
Contents Lecture 7

The maximum flow problem
The Ford-Fulkerson algorithm
Maximum flows and minimum cuts
The preflow-push maximum flow algorithm

jonasskeppstedt.net Lecture 7 2023 1 / 56



A flow network

A directed (or undirected) graph G (V ,E )

Each edge e ∈ E has a nonnegative capacity c(e)

A source node s ∈ V with no predecessor
A sink node t ∈ V with no successor
An example:

s

v2 v4

v1 v3 v5

v6

t

3

8

9

4

4

2 5 5

3

3

3

4

9

A previous version of Lab 6 was about being an CCCP party member
and solving a problem for railway transportations passing Minsk, using
capacities estimated by US spies — hence book cover
jonasskeppstedt.net Lecture 7 2023 2 / 56



Terminology

An st − cut is a partition (A,B) with s ∈ A and t ∈ B . Also called
simply a cut

The capacity of a cut is

cap(A,B) =
∑

e out from A

c(e)

For the previous graph, cap({s},V − {s}) = 3 + 8
The min-cut problem is to find a cut of minimum capacity
Useful information when bombing enemy railroads for instance
Honest and respectful diplomacy towards a happy world is preferable

jonasskeppstedt.net Lecture 7 2023 3 / 56



A flow

A flow is a function f which says how much flows on each edge
Often we want to use the edges to maximize the total flow from s to t

The algorithm design techniques we have studied so far are insufficient
to solve this problem
The capacity constraint says: for each e ∈ E , 0 ≤ f (e) ≤ c(e)

For undirected graphs, we need to specify the direction of the flow
One way to do that is to fix the order of the nodes and use:

flow from u to v is positive
flow from v to u is negative
u and v need to agree on what is meant by positive flow

jonasskeppstedt.net Lecture 7 2023 4 / 56



Flow conservation constraint

The flow coming in to a vertex v must equal the flow going out from v

This flow conservation constraint does not apply to the source s
and the sink t

v ∈ V − {s, t} :
∑

e in to v

f (e) =
∑

e out from v

f (e)

A water hose (vattenslang) cannot store any water
Water systems are a good mental model for network flow

jonasskeppstedt.net Lecture 7 2023 5 / 56



The maximum flow problem

The value of a flow f is
∑

e out from s

f (e) =
∑

e in to t
f (e)

The maximum flow problem is to find a flow f with maximum value

jonasskeppstedt.net Lecture 7 2023 6 / 56



The Ford-Fulkerson algorithm: overview

The basic idea is very simple
1 Start with a flow f (e) = 0 for every e ∈ E
2 Look for a simple path p from s to t such that on every edge (u, v) in

p we can increase the flow in the direction from u to v
3 If we could not find any such path, we have the maximum flow
4 Let each edge e = (u, v) on p have a value δ(e), which means room

for improvement, or how much we can increase the flow on that edge
5 Let ∆ be the minimum of all δ(e) on p
6 Increase the flow by ∆ along the path p
7 goto 2

The risky part is number 3: how can we be sure of that?
We will prove it is correct

jonasskeppstedt.net Lecture 7 2023 7 / 56



Some more details

What does it mean that δ(u, v) > 0 ?
Answer: f (u, v) < c(u, v)

It is clear that if we find such a path p we can increase the flow on
each edge of that path p by ∆

From what we have so far, we cannot decrease the flow of any edge,
so we still easily can get stuck
But consider an edge e = (u, v) with a flow f (e)

To decrease this flow, we can instead increase the flow of a new edge
(v , u) by up to the amount f (e)
We thus need additional edges and therefore create a new graph Gf

for that

jonasskeppstedt.net Lecture 7 2023 8 / 56



An example

s

v2

v1

t

0/3

0/1

0/2

0/2

0/2

Using BFS to find an s − t path is a good idea
Let the first BFS find the path: p1 = (s, v1, v2, t) with δ = 2.

jonasskeppstedt.net Lecture 7 2023 9 / 56



An example

s

v2

v1

t

2/3

0/1

2/2

0/2

2/2

In the second BFS there is ”no edge” between v2 and t since its flow
cannot be increased
So BFS cannot reach t going through v2

The path p2 = (s, v1, t) with δ = 1 is found.

jonasskeppstedt.net Lecture 7 2023 10 / 56



An example

s

v2

v1

t

3/3

0/1

2/2

1/2

2/2

Now no path can be found!
What to do?

jonasskeppstedt.net Lecture 7 2023 11 / 56



An example

s

v2

v1

t

3/3

0/1

2/2

1/2

2/2

Can we somehow send flow using p3 = (s, v2, v1, t)?

jonasskeppstedt.net Lecture 7 2023 12 / 56



An example

s

v2

v1

t

3/3

1/1

1/2

2/2

2/2

We have in some sense reduced the flow from v1 to v2

Note we only changed the flow along p3 = (s, v2, v1, t)?

jonasskeppstedt.net Lecture 7 2023 13 / 56



An example

s

v2

v1

t

3/3

1/1

1/2

2/2

2/2

This is the maximum flow
We need a simple and systematic approach for this
The ”residual graph” has the same nodes but edges correspond to
where we can increase or decrease flow.
In this graph an original edge is called a forward edge
To reduce flow a backward edge is created

jonasskeppstedt.net Lecture 7 2023 14 / 56



The residual graph

We create a residual graph Gf with the same nodes as G

An edge in G becomes either one or two edges in Gf (one of them
with reversed direction)
Edges in Gf have the capacities:

cf (u, v) =


c(u, v)− f (u, v) if (u, v) ∈ E a forward edge
f (v , u) if (v , u) ∈ E a backward edge
0 otherwise

If c(u, v) = a, f (u, v) = b, and a > b, two edges are created in Gf :
One forward edge (u, v) with capacity a− b since this is how much we
can increase the flow
One backward edge (v , u) with capacity b since this is how much we
can decrease the flow

If f (u, v) = c(u, v) in G then only a backward edge is created in Gf

With f (u, v) = c(u, v) in G we can only decrease the flow on (u, v)

jonasskeppstedt.net Lecture 7 2023 15 / 56



The Ford-Fulkerson algorithm

procedure ford_fulkerson (G , s, t, c)
for each e ∈ E do f (e)← 0
Gf ← create initial residual graph
while (p ← find_path(Gf )) ̸= null do

update Gf according to previous slide

jonasskeppstedt.net Lecture 7 2023 16 / 56



Ford-Fulkerson algorithm or method?

Ford and Fulkerson did not specify how the path should be found
Different options result in different time complexity and therefore it is
sometimes called a method and not an algorithm — such as in
Cormen, Leiserson, Rivest and Stein Introduction to Algorithms — i.e.
CLRS (about 1300 pages)
If breadth first search is used, it is called the Edmond-Karp algorithm
We will use the name Ford-Fulkerson algorithm

jonasskeppstedt.net Lecture 7 2023 17 / 56



Correctness of the Ford-Fulkerson algorithm

We need to show that after updating Gf it still satisfies the two
constraints for being a network flow, the capacity and conservation
constraints
We also need to prove that it actually terminates — maybe it does
not?

jonasskeppstedt.net Lecture 7 2023 18 / 56



Termination of the Ford-Fulkerson algorithm

Will it eventually terminate?
It depends. If we use infinite precision of the representation of the
capacities and flows, and the capacities are carefully selected irrational
numbers, it will not terminate
Showing this is beyond the scope of the course
In practise this is not a problem because real numbers are represented
as floating point numbers which means they really are rational
numbers
If the capacities are integers, then all flows will also be integers and
the algorithm clearly will terminate since it improves the flow at least
by one each iteration (exactly by ∆)
The sum C of capacities out from s is an upper bound on the
maximum flow so it will terminate after at most C iterations

jonasskeppstedt.net Lecture 7 2023 19 / 56



Running time of the Ford-Fulkerson algorithm

As usual, n is the number of nodes and m the number of edges in G

Assume all capacities are integers
Let the sum of capacities out from s be C

We assume m ≥ n to make our analysis simpler

Lemma
The Ford-Fulkerson algorithm can be implemented to run in O(Cm) time

Proof.
At most C iterations to find a path are needed. Finding a path using e.g.
breadth-first search and an adjacency list representation, can be done in
O(n +m) and by our assumption this is equal to O(m). Updating G and
Gf using the path also needs O(m) time

jonasskeppstedt.net Lecture 7 2023 20 / 56



Cuts

Recall a partitioning of V into A and B means
V = A ∪ B, and
A ∩ B = ∅

A cut is a partitioning (A,B) such that s ∈ A and t ∈ B

How are cuts and flows related?

jonasskeppstedt.net Lecture 7 2023 21 / 56



Flows and cuts

The value of a flow is denoted by v(f )

Consider any cut (A,B) with s ∈ A and t ∈ B

f in(s) = 0
v(f ) = f out(s)

So v(f ) = f out(s)− f in(s)

For all nodes u ∈ V − {s, t} we have f out(u) = f in(u)

Thus for all nodes u ∈ A− {s} we have f out(u)− f in(u) = 0
Therefore we can write: v(f ) = f out(s) =

∑
u∈A

f out(u)− f in(u)

See next slide

jonasskeppstedt.net Lecture 7 2023 22 / 56



Edges, flows, and cuts

Again v(f ) =
∑
u∈A

f out(u)− f in(u)

Consider any edge e ∈ E . We have four cases:
1 No end in A: The edge does not affect the flow in A
2 From B to A: the flow will be counted only as −f in(u)
3 From A to B: the flow will be counted only as f out(u)
4 Both ends in A: the flow will be counted both as f out(u) and as f in(u)

above and thus cancels (by different terms in the sum)

Thus: v(f ) =
∑
u∈A

f out(u)− f in(u) =
∑

e out of A
f out(e)−

∑
e in to A

f in(e)

We have just shown:

Lemma
Let f be any s − t flow and (A,B) any s − t cut. Then
v(f ) = f out(A)− f in(A)

jonasskeppstedt.net Lecture 7 2023 23 / 56



Viewing the flow from t

The value of a flow f can also be written v(f ) = f in(t)

This is clear but we can also see it follows from what we just saw
Since the edges out of A are the edges in to B , we have
f out(A) = f in(B)

And since the edges out of B are the edges in to A we have
f out(B) = f in(A)

Therefore v(f ) = f in(B)− f out(B)

Since f out(t) = 0 we have with B = {t} the expected v(f ) = f in(t)

jonasskeppstedt.net Lecture 7 2023 24 / 56



Capacities, flows, and cuts

The capacity of a cut (A,B) is
∑

e out of A
c(e) and it is denoted c(A,B)

We have:

v(f ) = f out(A)− f in(A)
≤ f out(A)
=

∑
e out of A

f (e)

≤
∑

e out of A
c(e)

= c(A,B)

Therefore:

Lemma
The value of any flow is limited by the capacity of any cut: v(f ) ≤ c(A,B)

jonasskeppstedt.net Lecture 7 2023 25 / 56



Exploiting v(f ) ≤ c(A,B)

If we can show that the flow f found by the Ford-Fulkerson algorithm
is equal to the capacity of any cut (A,B) then we know the algorithm
finds the maximum flow since the flow must pass every cut

Lemma
If there is an s − t flow f in G such that there is no s − t path in Gf

then f has the maximum flow in G

See the next slides for the proof

jonasskeppstedt.net Lecture 7 2023 26 / 56



No s-t path in Gf means f (e) = c(e) for e crossing cut

Proof.
Let A be the set of nodes reachable from s in Gf and B = V − A

Since s is reachable from itself, s ∈ A and therefore A is not empty
By assumption, there is no s − t path in Gf and therefore t ∈ B and
B is not empty
Thus (A,B) is both a partition and a cut
For any edge e = (u, v) such that u ∈ A and v ∈ B we will next see
that f (e) = c(e)

Assume in contradiction that f (e) < c(e). Since c(e)− f (e) > 0
there exists a forward edge e in Gf with cf (e) > 0. Since u ∈ A there
is a path from s to v in Gf . Since this is a contradiction, f (e) = c(e)

jonasskeppstedt.net Lecture 7 2023 27 / 56



No s-t path in Gf means no flow back across cut

Proof.
For any edge e = (v , u) such that v ∈ B and u ∈ A we will next see
that f (e) = 0
Assume in contradiction that f (e) > 0. Since f (e) > 0 there exists a
backward edge e ′ = (u, v) with c(e ′) > 0 in Gf . But e ′ makes v
reachable from s in Gf which is a contradiction, and therefore
f (e) = 0
We have showed that all edges e out from A have f (e) = c(e) and all
edges e in to A have f (e) = 0

jonasskeppstedt.net Lecture 7 2023 28 / 56



Proving optimality of the Ford-Fulkerson algorithm

Proof.

v(f ) = f out(A)− f in(A)

=
∑

e out of A
f (e)−

∑
e in to of A

f (e)

=
∑

e out of A
c(e)− 0

= c(A,B)

We have shown that the flow computed by the Ford-Fulkerson
algorithm is equal to a cut, and this means it is optimal

jonasskeppstedt.net Lecture 7 2023 29 / 56



The max-flow min-cut theorem

Recall: the value of any flow is limited by the capacity of any cut:
v(f ) ≤ c(A,B)

Theorem
The maximum flow is equal to the minimum cut

Proof.
Consider any flow f and cut (A,B) such that v(f ) = c(A,B)

Assume in contradiction there exists a flow v ′(f ) > v(f )

This would contradict v(f ′) ≤ c(A,B), and therefore f is maximum
Also assume in contradiction there exists a cut (A′,B ′) with
c(A′,B ′) < c(A,B)

Again this would contradict v(f ) ≤ c ′(A,B), and therefore c is
minimum

jonasskeppstedt.net Lecture 7 2023 30 / 56



Improving the running time

Recall that the flow f is incremented by the smallest value of cf (u, v)
on the s − t path in the residual graph Gf (which we called ∆)
Therefore it is useful to find a path with a high ∆

If C =
∑

e out from s

c(e) is a huge number this is particularly important

In this and many other situations it is not worthwhile to find the
optimal value of a parameter (here ∆) used to speed up an algorithm
We can look for paths with ∆ ≥ C/2i for i = 0, 1, 2, . . .
Another idea is to search for paths with the fewest number of edges
We will instead soon look at a completely different approach:
preflow-push

jonasskeppstedt.net Lecture 7 2023 31 / 56



Bipartite graph matching

a b

cd

e

f

g

i

j

h

In a bipartite graph the nodes can be partitioned in two sets
No edge between nodes in the same set
We seek a matching of blue and red nodes
Blue can be employees and red can be tasks
An edge says somebody can perform a task
We want to find a maximal matching
We want as many tasks performed as possible
Quiz: how can we solve this with Ford-Fulkerson?

jonasskeppstedt.net Lecture 7 2023 32 / 56



The preflow-push maximum network flow algorithm

Variants of the preflow-push maximum network flow algorithm, we will
study next, are the fastest algorithms for finding the maximum
network flow
For brevity we simply call it the preflow-push algorithm
The preflow-push algorithm also uses of the residual graph
Instead of maintaining a valid flow which satisfies both the
conservation constraint and the capacity constraint, it uses a weaker
type of flow which only satisfies the capacity constraint
The weaker flow is called a preflow
At algorithm termination, the preflow will have become a valid flow
In addition, it uses a height function for each node

jonasskeppstedt.net Lecture 7 2023 33 / 56



The preflow

For each edge e ∈ E we have 0 ≤ f (e) ≤ c(e)

Thus the capacity constraint is always satisfied
Instead of the conservation constraint, a node u ̸= s is allowed to have
more incoming flow than outgoing
Thus for each node u ∈ V − {s} we have

∑
e into u

f (e) ≥
∑

e out from u

f (e)

The excess preflow of a node u is

ef (u) =
∑

e into u

f (e)−
∑

e out from u

f (e)

Only s has a negative excess preflow
jonasskeppstedt.net Lecture 7 2023 34 / 56



The height function

There is a height function h : V → N
h(s) = n

h(t) = 0
For s and t the heights cannot change and for other nodes they start
at 0 and can increase
The preflow on an edge (u, v) can only increase if h(u) = h(v) + 1
As we will see, 0 ≤ h(u) ≤ 2n − 1 for u ̸= s

jonasskeppstedt.net Lecture 7 2023 35 / 56



Compatible h and f

Recall: (v ,w) ∈ Ef if the flow on (v ,w) can be increased
The height function h and a preflow f are compatible if the following
conditions are satisfied:

1 h(s) = n and h(t) = 0
2 For all edges (v ,w) ∈ Ef we have h(v) ≤ h(w)+ 1, or h(w) ≥ h(v)− 1

In Gf a simple path p = v1, v2, . . . , vk we have vi at most one higher
than vi+1

Consider a simple path v0, v1, v2, . . . , vk in Gf with v0 = s

h(v0) = n, h(v1) ≥ n − 1, h(v2) ≥ n − 2, ..., h(vk) ≥ n − k .
In Ford-Fulkerson we look for an s − t path
Quiz: can there be an s − t path in Gf here?

jonasskeppstedt.net Lecture 7 2023 36 / 56



Preflow paths in Gf

Lemma
There can be no s − t path in Gf for a preflow f compatible with h

Proof.
Assume in contradiction there is a simple s − t path p in Gf

Let p = v0, v1, v2, . . . , vk , i.e. s = v0 and t = vk

Then h(t) ≥ n− k and since h(t) = 0 it must be the case that k = n,
and that the length of p is n.
This path cannot be simple. A contradiction.

jonasskeppstedt.net Lecture 7 2023 37 / 56



Finding a maximum flow using h

Lemma
If an s − t flow f is compatible with a height function h, then f is a
maximum flow.

Proof.
Recall: if there is an s − t flow f in G such that there is no s − t path
in Gf then f has the a maximum flow in G

Since a flow f also satisfies the conservation constraint, f is a preflow.
Therefore for a flow f compatible with a height function h, there
cannot be an s − t path in Gf (from previous slide)
And no s-t path in Gf means f is maximal

If we can transform a preflow to a flow compatible with a height
function h, we have found a maximal flow
jonasskeppstedt.net Lecture 7 2023 38 / 56



Overview

We start with a preflow f which, as we will see, is not a flow since it
violates the conservation constraint
The preflow f is compatible with the height function h and thus there
is no s − t path in Gf

We will maintain the preflow so it remains compatible with an h

The preflow will be modified until it becomes a flow f which then will
be a maximum flow
Instead of maintaining valid but suboptimal flows which are improved,
we will work towards a valid optimal flow
The height of a node u ∈ V − {s, t} can be at most 2n − 1

jonasskeppstedt.net Lecture 7 2023 39 / 56



Initial preflow and height function

Each edge (s, u) is assigned the initial preflow f (s, u) = c(s, u)

For all other edges f (u, v) = 0
h(s) = n and h(u) = 0 for every node u ̸= s

jonasskeppstedt.net Lecture 7 2023 40 / 56



push

Three conditions must be satisfied for a push:
1 ef (v) > 0
2 h(v) > h(w)
3 (v ,w) ∈ Gf

procedure push (f , h, v ,w)
assert ef (v) > 0 and h(v) > h(w) and (v ,w) ∈ Gf

e ← (v ,w)
if e is a forward edge then

δ ← min(ef (v), c(e)− f (e))
increase f (e) by δ

else
e ← (w , v)
δ ← min(ef (v), f (e))
decrease f (e) by δ

jonasskeppstedt.net Lecture 7 2023 41 / 56



relabel

The purpose of a relabel is to increase the height of a node
It is done when the node has excess flow but nowhere to push it due
to neighbors have too high height

procedure relabel (f , h, v)
assert ef (v) > 0 and for all edges (v ,w) ∈ Ef we have h(w) ≥ h(v)
h(v)← h(v) + 1

jonasskeppstedt.net Lecture 7 2023 42 / 56



The preflow push algorithm

function preflow_push (G , s, t)
h(s)← n
for each node u ̸= s do h(u)← 0
for each edge (s, v) do f (s, v)← c(s, v)
for each edge (u, v) such that u ̸= s do f (u, v)← 0
while there is a node v ̸= t with ef (v) > 0 do

if there is a node w such that h(v) > h(w) and (v ,w) ∈ Gf then
push(h, f , v ,w)

else
relabel(h, f , v)

return f

jonasskeppstedt.net Lecture 7 2023 43 / 56



Correctness of the preflow-push algorithm

Initially the preflow f and height function h are compatible
Each push satisfies the capacity constraints due to how the δ is
calculated
Each relabel increases the height of a node v by one.
This could violate the compatibility of f and h

The relevant condition for compatibility is:
For all edges (v ,w) ∈ Ef we have h(v) ≤ h(w) + 1

If it is the case h(v) > h(w) then a push and not a relabel is
performed
In the other case, h(v) ≤ h(w) the height of v is incremented by one,
and this still satisfies the condition
Therefore after a relabel, f and h remain compatible

jonasskeppstedt.net Lecture 7 2023 44 / 56



Correctness of the preflow-push algorithm

The algorithm terminates when only ef (t) > 0
When this happens the preflow is a flow and as proved earlier, this is a
maximum flow

jonasskeppstedt.net Lecture 7 2023 45 / 56



Paths to s in Gf

Lemma
A node v with ef (v) > 0 has a path in Gf to s

Proof.
Let A be the set of nodes with a path to s in Gf , and B = V − A.
s ∈ A

An edge (v ,w) with v ∈ A and w ∈ B , (v ,w) cannot have flow since
that would create a backward edge (w , v) in Gf so that then w ∈ A,
which contradicts the assumption that w ∈ B

The sum of excess flow of nodes in B is nonnegative (since only s ∈ A
has negative excess flow) and can be written:

0 ≤
∑
w∈B

ef (w) =
∑
w∈B

f in(w)−
∑
w∈B

f out(w)

jonasskeppstedt.net Lecture 7 2023 46 / 56



Paths to s in Gf

Proof.
From the previous slide

0 ≤
∑
w∈B

ef (w) =
∑
w∈B

f in(w)−
∑
w∈B

f out(w)

Considering edges which contribute to the above sums we have
different cases.
For an edge (u, v) with u, v ∈ B these cancel.
For an edge (u, v) with u ∈ A and v ∈ B its flow is 0 as shown on the
previous slide.
Only edges (u, v) with u ∈ B and v ∈ A remain

0 ≤
∑
w∈B

ef (w) = −
∑
w∈B

f out(w)

jonasskeppstedt.net Lecture 7 2023 47 / 56



Paths to s in Gf

Proof.
From the previous slide

0 ≤
∑
w∈B

ef (w) = −
∑
w∈B

f out(w)

But flows are nonnegative which implies they are all zero.
Therefore, all nodes with excess are in the set A and the claim follows.

jonasskeppstedt.net Lecture 7 2023 48 / 56



Maximum height of a node and relabel operations

Lemma
h(u) ≤ 2n − 1

Proof.
A height is increased by a relabel operation, which is applicable to
nodes other than s and t

As was proved by the previous lemma, a node u with ef (u) > 0 has a
simple path p to s in Gf

The length of this path is at most n − 1.
For a compatible h and f the heights on this path decrease at most by
the length of the path, i.e. at most n − 1
Since h(s) = n we have h(u)− h(s) ≤ n − 1 i.e. h(u) ≤ 2n − 1
Since each node can have height at most 2n − 1 and there are n
nodes, the number of relabel operations is less than 2n2

jonasskeppstedt.net Lecture 7 2023 49 / 56



Push operations

A push operation increases the flow along an edge (v ,w)

As much excess flow ef (v) as possible is added to f (v ,w)

There are two limits:
1 At most ef (v) can be used since excess flow can never be negative
2 The capacity of the edge cannot be exceeded

A push at an edge (v ,w) is saturating if the only limit was edge
capacity:

1 (v ,w) is a forward edge and δ = c(v ,w)− f (v ,w), and
2 (v ,w) is a backward edge and δ = f (v ,w).

Note only: we assume v still has excess flow after a saturating push
All other push operations are nonsaturating and were limited by the
amount of excess flow for v
After a nonsaturating push, v no longer has any excess flow: ef (v) = 0

jonasskeppstedt.net Lecture 7 2023 50 / 56



Saturating push operations

Lemma
The number of saturating push operations is less than 2nm.

Proof.
Consider any two nodes v and w such that they have an edge (v ,w)

At a saturating push at the edge (v ,w) we have h(v) = h(w) + 1
Before a new push at the same edge, the height of w must be
increased by 2. Since the height of any node always is less than
2n − 1, any node can increase by 2 at most n − 1 times.
Counting both v and w the number of saturating pushes between
them is less than 2n.
Since there are m edges the total number of saturating pushes is less
than 2nm

jonasskeppstedt.net Lecture 7 2023 51 / 56



Nonsaturating push operations

Lemma
The number of nonsaturating push operations is at most 4n2m.

Proof.
This lemma is proved using the potential function method.
For a given preflow f and height function h we define

Φ(f , h) =
∑

v :ef (v)>0
h(v)

Initially Φ(f , h) = 0 since h(s) > 0 but ef (s) < 0
Φ(f , h) ≥ 0 since no negative heights

jonasskeppstedt.net Lecture 7 2023 52 / 56



Approach to counting nonsaturating push operations

Both relabel and saturating push increase Φ

We can find the max value of Φ
Nonsaturating push decrease Φ

If we find the minimal decrease for each nonsaturating push, we can
calculate an upper bound on their number (max Φ / minimal decrease)

jonasskeppstedt.net Lecture 7 2023 53 / 56



Effects on Φ(f , h) of different operations

Proof.
A relabel increases Φ(f , h) by one and 2n2 relabels so at most +2n2

A saturating push (v ,w) may increase ef (w) from 0 and therefore
increase Φ by at most 2n − 1, and with at most 2nm saturating push
operations, at most +4n2m

After a nonsaturating push Φ is reduced by h(v) since v no longer has
any excess flow
After that Φ is incremented by h(w) if ef (w) = 0 before the push and
not incremented if w already had excess flow
So at least −1 by each nonsaturating push but possibly reduced more
Φ(f , h) ≥ 0 so at most 4n2m nonsaturating pushes

jonasskeppstedt.net Lecture 7 2023 54 / 56



Maximum flow running times

Ford-Fulkerson O(Cm)
Preflow-push O(4mn2)

Both relabel and push take constant time
The theoretical limitation of preflow-push is the number of
nonsaturating push operations
The preflow-push algorithm has O(mn2) nonsaturating push
operations
In a dense graph this is O(n4)

It can be shown that if we always take the node v with ef (v) > 0 and
maximum height h(v) the number of nonsaturating push operations is
at most 4n3

jonasskeppstedt.net Lecture 7 2023 55 / 56



Parallel preflow push

EDAN26 multicore programming in LP1
IBM POWER8 computer with 80 hardware threads
Lots of synchronizations
Two phases
I. Henckel and D. Söderberg: if the sum of capacities in to t is less
than the sum out from s and the graph is undirected, it can be useful
to let s and t switch roles.
Nils Ceberg: the algorithm can terminate when −ef (s) = ef (t) which
is especially useful in a distributed implementation (such as with
Scala/Akka) so no need to maintain a set of nodes with ef (v) > 0
and check that it is empty as in the sequential algorithm
Called Ceberg preflow-push termination (since 24/4 2023)

jonasskeppstedt.net Lecture 7 2023 56 / 56


