1
2

(1 − 1
2)

2
=

1
2
1
4
= 2

jonasskeppstedt.net Lecture 8 2023 11 / 32

A more accurate analysis of initializing a heap

⌊log n⌋∑
h=0

(nodes at height h)O(h) =
⌊log n⌋∑
h=0

⌈
n

2h+1⌉ O(h)

= O(n
⌊log n⌋∑
h=0

h

2h
)

= O(n
∞∑
h=0

h(1
2)

h)

= O(n
1
2

(1 − 1
2)

2
)

= O(2n)
= O(n).

jonasskeppstedt.net Lecture 8 2023 12 / 32

Fibonacci heap

A list of trees instead of an array
Each tree satisfies heap order
Worst-case constant time to insert a new (key , value) pair
Insert: create a new tree and check if it is the minimum
Basic idea of decrease-key: remove it from the parent and make it a
new root and possibly make additional updates
Recall from preflow-push: amortized time takes multiple operations
into account and not only worst case for each
Amortized O(log n) time to remove minimum
Each tree node uses five pointers, an integer and a boolean

jonasskeppstedt.net Lecture 8 2023 13 / 32

Hollow heaps

Simpler and better than Fibonacci heaps
A disadvantage is that some nodes have no data and still consume
memory
They can be cleaned away when needed though
This is research published in 2015 and 2017 by Dueholm Hansen,
Tarjan, Kaplan and Zwick
Hollow heaps also uses trees, just as Fibonacci heaps

jonasskeppstedt.net Lecture 8 2023 14 / 32

Nodes and elements

A node is a tree node in the hollow heap
An element is the data stored in the heap: a (key , value) pair
A node with an element is full
A node with no element is hollow

jonasskeppstedt.net Lecture 8 2023 15 / 32

Hollow nodes

An element can be removed from a node which then becomes a hollow
node
A node is not the element but instead has a pointer to an element (or
null)
Thus a node cannot be an element — only point to an element
A node also has a key: identical to the element’s or to the key of the
element the node previously had
A hollow node never gets a new element
Hollow nodes which are children of the minimum node are thrown
away when the minimum is deleted
Hollow nodes can be garbage collected and thrown if memory is needed

jonasskeppstedt.net Lecture 8 2023 16 / 32

Three versions of Hollow heaps

Focus on the exam is first version
Probably fastest version: multiple root nodes
Not so important versions for the course: one root node, and two
parents (i.e., I will not ask about them)
The purpose is to give you key insights what hollow heaps are about
but not detailed proofs or implementation
The exam may have a simple question about hollow heaps
I am supervising a MSc thesis about hollow heaps for a parallel
implementation of Dijkstra’s algorithm: very interesting (I think)

jonasskeppstedt.net Lecture 8 2023 17 / 32

Version 1: Multiple root nodes

We have a list of root nodes
When an element is inserted, a new node is created
This node becomes a new root
It is then checked if this is the new minimum node

jonasskeppstedt.net Lecture 8 2023 18 / 32

Link operation

Compare the keys of two nodes and make the one with smaller key the
parent of the other
The heap order of a tree is maintained using link operations
A node has a single linked list of children
A new child is inserted first in this list
Links are only performed at a delete-min and when merging two heaps
— but not at an insert

jonasskeppstedt.net Lecture 8 2023 19 / 32

Decrease-key operation

If the element is a root, then the key is simply reduced — and check if
this is the new min
If not, a new root is created with the element
The element is then moved from the previous node which becomes
hollow
Some of the children are moved to the new node as well

jonasskeppstedt.net Lecture 8 2023 20 / 32

Delete operation

If the deleted element is is not the minimum, the node with it simply
becomes hollow and we are done
If it is the minimum element, all hollow root nodes are destroyed by
making their children new full root nodes
To reduce the number of root nodes, a number of link operations are
performed
Quiz: why should we try to reduce the number of root nodes?

jonasskeppstedt.net Lecture 8 2023 21 / 32

Rank

Each node has a rank, which is a non-negative integer initially zero
When reducing the number of hollow roots, link operations are
performed on root nodes with the same rank
The node which becomes the parent at a link has its rank incremented
by one

jonasskeppstedt.net Lecture 8 2023 22 / 32

Invariant

A node with rank r has exactly r children, except if r > 2 and the node
has become hollow when the key of its former element was decreased
In that case, the node has two children with ranks r − 2 and r − 1
Otherwise its r children have ranks r − 1, r − 2, ... 2, 1, 0.
Let ru be the rank of u
When an element is moved from a node u to a node v the rank of v is
set to max{0, ru − 2}: −2 because up to two children stay at u
All children of u with rank less than rv are moved to v , with their
children
If the rank of u is at least 2, then u keeps two children with ranks
r − 2 and r − 1
If the rank of u is one, then u keeps its child (with rank zero).

jonasskeppstedt.net Lecture 8 2023 23 / 32

Fibonacci numbers

Recall Fibonacci numbers: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...
F0 = 0,F1 = 1 and Fi = Fi−1 + Fi−2

Fi+2 ≥ ϕi with ϕ = (1 +
√

5)/2

jonasskeppstedt.net Lecture 8 2023 24 / 32

Number of descendants

Descendants = the node itself and children and their children etc
A node with rank r has at least Fr+3 − 1 descendants (full and hollow)
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...
For r = 0 it is the node itself and F0+3 − 1 = 2 − 1 = 1
For r = 1 it the node itself plus one child and F1+3 − 1 = 3 − 1 = 2
For r ≥ 2 the node itself and its children with ranks r − 2 and r − 1
are among the descendants.
By induction, and counting only the first two children the number of
descendants is at least:
1 + (Fr+2 − 1) + (Fr+1 − 1) = (Fr+2) + (Fr+1 − 1) = Fr+3 − 1
That is, at least Fr+3 − 1 descendants with rank r

We will use this to find the maximum rank, rmax since we need an
array with rmax elements

jonasskeppstedt.net Lecture 8 2023 25 / 32

Maximum rank of a root with n descendants

What can r be at most?
Fi+2 ≥ ϕi with ϕ = (1 +

√
5)/2

n nodes in a tree ↔ n descendants of the root
A node with rank r has at least Fr+3 − 1 descendants
Fr+3 − 1 ≥ Fr+2 ≥ ϕr so n ≥ ϕr and r ≤ logϕ n

jonasskeppstedt.net Lecture 8 2023 26 / 32

Efficient moving of children and efficient links

The children of a node are stored in the order of decreasing rank
To move all except the first two children is therefore a constant time
operation
When the minimum element is removed we need to find roots with the
same rank in constant time
This is done using an array and the rank of a node as the index to the
array.
The first time you see a node with rank r it is stored in the array at
index r

The next time you see a node with rank r you can therefore find it in
constant time
Then you link and put back the new parent at index r + 1 and do a
new link if any node already was stored at r + 1

jonasskeppstedt.net Lecture 8 2023 27 / 32

Time complexities

Recall: deleting a non-minimum element is a constant time operation
N includes hollow nodes, and n is only full nodes
Deleting the minimum element is done by destroying hollow roots and
then doing links to reduce the number of roots to at most logN
To delete a hollow root and making its children new roots is a
constant time operation
The following can be shown:

The worst case time of all hollow heap operations except delete take
constant time
The amortized time of delete (and delete-min) takes O(logN) on a
heap with N nodes

Thus: hollow heaps have constant time insert and reduce-key
And array-based heaps instead have O(log n) insert and reduce-key
If insert and reduce-key are frequent, hollow heaps can be faster

jonasskeppstedt.net Lecture 8 2023 28 / 32

Version 2: One-root hollow heaps

Allow links of nodes with different ranks
By allowing this, it is possible to have only one root
Now a child must be marked as coming either from a ranked or
unranked link
Either the heap is empty or the root is full (i.e. never a hollow root)
When moving children of u to v , all the unranked children of u are
always moved to v plus the ranked children as before (i.e. keep one or
two children in u)

jonasskeppstedt.net Lecture 8 2023 29 / 32

Version 3: Two-parent hollow heaps

Instead of moving some children of u to v , v becomes a parent of u
That is, v becomes a second parent of u
Thus, the data structure is no longer a tree
It becomes a directed acyclic graph, or a dag
The heap order terminology is translated to dags
A child must have a key which is at least as big as the key of any of
its parents

jonasskeppstedt.net Lecture 8 2023 30 / 32

Observations

A node in a two-parent hollow heap has at most one parent if it is full,
and at most two parents if it is hollow.
Motivation: there are only two ways to get a parent:

1 a full root can get a first parent by becoming a child at a link, and
2 a full node can become hollow at a decrease-key and get a second

parent
3 a hollow node cannot become full and therefore not get any additional

parent

jonasskeppstedt.net Lecture 8 2023 31 / 32

Implementations

Array-based
Fibonacci heap
Two-parent hollow heap
Note insert and decrease_key (i.e. change_position in array-based)

jonasskeppstedt.net Lecture 8 2023 32 / 32

