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The divide and conquer algorithm design technique

Suppose you have n items of input and the simplest technique to
process it would be two nested for loops with a Θ(n2) running time

If n is small then this is fine

With divide and conquer we instead aim at:

Divide in linear time the problem into two subproblems with n/2 items
Solve each subproblem
Combine the solutions to the subproblems in linear time into a solution
for the n item problem

The resulting running time becomes Θ(n log n)

We will next study Mergesort
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4 GHz modern CPU

n n n log n n2 n3 1.5n 2n n!
10 2.5 ns 8.3 ns 25.0 ns 250.0 ns 14.4 ns 256.0 ns 907.2 µs
11 2.8 ns 9.5 ns 30.2 ns 332.8 ns 21.6 ns 512.0 ns 10.0 ms
12 3.0 ns 10.8 ns 36.0 ns 432.0 ns 32.4 ns 1.0 µs 119.8 ms
13 3.2 ns 12.0 ns 42.2 ns 549.2 ns 48.7 ns 2.0 µs 1.6 s
14 3.5 ns 13.3 ns 49.0 ns 686.0 ns 73.0 ns 4.1 µs 21.8 s
15 3.8 ns 14.7 ns 56.2 ns 843.8 ns 109.5 ns 8.2 µs 5 min
16 4.0 ns 16.0 ns 64.0 ns 1.0 µs 164.2 ns 16.4 µs 1 hour
17 4.2 ns 17.4 ns 72.2 ns 1.2 µs 246.3 ns 32.8 µs 1.0 days
18 4.5 ns 18.8 ns 81.0 ns 1.5 µs 369.5 ns 65.5 µs 18.5 days
19 4.8 ns 20.2 ns 90.2 ns 1.7 µs 554.2 ns 131.1 µs 352.0 days
20 5.0 ns 21.6 ns 100.0 ns 2.0 µs 831.3 ns 262.1 µs 19 years

30 7.5 ns 36.8 ns 225.0 ns 6.8 µs 47.9 µs 268.4 ms 1015 years

40 10.0 ns 53.2 ns 400.0 ns 16.0 µs 2.8 ms 5 min 1031 years

50 12.5 ns 70.5 ns 625.0 ns 31.2 µs 159.4 ms 3.3 days 1047 years

100 25.0 ns 166.1 ns 2.5 µs 250.0 µs 3 years 1013 years 10141 years

1000 250.0 ns 2.5 µs 250.0 µs 250.0 ms 10159 years 10284 years huge

104 2.5 µs 33.2 µs 25.0 ms 4 min huge huge huge

105 25.0 µs 415.2 µs 2.5 s 2.9 days huge huge huge

106 250.0 µs 5.0 ms 4 min 8 years huge huge huge

107 2.5 ms 58.1 ms 7 hour 104 years huge huge huge

108 25.0 ms 664.4 ms 28.9 days 107 years huge huge huge

109 250.0 ms 7.5 s 8 years 1010 years huge huge huge
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Mergesort

Mergesort is a stable sort algorithm

Running time Θ(n log n)

See mergesort.c e.g. in the book
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Recurrence relation

Swedish differensekvation or rekursionsekvation

A recurrence relation or just recurrence is a set of equalities or
inequalities such as

T (n) =

{
0, n = 1
2T (n/2) + n, n > 1

The value of T (n) is expressed using smaller instances of itself and a
boundary value.

To analyze the running time of a divide and conquer algorithm,
recurrences are very natural

But we want to have an expression for T (n) in closed form

Closed form means an expression only involving functions and
operations from a generally accepted set — i.e. ”common
knowledge”.

Closed form can also be called explicit form

So our next goal is to rewrite T (n) into closed form
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Mergesort recurrence

T (n) = max comparisons to mergesort n items

Mergesort recurrence:

T (n) ≤
{

0, n = 1
T (⌈n/2⌉) + T (⌊n/2⌋) + n, n > 1

This is a simplification as can be seen if compared with the source
code, but it is sufficiently accurate.

We ignore ceil and floor:

T (n) ≤
{

0, n = 1
2T (n/2) + n, n > 1

We also assume n is a power of 2

In the book it is shown that these simplifications do not affect our
running time analysis
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Rewriting a recurrence to closed form

The easiest way to understand what the closed form is, may be to
”expand” or ”unroll” the recurrence and simply see what is happening

Another way is to look at small inputs and try to guess the closed
form

When we have a guess which works for the small inputs, we then
prove by induction that our guess is correct

In both cases we prove our closed form by induction

We will start with expanding T (n)
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Expanding the recurrence and count

T (n) ≤
{

0, n = 1
2T (n/2) + n, n > 1

T (n)

T (n/2)T (n/2)

T (n/4)T (n/4) T (n/4)T (n/4)

T (n/8)T (n/8) T (n/8)T (n/8) T (n/8)T (n/8) T (n/8)T (n/8)

.

.

.

n

2(n/2)

4(n/4)

8(n/8)

.

.

.

Assume n is power of 2

log2 n levels

n comparisons per level

In total n log n comparisons

T (n) = n log n
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Proof by induction

Lemma

The recurrence

T (n) =

{
0, n = 1
2T (n/2) + n, n > 1

has the closed form T (n) = n log2 n.

Proof.

Recall log ab = log a+ log b, so log2 2n = log2 n+ log2 2 = log2 n+ 1,
and log2 n = log2 2n − 1

Induction on n.

Base case: n = 1: T (1) = 1 log2 1 = 0

Induction hypothesis: assume T (n) = n log2 n

T (2n) = 2T (n) + 2n = 2n log2 n + 2n = 2n(log2 n + 1) =
2n(log2 2n − 1 + 1) = 2n log 2n
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Remark about previous proof

Normally we assume S(i) is true and prove S(i + 1)

On previous slide we did not increment by one but rather doubled our
variable

We could have stated the lemma in terms of S(i) and let n = 2i

Then we use induction on i and assume S(i) and prove S(i + 1)
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Looking at small inputs

T (n) ≤
{

0, n = 1
2T (n/2) + n, n > 1

Let us try out some small values:

n 1 2 4 8 16 32 64
T (n) 0 2 8 24 64 160 384

Can we identify a pattern?

n 1 2 4 8 16 32 64
T (n) 0 2 8 24 64 160 384

T (n)/n 0 1 2 3 4 5 6

log2 n is incremented by one when n is doubled: log2 2n = 1 + log2 n

So T (n) = n log2 n is tempting to try to prove by induction, which we
already know is true
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The master theorem (MSc thesis by Dorothea Haken)

There is a nice formula for finding T (n) for many recursive algorithms:

T (1) = 1
T (n) = aT (n/b) + ns .

There are three closed form solutions (for details, see the book):

T (n) =


O(ns) if s > logb a

O(ns log n) if s = logb a

O(nlogb a) if s < logb a.

T (n) = 2T (n/2) + n. With a = b = 2 and s = 1, we have
logb a = log2 2 = 1 = s, so T (n) = O(n log n).
T (n) = 2T (n/2) +

√
n. With a = b = 2 and s = 0.5, we have

logb a = log2 2 = 1 > s, so T (n) = O(n).
T (n) = 4T (n/3) + n2. We have

logb a = log3 4 = log10 4
log10 3

= 1.26 < s = 2, so T (n) = O(n2).

jonasskeppstedt.net Lecture 5 2023 12 / 60



Finding people with similar tastes

Consider a category such as text editor, programming language,
preferred tab width, or the 22 Mozart operas

To compare how similar tastes within a category three people have,
they can rank a list of say 5 operas A-E
Tintin: A D C E B
Captain Haddock: A C B D E
Bianca Castafiolen: A B D C E

All agree opera A is best

Who have most similar tastes?
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Inversions

Tintin: A D C E B
Captain Haddock: A C B D E
Bianca Castafiolen: A B D C E

We have 5 positions in each list

Start with Tintin’s list and label each item 1, 2, . . . , 5:
Tintin: A D C E B
Tintin: 1 2 3 4 5

Then we put these labels according to Captain Haddock’s ranking:
Captain Haddock: 1 3 5 2 4

a1 a2 a3 a4 a5

i and j are inverted if i < j and ai > aj

Inversions: (3,2), (5,2), and (5,4)

The fewer inversions, the more similar tastes
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Counting inversions

for (c = i = 0; i < n; i += 1)

for (j = i+1; j < n; j += 1)

if (a[i] > a[j])

c += 1;

printf("%d inversions\n", c);

Running time is O(n2)

How can we use divide and conquer to achieve O(n log n)?
1 3 5 2 4

Count inversions in left part

Count inversions in right part

Somehow combine these parts and add number of inversions...???
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What can we do to simplify the problem?

1 3 5 2 4

Assume you know there are no inversions in the left part and two in
the right part

It is OK to ”destroy” the array, such as sorting it, if that helps...

If modifying the array is forbidden, we can always make a copy and
work with the copy instead

Copying the array is fine since that is faster than O(n log n)

Copying the array is O(n) but memory allocation can be costly so
don’t do it too much

For Mergesort, it is non-trivial to not use a second array
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Sorting the array

By subarray is meant the part our recursive subproblem is going to
work with

Sorting the subarray after counting the inversions may help

1 3 5 2 4

After having counted in the subarrays we have: 1 3 2 4 5

Combining two sorted parts can be done in linear time as in

Mergesort
3 2 4 5 1
3 4 5 1 2

The 2 was inverted with each remaining in left part — only the 3 in
this example so one inversion is counted when the parts are combined

4 5 1 2 3
5 1 2 3 4

1 2 3 4 5

In total 3 inversions
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Implementing the n log n algorithm

As always: first make a simple reference implementation that can be
used to verify the correctness of a faster implementation

In this case the n2 algorithm is ideal if used with small inputs
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Closest points in a plane

This field is called computational geometry

Consider n points (xi , yi ) in a plane

We want to find which points are closest

Comparing all points with each other in an n2 algorithm is simple

But comparing points ”obviously” far from each other is a waste

How can divide and conquer be used to find an n log n algorithm?

We cut the plane in two halves and find closest points in each half

We have then three categories of point pairs which can be closest:
1 Point pairs in the left half
2 Point pairs in the right half
3 Point pairs with one point in the left and the other in the right half

Can we find close points from the last category in linear time???
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An example

δ δ

146

11
3

We cut the plane in two halves with 10 points in each half

We compute the nearest points in each half

δ = min(146, 113)

We only have to consider points within δ from the vertical line

If there are none, then δ is the answer

If there are, then they must be checked with points from the other
side which also must be within δ from the vertical line, of course
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Combining

p

xp

δ δ

146

11
3

The point p on the vertical line xp belongs to the left half but there
could also be points in the right half with the same x-coordinate

Let the set S consist of all points with a distance within δ from the
line xp, (5 points here)

Clearly it is sufficient to compare only points q and r from S such
that p comes from the left half and q from the right part
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Combining

xp

δ δ

146

11
3

Each dashed box has a side of δ/2

How many points can each such box contain at most?

The diagonal of a dashed box is
√
2× δ/2 < δ

With two points in a dashed box, their distance would be less than δ
so at most one point
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Combining

xp

δ δ

146

11
3

With at most one point per dashed box, we can do as follows.

Let S be sorted on y-coordinates

Each point p ∈ S is inspected at a time.

The distances from p to each of the next six points on the other side
in S (according to y-coordinates) are checked to see if it less than the
shortest distance found so far
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Algorithm outline

What do we need for this?

Input is a set of n points P

We produce two sorted arrays Px and Py before starting our recursion

We divide Px into two arrays Lx and Rx (left and right)

We divide Py into two arrays Ly and Ry

We solve the two subproblems (Lx , Ly , n/2) and (Rx ,Ry , n/2)

Then we compute δ as the minimum from these subproblems

Then we create the set Sy from Py

All dividing and combining can be done in linear time, so we solve
this in Θ(n log n) time
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A set of points P and its convex hull CH(P)

-2 -1 0 1 2 3 4 5 6
0

1

2

3

4

5

The convex hull should have a minimal number of points.

For example a point at (2, 1) would not be in the convex hull.
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A convex and a non-convex region

pi

pj

pi

pj
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Clockwise order of CH(P)

p0

p3

p4

p5

p1

p2

-2 -1 0 1 2 3 4 5 6
0

1

2

3

4

5

Not necessary to select the rightmost point as p0 in general

In Lab 4 we will do that however, since that is what the
divide-and-conquer algorithm does.
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Three algorithms for computing the convex hull

Jarvis march, or gift wrapping

Graham scan

Preparata-Hong

For Lab 4 you should implement Graham scan and Preparata-Hong

Start with Graham scan and use it to check PH.

Always a good approach to implement a non-trivial algorithm: start
with something simpler and use the simple (and hopefully correct) as
a reference

Then run billions of tests

Lab 4: ./check solution.sh ./a.out for each of GS and PH is
sufficient though
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Jarvis march

p7

p0

p3

p5

p6

p8

p9

p4

p1

p2

-2 -1 0 1 2 3 4 5 6
0

1

2

3

4

5

Start at any point known to be in CH such as the leftmost: p0, i ← 0

Select the next point pj as the one through which we only make left
turns when going from pi through pj to pk for every other point pk

Right turn with p0, p2, p1 so don’t take p2 next

Always left turn with p0, p1, pk so take p1 as next

Continue until back at p0
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Review of vector products

Also called cross product (vektorprodukt or kryssprodukt)

Given two vectors in R3, u and v, the vector product, w = u× v is a
vector with the following properties:

1 w is perpendicular to both u and v, i.e., the dot products w · u and
w · v are both zero,

2 |w| = |u||v| sin θ where θ is the angle between u and v,
3 u, v and w are positively oriented, i.e. according to the right-hand rule.

u = u1e1 + u2e2 + u3e3 and v = v1e1 + v2e2 + v3e3

w = (u1e1 + u2e2 + u3e3)× (v1e1 + v2e2 + v3e3) = (u2v3 −
u3v2)e1 + (u3v1 − u1v3)e2 + (u1v2 − u2v1)e3 = w1e1 + w2e2 + w3e3.

Since our points are in R2, their e3 coordinates are zero and so w1

and w2 also become zero

w = w3e3 = (u1v2 − u2v1)e3.
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Left or right direction at ps determined with w = u× v

w3 > 0 pr

ps
pt

v
u

pr

ps

pt

w3 < 0

u v

To find the direction from pr through ps to pt we let

u = −−→prps ,
v = −−→prpt , and
w = u× v. If w3 > 0 it is a left turn, if w3 < 0 it is a right turn, and
otherwise the three points are on the same line.
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Jarvis march

function jarvis march (p)
begin

n ← |p|
i ← index of point in p with minimum x coordinate
swap p0 and pi
r ← 0
while (1) {

s ← (r + 1) mod n
for t ← 0; t < n; t ← t + 1 {

if s = t then
continue

u = −−→pr ps
v = −−→pr pt
w = u× v
(w1,w2,w3)← w
// right turn or ps between pr and pt on a line?

if w3 < 0 or w3 = 0 and |v|2 > |u|2 then
s ← t

}
r ← r + 1
if s = 0 then

break
swap ps and pr

}
return r // number of points in CH(P)

end
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Time complexity of Jarvis march

Time complexity is O(n · h) with h points in the convex hull.

We increment r once for every point in the convex hull.

Since some convex regions consist of all their points, the worst case is
O(n2)

For example a regular polygon (”circle” but not exactly round...)

Regelbunden polygon

We will next look at Graham scan which is O(n log n) due to all
points must be sorted first
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Graham scan

First a point p0 with minimal y -coordinate is made a new origo.

One can make an angle between the x-axis, p0, and every other point

The points are sorted by these angles θi , 1 ≤ i ≤ pn−1

p0

p1

p2

p3

p4

p5

p6

p7

p8

p9

θ1 θ2 θ3

-2 -1 0 1 2 3 4 5 6

0

1

2

3

4

5
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Including points in the convex hull

The points p0, p1, p2 are pushed to a stack with p2 at the top

Call the point at the top of the stack ps (initially p2)

Call the point just below the top of the stack pr (initially p1)

Call the ”next point” pt (initially p3)

p0

p1

p2

p3

p4

p5

p6

p7

p8

p9

θ1 θ2 θ3

-2 -1 0 1 2 3 4 5 6

0

1

2

3

4

5
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Excluding points from the convex hull

Consider going from pr , through ps and to pt initially p1, p2, p3

If the direction through ps is straight or right, then ps is not in CH

In that case it is popped from the stack

p0

p1

p2

p3

p4

p5

p6

p7

p8

p9

θ1 θ2 θ3

-2 -1 0 1 2 3 4 5 6

0

1

2

3

4

5
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Excluding points from the convex hull

Consider going from pr , through ps and to pt
After p2 was popped, p1 becomes new ps and p0 new pr
Any more non-left turns results in a pop

Then pt is pushed so pr = p1 and ps = p3

p0

p1

p2

p3

p4

p5

p6

p7

p8

p9

θ1 θ2 θ3

-2 -1 0 1 2 3 4 5 6

0

1

2

3

4

5
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Excluding points from the convex hull

pr = p1 and ps = p3
pt = p4 with a left turn from pr and ps so p4 is pushed

After that p5 will cause p4 being popped

In the end, all points remaining on the stack are the convex hull

p0

p1

p2

p3

p4

p5

p6

p7

p8

p9

θ1 θ2 θ3

-2 -1 0 1 2 3 4 5 6

0

1

2

3

4

5
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Relative sizes of θ is sufficient

Compare angles with u× v

If θu = θv then how should they be ordered?

We want the point nearest origo on the stack first so the other can
pop it

θu

θv u

v

p0
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Output for Lab 4

The check solution.sh script expect output as in (2)

The reason is that Preparata-Hong produces that output.

p0

p1

p2
p3

p4
(1) (2)

p1

p0

p4
p3

p2
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Graham scan

function graham scan (p)
begin

// p is an array with n points.
n ← |p|
i ← index of point in p with minimum y coordinate
swap p0 and pi
t = p0
subtract the coordinates of t from every point
sort elements 1..n − 1 of p by θi
h ← new stack
push (h, p0)
push (h, p1)
push (h, p2)
for (k ← 3; k < n; k = k + 1) {

// ps is the top of h
// pr is below ps on h
pt ← pk
while direction (next top (h), top (h), pt ) is not left

pop (h)
push (h, pt )

}
add the coordinates of t to every point
n ← number of points on the stack
copy the points in h to p, and deallocate h
return n

end
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Preparata-Hong output

The sequence that is the convex hull

The number of points in the convex hull

The index of the leftmost point

p0

p1

p2

p0
p1

p2
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Preparata-Hong algorithm

It relies on lines expressed as y = k · x +m

Sort all points n in order of increasing y -coordinates

With n ≤ 3 solve directly and return

Divide in two approximately equal parts A and B

All points in A must have a y -coordinate lower than any in B

Find CH(A) and CH(B)

Merge CH(A) and CH(B) which is simplified by knowing that they
are in clockwise order
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α and β

na points in lower convex hull

nb points in upper convex hull

The lower points are called p0..pna−1

The upper points are called q0..qnb−1

The inner points from A and B are not needed for anything

y = k · x +m

We need to compute the k-values from p0 to p1, from p1 to p2 etc

The k value of the line segment from pi to pi+1 mod na is called αi

The k value of the line segment from qi to qi+1 mod nb is called βi

For merging CH(A) and CH(B) we start with computing α and β
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Selecting points on right side: q0, q1 and p1, p2, p3, p4

We want to find first i∗R = p1 and last j∗R = q1 and skip q2, ... and p0

β0

RBq0

q1

q2q3

LB
B

ALA

RA

p0

p1
p2p3

α0

α1

γ0,0

γ1,0

γ1,1
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Exclude p0

First compare α0 and γ0,0. Since α0 > γ0,0 we exclude p0

β0

RBq0

q1

q2q3

LB
B

ALA

RA

p0

p1
p2p3

α0

α1

γ0,0

γ1,0

γ1,1
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Include q1

Compare α1 and γ1,0. Since α1 ≤ γ1,0 we check β0 and include q1.

β0

RBq0

q1

q2q3

LB
B

ALA

RA

p0

p1
p2p3

α0

α1

γ0,0

γ1,0

γ1,1
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We are done at right side

Since both α1 and β1 are less than γ1,1 we have found i∗R and j∗R

β0

RBq0

q1

q2q3

LB
B

ALA

RA

p0

p1
p2p3

α0

α1

γ0,0

γ1,0

γ1,1
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Next we do the same on the left side

On the left side we want to find i∗L and j∗L
Then we add lower points from i∗R up to and including i∗L to the output

And add upper points from j∗L up to and including j∗R to the output

Does it matter which of αi and βj we first compare with γi ,j?
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Wrong order on right side: comparing βj before αi

q0
q1

p0

p1
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Wrong order on left side: comparing αi before βj

p0
p1LA = p2

p3

q0q1

q2
q3
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Four cases

Case (1)

LA < LB and RA < RB

Case (3)

LA < LB and RA ≥ RB

Case (2)

LA ≥ LB and RA < RB

Case (4)

LA ≥ LB and RA ≥ RB
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Some hints

function k (p, q)
begin

return (q.y − p.y)/(q.x − p.x)
end

function compute k (p)
begin

n ← |p|
α←new double [n]
for i = 0; i < n; i ← i + 1

α[i ]← k(p[i ], p[i + 1 mod n])
return α

end

function add (k, from , to , q, p, n)
begin

j ← from
do {

q[k]← p[j]
k ← k + 1
i ← j
j ← (j + 1) mod n

} while i ̸= to
return k

end
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Avoid middle point when three points are on a line

function include points (j , q, p, n)
begin

for k ← 0; k < n; k ← k + 1 {
u ← (n + k + j − 1) mod n // point before v
v ← (n + k + j − 0) mod n // point that may be excluded
w ← (n + k + j + 1) mod n // point after v

if not line segment (q[v], q[u], q[w]) {
p[i ]← q[v ]
i ← i + 1

}
}
return i

end
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Case 1

function case 1 (a, na , b, nb , α, β, iL, jL)
i ← 0
j ← 0
while (1) {

γi,j ← k(ai , bj )
if (αi > γi,j or αi == −∞) and i < iL then

i ← i + 1
else if (βj > γi,j or βj == −∞) and j < jL then

j ← j + 1
else

break
}
i∗R ← i
j∗R ← j
i ← iL
j ← jL
while (1) {

γi,j ← k(ai , bj )
if βj > γi,j and j ̸= 0 then

j ← (j + 1) mod nb
else if αi > γi,j and i ̸= 0 then

i ← (i + 1) mod na
else

break
}
i∗L ← i
j∗L ← j
return (i∗R , i∗L , j∗L , j∗R )
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Case 2

function case 2 (a, na , b, nb , α, β, iL, jL)
i ← 0
j ← 0
while (1) {

γi,j ← k(ai , bj )
if (αi > γi,j or αi == −∞) and i < iL then

i ← i + 1
else if (βj > γi,j or βj == −∞) and j < jL then

j ← j + 1
else

break
}
i∗R ← i
j∗R ← j
i ← iL
j ← jL
while (1) {

γi,j ← k(ai , bj )
ak ← (na + i − 1) mod na
bk ← (nb + j − 1) mod nb
if isfinite(αak

) and αak
< γi,j and i ̸= 0 then

i ← ak
else if βbk

< γi,j and j ̸= 0 then

j ← bk
else

break
}
i∗L ← i
j∗L ← j
return (i∗R , i∗L , j∗L , j∗R )
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Case 3

function case 3 (a, na , b, nb , α, β, iL, jL)
i ← 0
j ← 0
while (1) {

γi,j ← k(ai , bj )
ak ← (na + i − 1) mod na
bk ← (nb + j − 1) mod nb
if βbk

< γi,j and j < jL then

j ← bk
else if αak

< γi,j and i ̸= iL then
i ← ak

else
break

}
i∗R ← i
j∗R ← j
i ← iL
j ← jL
while (1) {

γi,j ← k(ai , bj )
if βj > γi,j and j ̸= 0 then

j ← (j + 1) mod nb
else if αi > γi,j and i ̸= 0 then

i ← (i + 1) mod na
else

break
}
i∗L ← i
j∗L ← j
return (i∗R , i∗L , j∗L , j∗R )
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Case 4

function case 4 (a, na , b, nb , α, β, iL, jL)
i ← 0
j ← 0
while (1) {

γi,j ← k(ai , bj )
ak ← (na + i − 1) mod na
bk ← (nb + j − 1) mod nb
if βbk

< γi,j and j ̸= jL then

j ← bk
else if αak

< γi,j and i ̸= iL then
i ← ak

else
break

}
i∗R ← i
j∗R ← j
i ← iL
j ← jL
while (1) {

γi,j ← k(ai , bj )
ak ← (na + i − 1) mod na
bk ← (nb + j − 1) mod nb
if isfinite(αak

) and αak
< γi,j and i ̸= 0 then

i ← ak
else if isfinite(βbk

) and βbk
< γi,j and j ̸= 0 then

j ← bk
else

break
}
i∗L ← i
j∗L ← j
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More hints

You don’t need to split the code into four cases if you don’t want to
(simpler though, in my opinion, and likely faster)

If you fail a test case it is a good idea to print the points in Matlab or
to a pdf-file

Implementing the Preparata-Hong algorithm is harder than Graham
scan so why would you want to do it?

An advantage of divide-and-conquer algorithms is that they are easier
to parallelize

Compute CH(A) and CH(B) by different threads at the same time

If you have e.g. 80 hardware threads, you can easily let 64 work in
parallel

The machine power.cs.lth.se has just 80 hardware threads
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Is p on a line segment between q and r in a plane?

We want to know if p is between two points on a line in which case p
should not be in the convex hull

u = qp

v = qr

w = u× v.

w = w3e3 = (u1v2 − u2v1)e3 due to a plane.

If w3 ̸= 0 then p is not on the line through q and r .

Assume instead w3 = 0 so the points are colinear.

Is p between q and r?

Compute the dot products v · v and u · v
If u · v < 0 then u and v have opposite directions so p is not between

Otherwise if u · v > v · v then p is also not between them
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