Contents Lecture 8

- Review of the heap data structure
- Overview of array-based heap
- Overview of Fibonacci heap
- Hollow heap
Review of the heap data structure

- (key, value) pairs are stored
- Primarily used for priority queues
- Operations:
 - make heap
 - insert pair
 - change key
 - min
 - delete min
- Efficient search is not supported
Overview of array-based heap data structure

- To store up to \(s \) pairs \((key, value)\), an array indexed from 1 to \(s \) is used
- The root is stored at index 1
- Let \(k_j \) denote key of pair stored at index \(j \)
- The heap order means that \(k_j \leq k_{2j} \) and \(k_j \leq k_{2j+1} \)
- But nothing about \(k_{2j} \) vs. \(k_{2j+1} \)
Assume the heap contains n pairs

To delete the min pair it is saved and the pair at index n is moved to index 1

This pair is then moved down which takes $O(\log n)$ time

A new pair is inserted at index $n + 1$

The new pair is then moved up which also takes $O(\log n)$ time

Changing the priority takes $O(\log n)$ time as well
Fibonacci heaps

- Uses trees instead of an array
- Worst-case constant time to insert a new \((key, value)\) pair
- Basic idea of insert: create a new tree and check if it is the minimum
- Amortized constant time to decrease a key
- Basic idea of decrease-key: remove it from the parent and make it a new root and possibly make additional updates
- Amortized \(O(\log n)\) time to remove minimum
- Each tree node uses five pointers, an integer and a boolean
Hollow heaps

- Simpler and better than Fibonacci heaps
- A disadvantage is that some nodes have no data and still consume memory
- They can be cleaned away when needed though
- This is research published in 2015 and 2017 by Dueholm Hansen, Tarjan, Kaplan and Zwick
- Hollow heaps also uses trees, just as Fibonacci heaps
Nodes and elements

- A node is a tree node in the hollow heap
- An element is the data stored in the heap: a \((key, value)\) pair
- A node with an element is full
- A node with no element is hollow
Hollow nodes

- An element can be removed from a node which then becomes a hollow node.
- A node is not the element but instead has a pointer to an element (or null).
- Thus a node cannot be an element — only point to an element.
- A node also has a key: identical to the element’s or to the key of the element the node previously had.
- A hollow node never gets a new element.
- Hollow nodes which are children of the minimum node are thrown away when the minimum is deleted.
- Hollow nodes can be garbage collected and thrown if memory is needed.
Hollow heaps in three steps

- Multiple root nodes
- One root node
- Two parents
- The purpose is to give you key insights what hollow heaps are about but not detailed proofs or implementation
- The exam may have a simple question about hollow heaps
Step 1: Multiple root nodes

- When an element is inserted, a new node is created
- This node becomes a new root
- It is then checked if this is the new minimum node
- We have a list of root nodes
Link operation

- Compare the keys of two nodes and make the one with smaller key the parent of the other
- The heap order of a tree is maintained using link operations
- A node has a single linked list of children
- A new child is inserted first in this list
Decrease-key operation

- If the element is a root, then the key is simply reduced — and check if this is the new min
- If not, a new root is created with the element
- The element is then moved from the previous node which becomes hollow
- Some of the children are moved to the new node as well
Delete operation

- If the deleted element is not the minimum, the node with it simply becomes hollow and we are done.
- If it is the minimum element, all hollow root nodes are destroyed by making their children new full root nodes.
- To reduce the number of root nodes, a number of link operations are performed.
Each node has a rank, which is a non-negative integer initially zero.

When reducing the number of hollow roots, link operations are performed on root nodes with the same rank.

The node which becomes the parent at a link has its rank incremented by one.
Invariant

- A node with rank r has exactly r children, except if $r > 2$ and the node has become hollow when the key of its former element was decreased.
- In that case, the node has two children with ranks $r - 2$ and $r - 1$.
- Let r_u be the rank of u.
- When an element is moved from a node u to a node v the rank of v is set to $\max\{0, r_u - 2\}$.
- All children of u with rank less than r_v are moved to v, with their children.
- If the rank of u is at least 2, then u keeps two children with ranks $r - 2$ and $r - 1$.
- If the rank of u is one, then u keeps its child (with rank zero).
Recall Fibonacci numbers: 0, 1, 1, 2, 3, 5, 8, 13, 21, ...

- $F_0 = 0$, $F_1 = 1$ and $F_i = F_{i-1} + F_{i-2}$
- $F_{i+2} \geq \phi^i$ with $\phi = (1 + \sqrt{5})/2$
A node with rank \(r \) has at least \(F_{r+3} - 1 \) descendants (both full and hollow)

We will show this using induction.

For \(r = 0 \) or \(r = 1 \) it is true.

For \(r \geq 2 \) the node itself and its children with ranks \(r - 2 \) and \(r - 1 \) are among the descendants.

From the induction hypothesis, the node has at least
\[
1 + (F_{r+2} - 1) + (F_{r+1} - 1) = F_{r+3} - 1
\]
descendants.

Since \(F_{r+3} - 1 \geq F_{r+2} \geq \phi^r \), the rank of a node in a heap with \(N \) nodes (full or empty) is at most \(\log_\phi N \)
The children of a node are stored in the order of decreasing rank.

To move all except the first two children is therefore a constant time operation.

When the minimum element is removed we need to find roots with the same rank in constant time.

This is done using an array and the rank of a node as the index to the array.

The first time you see a node with rank \(r \) it is stored in the array at index \(r \).

The next time you see a node with rank \(r \) you can therefore find it in constant time.

Then you link and put back the new parent at index \(r + 1 \) and do a new link if any node already was stored at \(r + 1 \).
Recall: deleting a non-minimum element is a constant time operation.

Deleting the minimum element is done by destroying hollow roots and then doing links to reduce the number of roots to at most $\log N$.

To delete a hollow root and making its children new roots is a constant time operation.

The following can be shown:

- The worst case time of all hollow heap operations except delete take constant time.
- The amortized time of delete (and delete-min) takes $O(\log N)$ on a heap with N nodes.

Thus: hollow heaps have constant time insert and reduce-key.

And array-based heaps instead have $O(\log N)$ insert and reduce-key.

If insert and reduce-key are frequent, hollow heaps can be faster.
Step 2: One-root hollow heaps

- Allow links of nodes with different ranks
- By allowing this, it is possible to have only one root
- Now a child must be marked as coming either from a ranked or unranked link
- Either the heap is empty or the root is full (i.e. never a hollow root)
- When moving children of \(u \) to \(v \), all the unranked children of \(u \) are always moved to \(v \) plus the ranked children as before (i.e. keep one or two children in \(u \))
Step 3: Two-parent hollow heaps

- Instead of moving some children of u to v, v becomes a parent of u
- That is, v becomes a second parent of u
- Thus, the data structure is no longer a tree
- It becomes a directed acyclic graph, or a dag
- The heap order terminology is translated to dags
- A child must have a key which is at least as big as the key of any of its parents
Observations

- A node in a two-parent hollow heap has at most one parent if it is full, and at most two parents if it is hollow.

Motivation: there are only two ways to get a parent:

1. a full root can get a first parent by becoming a child at a link, and
2. a full node can become hollow at a decrease-key and get a second parent
3. a hollow node cannot become full and therefore not get any additional parent
Implementations

- Array-based
- Fibonacci heap
- Two-root hollow heap
- Note insert and decrease_key (i.e. change_position in array-based)