
Contents Lecture 6

Weighted interval scheduling
Recursion or iteration
Subset sums and knapsacks
RNA: pairs of molecules: in (1, n), find a t which splits (1, n) optimally
DNA: sequence alignment (lab 5)
Shortest paths in directed graph with negative edge costs:
Bellman-Ford

jonasskeppstedt.net Lecture 6 2023 1 / 30

Weighted interval scheduling

Recall interval scheduling:
Input is a set of requests ri with start si and finish fi times
Two requests conflict if their intervals overlap
We want to select the maximum number of nonconflicting requests
We have seen this can be done with a greedy algorithm which selects
as next request the request with earliest finish time and which does not
conflict with any already selected request

In the weighted interval scheduling problem each request has a value vi

Now we want to maximize the sum of values vi of the selected requests
We will take an approach which at first may seem to be extremely slow

jonasskeppstedt.net Lecture 6 2023 2 / 30

An example set R with values

2 3

8 7 2

6 4

3 4

4 5

Values of requests are shown
Later we will also need the following p(k) = index of rightmost
request that request k does not overlap with

jonasskeppstedt.net Lecture 6 2023 3 / 30

Naming requests

Assume the requests are named such that f (r1) ≤ f (r2) ≤ . . . ≤ f (rn)

We write instead: f (1) ≤ f (2) ≤ . . . ≤ f (n)

Each request has a value v(i)

In interval scheduling we started with r1

Now we will instead consider each request starting with the last, rn
Let T be an optimal schedule and OPT (n) be the sum of the selected
v(i) from requests r1, r2, . . . , rn.
We will make our own optimal schedule S , also with value OPT (n)

jonasskeppstedt.net Lecture 6 2023 4 / 30

Our algorithm

p(n) is the request with maximum f (i) which does not conflict with rn
We need to decide if rn should be selected or not, so we have two
cases:

1 rn is selected: in this case OPT (n) = v(n) + OPT (p(n))
2 rn is not selected: in this case OPT (n) = OPT (n − 1)

To decide which case to use, we evaluate both and see which is best.

function OPT (n)
if n = 0 then

return 0
a← v(n) + OPT (p(n))
b ← OPT (n − 1)
return max(a, b)

This algorithm will recompute OPT (i) a huge number of times
If for all i p(i) = i − 1 then OPT will be called 2n times
Quiz: how can we make this practical instead of hopelessly slow?
jonasskeppstedt.net Lecture 6 2023 5 / 30

Answer: remember already computed values

Note that the value of OPT (i) never changes
So when we have computed OPT (i) we can remember the value
We save it in an array and use it next time OPT (i) is needed
Let m[1],m[2], . . . ,m[n] = −∞ initially

function OPT (n)
if n = 0 then

return 0
else if m[n] = −∞ then

a← v(n) + OPT (p(n))
b ← OPT (n − 1)
m[n]← max(a, b)

return m[n]

Remembering values like this is called memoization
jonasskeppstedt.net Lecture 6 2023 6 / 30

Avoiding recursion

Recursion can simplify life but function calls and returns take time
We can just produce the array m directly

procedure make_table (n)
m[0]← 0
i ← 1
while i ≤ n

a← v(i) +m[p(i)]
b ← m[i − 1]
m[i]← max(a, b)
i ← i + 1

function OPT (n)
return m[n]

jonasskeppstedt.net Lecture 6 2023 7 / 30

Dynamic programming

What we just saw is an example of dynamic programming
We express a solution in terms of solutions to smaller problems
This aspect is similar to divide and conquer
There is a big difference: with dynamic programming we come back to
the same problem multiple times — called overlapping subproblems
With divide and conquer we solve independent smaller problems
The power of dynamic programming comes from avoiding recomputing
already solved subproblems
We find an optimal solution by combining optimal solutions to smaller
problems — called optimal substructure
What is nice with dynamic programming is that it usually is trivial to
prove optimality since we check all solutions.

jonasskeppstedt.net Lecture 6 2023 8 / 30

Origin of dynamic programming

We will see several examples how we should think when using dynamic
programming
This technique was invented in the 1950’s by Richard Bellman
In this context programming is not ”computer programming” but
instead finding an optimal solution, or, program, to achieve typically a
military scheduling problem (as linear programming in mathematics)
Bellman wanted a fancy name so he could continue working on this
with funding from the US department of defence

jonasskeppstedt.net Lecture 6 2023 9 / 30

The subset sum problem

How to bring as much hand luggage as possible on a flight
You are allowed to bring at most W kilograms of hand luggage
You have n items, and an item i has weight wi

Select a subset S of these items so that
T =

∑
i∈S wi ≤W

T is as large as possible

No greedy algorithm is known for this problem
How can we use dynamic programming here?
We need to consider both weights wi and W

If we select item i with weight wi we have W − wi left...

jonasskeppstedt.net Lecture 6 2023 10 / 30

Dynamic programming approach

T =
∑

i∈S wi ≤W , maximize T

Consider an optimal solution which can choose from n items for an
allowable weight W
Either item n is included or it is not. Excluding n may be due to
wn > W or because it is simply better to skip it
For instance if the items have weights {3, 7, 8} and W = 10 it is
better to skip the 8 kg item
If we then select the 7 kg item, we clearly have W − 7 kg left

OPT (n,W) =


0, n = 0
OPT (n − 1,W), wn > W
max(OPT (n − 1,W),
wn + OPT (n − 1,W − wn)), otherwise

jonasskeppstedt.net Lecture 6 2023 11 / 30

Running time

This is not polynomial time
The running time is dependent on the value of W
This is called pseudo-polynomial time
The time complexity is O(nW) which is bad for large nW

jonasskeppstedt.net Lecture 6 2023 12 / 30

The knapsack problem

Similar to the subset sum problem
Now each item has both a weight wi and a value vi
Select a subset S of n items so that∑

wi ≤W
max

∑
vi

The solution is very similar to that of subset sum. Just add the values
instead:

OPT (n,W) =


0, n = 0
OPT (n − 1,W), wn > W
max(OPT (n − 1,W),
vn + OPT (n − 1,W − wn)), otherwise

jonasskeppstedt.net Lecture 6 2023 13 / 30

Solving subset-sum and knapsack problems

These are real world problems
For instance variants include cutting paper in a clever way to reduce
waste
They are examples of so called NP-complete problems
Practical approaches include using

dynamic programming if W or n is sufficiently small
Branch-and-bound — see last lecture
Integer linear programming — see last lecture

jonasskeppstedt.net Lecture 6 2023 14 / 30

RNA

RNA is a string B = b1b2 . . . bn over the alphabet {C ,G ,A,U}
Compared with DNA it is single stranded and due to this there are
secondary structures when it connects to itself according to certain
rules
jonasskeppstedt.net Lecture 6 2023 15 / 30

Secondary structures

U

base

A

C

G

A C A . . .

C G U . . .

pair

A secondary structure is a
matching S = {(bi , bj)}
A pair is shown as two molecules
connected with a dashed edge
A molecule can only pair with at
most one other molecule
A and U can pair, and C and G
can pair

Pairing molecules cannot be too close: (bi , bj) ∈ S ⇒ i < j − 4
No crossing pairs: if i < j < k < l then (bi , bk) and (bj , bl) cannot
both be in S

The problem is to find an S with a maximal number of pairs

jonasskeppstedt.net Lecture 6 2023 16 / 30

An OPT (i , j) function

U. . . C G A G U G A G C . . .

bt bj

Initially called with OPT (1, n)
Then for some arbitrary call we have OPT (i , j)

bj is our rightmost symbol, or molecule.
When bj pairs with some bt the noncrossing condition splits up our
remaining interval in two halves:

bi . . . bt−1
bt+1 . . . bj−1

jonasskeppstedt.net Lecture 6 2023 17 / 30

An OPT (i , j) function

Case 1: i ≥ j − 4: OPT (i , j) = 0
Case 2: There is no available molecule to create a pair for bj :
OPT (i , j) = OPT (i , j − 1)
Case 3: Taking rules used in Cases 1 and 2 into account, a t is
selected which maximizes:
OPT (i , j) = 1 +maxt{OPT (i , t − 1) + OPT (t + 1, j − 1)}
maxt means select the t which maximizes the expression
The time complexity is O(n3), since there are O(n2) intervals and
selecting t is O(n)

jonasskeppstedt.net Lecture 6 2023 18 / 30

String alignment: how similar are two strings?

Comparing "abcd" and "abd" we can say that there is a ’c’ missing
Comparing "abcd" and "abed" we may say:

the ’c’ and ’e’ should have been the same but where not, or
the right string has a missing ’c’ and the left a missing ’e’

We can put a value on these differences:
For a mismatch: there is a cost of αpq with p and q being Unicode
characters or members of some other alphabet such as symbols in DNA
strings
If there is a missing character: δ

For instance, αqw may be 1 since ’q’ and ’w’ are close on a keyboard
and αqk = 3 since they are more distant
For a missing character, we may give it a cost δ = 2 for instance
To say how similar two strings are, we want to find the smallest cost
of ”fixing” the strings so they become identical.

jonasskeppstedt.net Lecture 6 2023 19 / 30

An example of using αpq

Assume αcd = 3
Of course αpp = 0 for every character p
We can compare "abc" and "abd"

Starting from the end we simply note the cost αcd = 3 and move on
to the next pair of characters
"ab" and "ab" remain with no cost

jonasskeppstedt.net Lecture 6 2023 20 / 30

An example of using δ

We again compare "abc" and "abd"
Starting from the end we either see this as

the left string misses a ’d’, or
the right string misses a ’c’

Let us use the first case. It means we ”insert” the ’-’ and get:
"abc-" i.e. there is a gap in the left string
We don’t actually insert any ’-’ in the algorithms we will see soon,
but the dashes are used when printing the output
The gap in the left string is removed together with the ’d’ in the
right string
We then have "abc" and "ab"

jonasskeppstedt.net Lecture 6 2023 21 / 30

X , Y , and OPT (i , j)

X = ”abc” and Y = ”abd”

X = x1x2x3 and Y = y1y2y3

The cost of an optimal alignment of X = x1x2 . . . xi and
Y = y1y2y . . . yj is denoted OPT (i , j)

OPT (i , 0) = iδ since it ignores Y and aligns a string of i symbols
with an empty string — which must be done with iδ

OPT (0, j) = jδ for similar reason
OPT (1, 1) is the minimum of αx1y1 and 2δ
It is clear what happens when we use αx1y1 — we are ”charged” with
the mismatch cost of αx1y1 , which in our example is αaa = 0
In the other case, we use one δ to skip either x1 or y1 and then
another δ to skip the other of x1 and y1

jonasskeppstedt.net Lecture 6 2023 22 / 30

We can view the alignment as a graph

α ab

α bb

α dc

α cd

α ab α ac α ad
δ

δ

α bb

α dbα db

α cb

x1

x2

x3

x4

y1 y2 y3 y4

(m, n)

(0, 0)

Another example: X = ”abdc” and Y = ”bbcd”
A vertical δ eats one symbol from X and leaves Y unchanged
A horizontal δ eats one symbol from Y and leaves X unchanged
OPT (i , j) is equivalent to finding a shortest path from (0, 0) to (i , j)
in this graph, called GXY
jonasskeppstedt.net Lecture 6 2023 23 / 30

An OPT (i , j) function

It is probably clear now how we can write an optimal function to find
the set of α and δ operations with minimum cost
We have two strings X = x1x2 . . . xm and Y = y1y2 . . . yn
Using dynamic programming we write:

Case 1: OPT (i , j) = αxi ,yj + OPT (i − 1, j − 1)
Case 2: OPT (i , j) = δ + OPT (i , j − 1)
Case 3: OPT (i , j) = δ + OPT (i − 1, j)

As usual, we evaluate all cases and select the minimum
We compute a table A[0..m][0..n] using the recurrence for OPT
A is initialized with A[i][0]← iδ for each i , and
A is initialized with A[0][j]← jδ for each j .

jonasskeppstedt.net Lecture 6 2023 24 / 30

Bellman-Ford shortest path algorithm

Consider a directed graph (V ,E) with n nodes and m edges.
Edge costs cvw are allowed to be negative in this algorithm
The sum of costs on the edges in a cycle must be positive (otherwise
no shortest path)
The problem is to find the minimum cost path from s to t

Let OPT (i , v) be the minimum cost of a path from v to t which uses
at most i edges
The initial problem is OPT (n − 1, s) which can be solved by:

OPT (i , v) =


0, v = t
∞, i = 0
min{OPT (i − 1, v),OPT (i − 1,w) + cvw} i ≥ 1

jonasskeppstedt.net Lecture 6 2023 25 / 30

Bellman-Ford shortest path algorithm

Consider a directed graph (V ,E) with n nodes and m edges.
Edge costs cvw are allowed to be negative in this algorithm
The sum of costs on the edges in a cycle must be positive (otherwise
no shortest path)
The problem is to find the minimum cost path from s to t

Let OPT (i , v) be the minimum cost of a path from v to t which uses
at most i edges
The initial problem is OPT (n − 1, s) which can be solved by:

OPT (i , v) =


0, v = t
∞, i = 0
min{OPT (i − 1, v),OPT (i − 1,w) + cvw} i ≥ 1

We can create the table M with O(n2) space from OPT (i , v)

M can be created in time O(n3) for a dense graph
jonasskeppstedt.net Lecture 6 2023 26 / 30

Creating M

int M[n][n] // M[i][j] is distance from j to t using i edges
procedure make_table (G , s, t)

n← |V |
M[0][t]← 0
M[0][v]←∞ for v ∈ V − {t}
i ← 1
while i ≤ n − 1 do

for v ∈ V do
M[i][v]← min{M[i − 1][v],M[i − 1,w] + cvw}

This is a direct translation from the OPT (i , v) recurrence
M[i][v] is the shortest path from v to t with at most i edges
The M table can be used to compute a shortest path from s to t

The Bellman-Ford algorithm is better than this, as we will see next
jonasskeppstedt.net Lecture 6 2023 27 / 30

The Bellman-Ford algorithm

Consider the for-loop again:

for v ∈ V do
M[i][v]← min{M[i − 1][v],M[i − 1,w] + cvw}

It checks each edge (v ,w) to discover a shorter path from v

We do not need a two-dimensional matrix
Each vertex can have two attributes: distance and succ

for e = (v ,w) ∈ E do
if distance(v) > cvw + distance(w) then
begin

distance(v)← cvw + distance(w)
succ(v)← w

end
This gives a running time O(mn) — still O(n3) in a dense graph
jonasskeppstedt.net Lecture 6 2023 28 / 30

An example

s

a

b

t

4

3

1

−2

1

s a b t
0 ∞ ∞ ∞ 0
1 ∞ 1 1 0
2 4 1 −1 0
3 3 1 −1 0

jonasskeppstedt.net Lecture 6 2023 29 / 30

Another example

s a

b

t
3 4

−21

s a b t
0 ∞ ∞ ∞ 0
1 ∞ 4 ∞ 0
2 7 4 5 0
3 7 3 4 0

for e = (v ,w) ∈ E do
if distance(v) > cvw + distance(w) then

print negative cycle detected

jonasskeppstedt.net Lecture 6 2023 30 / 30

