- The divide and conquer algorithm design technique
- Analysing a divide and conquer algorithm: Mergesort
- Counting inversions
- Closest pair of points
- Convex hull

- Suppose you have *n* items of input and the simplest technique to process it would be two nested for loops with a $\Theta(n^2)$ running time
- If *n* is small then this is fine
- With divide and conquer we instead aim at:
 - Divide in linear time the problem into two subproblems with n/2 items
 - Solve each subproblem
 - Combine the solutions to the subproblems in linear time into a solution for the *n* item problem
- The resulting running time becomes $\Theta(n \log n)$
- We will next study Mergesort

4 GHz modern CPU

			n ²	n ³	1 = 0	0,0	
n	n	n log n			1.5 ⁿ	2 ⁿ	n!
10	2.5 ns	8.3 ns	25.0 ns	250.0 ns	14.4 ns	256.0 ns	907.2 μ s
11	2.8 ns	9.5 ns	30.2 ns	332.8 ns	21.6 ns	512.0 ns	10.0 ms
12	3.0 ns	10.8 ns	36.0 ns	432.0 ns	32.4 ns	$1.0~\mu$ s	119.8 ms
13	3.2 ns	12.0 ns	42.2 ns	549.2 ns	48.7 ns	2.0 μ s	1.6 s
14	3.5 ns	13.3 ns	49.0 ns	686.0 ns	73.0 ns	4.1 μ s	21.8 s
15	3.8 ns	14.7 ns	56.2 ns	843.8 ns	109.5 ns	8.2 μ s	5 min
16	4.0 ns	16.0 ns	64.0 ns	$1.0~\mu$ s	164.2 ns	16.4 μ s	1 hour
17	4.2 ns	17.4 ns	72.2 ns	$1.2~\mu$ s	246.3 ns	32.8 μ s	1.0 days
18	4.5 ns	18.8 ns	81.0 ns	$1.5~\mu s$	369.5 ns	65.5 μ s	18.5 days
19	4.8 ns	20.2 ns	90.2 ns	$1.7~\mu s$	554.2 ns	131.1 μ s	352.0 days
20	5.0 ns	21.6 ns	100.0 ns	$2.0~\mu s$	831.3 ns	262.1 μ s	19 years
30	7.5 ns	36.8 ns	225.0 ns	6.8 μ s	47.9 μ s	268.4 ms	10^{15} years
40	10.0 ns	53.2 ns	400.0 ns	16.0 μ s	2.8 ms	5 min	10^{31} years
50	12.5 ns	70.5 ns	625.0 ns	31.2 μ s	159.4 ms	3.3 days	10 ⁴⁷ years
100	25.0 ns	166.1 ns	$2.5~\mu s$	250.0 μ s	3 years	10 ¹³ years	10^{141} years
1000	250.0 ns	$2.5~\mu s$	250.0 μ s	250.0 ms	10 ¹⁵⁹ years	10 ²⁸⁴ years	huge
10 ⁴	$2.5~\mu$ s	33.2 μ s	25.0 ms	4 min	huge	huge	huge
10 ⁵	25.0 μ s	415.2 μ s	2.5 s	2.9 days	huge	huge	huge
10 ⁶	250.0 μ s	5.0 ms	4 min	8 years	huge	huge	huge
10^{7}	2.5 ms	58.1 ms	7 hour	10 ⁴ years	huge	huge	huge
10^{8}	25.0 ms	664.4 ms	28.9 days	10 ⁷ years	huge	huge	huge
10 ⁹	250.0 ms	7.5 s	8 years	10^{10} years	huge	huge	huge

- Mergesort is a stable sort algorithm
- Running time $\Theta(n \log n)$
- See mergesort.c e.g. in the book

Recurrence relation

- Swedish differensekvation or rekursionsekvation
- A recurrence relation or just recurrence is a set of equalities or inequalities such as

$$T(n) = \begin{cases} 0, & n = 1 \\ 2T(n/2) + n, & n > 1 \end{cases}$$

- The value of T(n) is expressed using smaller instances of itself and a boundary value.
- To analyze the running time of a divide and conquer algorithm, recurrences are very natural
- But we want to have an expression for T(n) in **closed form**
- Closed form means an expression only involving functions and operations from a generally accepted set — i.e. "common knowledge".
- Closed form can also be called **explicit form**
- So our next goal is to rewrite T(n) into closed form

Mergesort recurrence

- $T(n) = \max$ comparisons to mergesort *n* items
- Mergesort recurrence:

$$T(n) \leq \begin{cases} 0, & n = 1 \\ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + n, & n > 1 \end{cases}$$

- This is a simplification as can be seen if compared with the source code, but it is sufficiently accurate.
- We ignore ceil and floor:

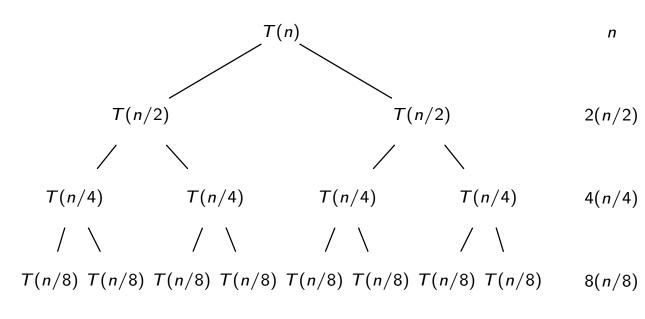
$$T(n) \leq \begin{cases} 0, & n = 1 \\ 2T(n/2) + n, & n > 1 \end{cases}$$

- We also assume *n* is a power of 2
- In the book it is shown that these simplifications do not affect our running time analysis

- The easiest way to understand what the closed form is, may be to "expand" or "unroll" the recurrence and simply see what is happening
- Another way is to look at small inputs and try to guess the closed form
- When we have a guess which works for the small inputs, we then prove by induction that our guess is correct
- In both cases we prove our closed form by induction
- We will start with expanding T(n)

Expanding the recurrence and count

$$T(n) \leq \left\{ egin{array}{cc} 0, & n=1\ 2T(n/2)+n, & n>1 \end{array}
ight.$$



- Assume *n* is power of 2
 - $\log_2 n$ levels
 - *n* comparisons per level
 - In total n log n comparisons
 - $T(n) = n \log n$

Proof by induction

Lemma

The recurrence

$$T(n) = \begin{cases} 0, & n = 1 \\ 2T(n/2) + n, & n > 1 \end{cases}$$

has the closed form $T(n) = n \log_2 n$.

Proof.

- Recall $\log ab = \log a + \log b$, so $\log_2 2n = \log_2 n + \log_2 2 = \log_2 n + 1$, and $\log_2 n = \log_2 2n - 1$
- Induction on n.
- Base case: n = 1: $T(1) = 1 \log_2 1 = 0$
- Induction hypothesis: assume $T(n) = n \log_2 n$
- $T(2n) = 2T(n) + 2n = 2n \log_2 n + 2n = 2n(\log_2 n + 1) = 2n(\log_2 2n 1 + 1) = 2n \log 2n$

- Normally we assume S(i) is true and prove S(i+1)
- On previous slide we did not increment by one but rather doubled our variable
- We could have stated the lemma in terms of S(i) and let $n = 2^i$
- Then we use induction on i and assume S(i) and prove S(i+1)

Looking at small inputs

$$T(n) \leq \left\{ egin{array}{cc} 0, & n=1\ 2T(n/2)+n, & n>1 \end{array}
ight.$$

• Let us try out some small values:

п	1	2	4	8	16	32	64
T(n)	0	2	8	24	64	160	384

• Can we identify a pattern?

n	1	2	4	8	16	32	64
T(n)	0	2	8	24	64	160	384
T(n)/n	0	1	2	3	4	5	6

- $\log_2 n$ is incremented by one when *n* is doubled: $\log_2 2n = 1 + \log_2 n$
- So $T(n) = n \log_2 n$ is tempting to try to prove by induction, which we already know is true

jonasskeppstedt.net

The master theorem (MSc thesis by Dorothea Haken)

• There is a nice formula for finding T(n) for many recursive algorithms:

$$T(1) = 1$$

$$T(n) = aT(n/b) + n^{s}.$$

• There are three closed form solutions (for details, see the book):

$$T(n) = \begin{cases} O(n^{s}) & \text{if } s > \log_{b} a \\ O(n^{s} \log n) & \text{if } s = \log_{b} a \\ O(n^{\log_{b} a}) & \text{if } s < \log_{b} a. \end{cases}$$

- T(n) = 2T(n/2) + n. With a = b = 2 and s = 1, we have log_b a = log₂ 2 = 1 = s, so T(n) = O(n log n).
- $T(n) = 2T(n/2) + \sqrt{n}$. With a = b = 2 and s = 0.5, we have $\log_b a = \log_2 2 = 1 > s$, so T(n) = O(n).

•
$$T(n) = 4T(n/3) + n^2$$
. We have
 $\log_b a = \log_3 4 = \frac{\log_{10} 4}{\log_{10} 3} = 1.26 < s = 2$, so $T(n) = O(n^2)$.

- Consider a category such as text editor, programming language, preferred tab width, or the 22 Mozart operas
- To compare how similar tastes within a category three people have, they can rank a list of say 5 operas A-E Tintin:
 A D C E B
 Captain Haddock:
 A C B D E
 Bianca Castafiolen:
 A B D C E
- All agree opera A is best
- Who have most similar tastes?

Tintin: A D C E B

- Captain Haddock: A C B D E Bianca Castafiolen: A B D C E
- We have 5 positions in each list
- Start with Tintin's list and label each item 1, 2, ..., 5: Tintin: A D C E B
 Tintin: 1 2 3 4 5
- Then we put these labels according to Captain Haddock's ranking: Captain Haddock: 1 3 5 2 4

 a_1 a_2 a_3 a_4 a_5

- *i* and *j* are **inverted** if i < j and $a_i > a_j$
- Inversions: (3,2), (5,2), and (5,4)
- The fewer inversions, the more similar tastes

Counting inversions

printf("%d inversions\n", c);

- Running time is $O(n^2)$
- How can we use divide and conquer to achieve O(n log n)?
 1 3 | 5 2 4
- Count inversions in left part
- Count inversions in right part
- Somehow combine these parts and add number of inversions...???

• 1 3 5 2 4

- Assume you know there are no inversions in the left part and two in the right part
- It is OK to "destroy" the array, such as sorting it, if that helps...
- If modifying the array is forbidden, we can always make a copy and work with the copy instead
- Copying the array is fine since that is faster than $O(n \log n)$
- Copying the array is O(n) but memory allocation can be costly so don't do it too much
- For Mergesort, it is non-trivial to not use a second array

Sorting the array

- By subarray is meant the part our recursive subproblem is going to work with
- Sorting the subarray after counting the inversions may help
- 1 3 5 2 4
- After having counted in the subarrays we have: $1 \quad 3 \mid 2 \quad 4 \quad 5$
- Combining two sorted parts can be done in linear time as in
 Mergesort
 3
 4
 5
 1
 2

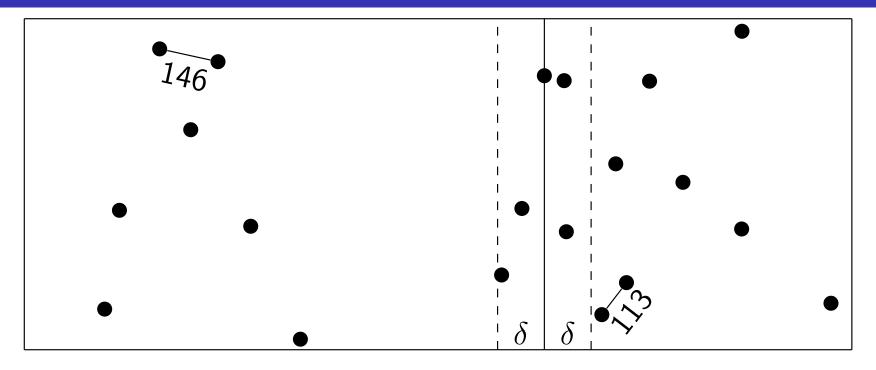
The 2 was inverted with each remaining in left part — only the 3 in this example so one inversion is counted when the parts are combined $4 5 \parallel 1 2 3$

• In total 3 inversions

- As always: first make a simple reference implementation that can be used to verify the correctness of a faster implementation
- In this case the n^2 algorithm is ideal if used with small inputs

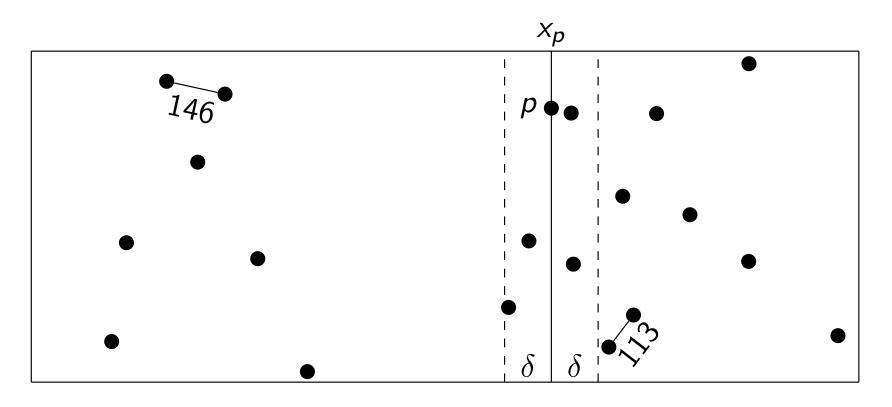
- This field is called **computational geometry**
- Consider *n* points (x_i, y_i) in a plane
- We want to find which points are closest
- Comparing all points with each other in an n^2 algorithm is simple
- But comparing points "obviously" far from each other is a waste
- How can divide and conquer be used to find an *n* log *n* algorithm?
- We cut the plane in two halves and find closest points in each half
- We have then three categories of point pairs which can be closest:
 - Point pairs in the left half
 - Point pairs in the right half
 - Operation of the second sec
- Can we find close points from the last category in linear time???

An example



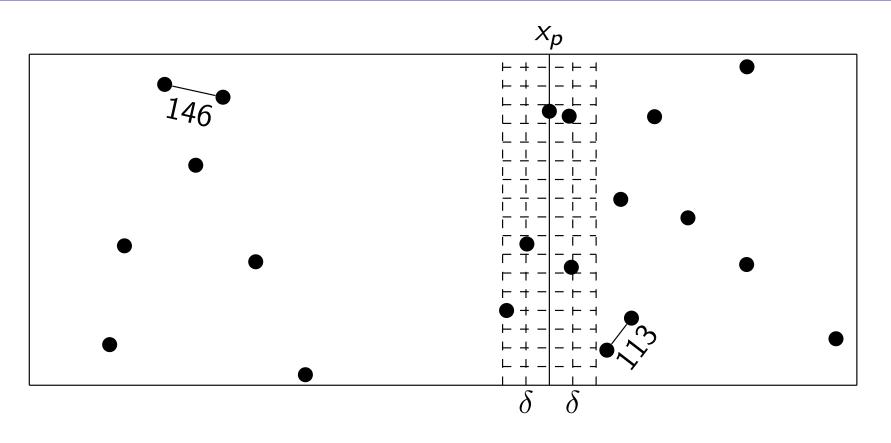
- We cut the plane in two halves with 10 points in each half
- We compute the nearest points in each half
- $\delta = \min(146, 113)$
- We only have to consider points within δ from the vertical line
- $\bullet\,$ If there are none, then δ is the answer
- If there are, then they must be checked with points from the other side which also must be within δ from the vertical line, of course

Combining



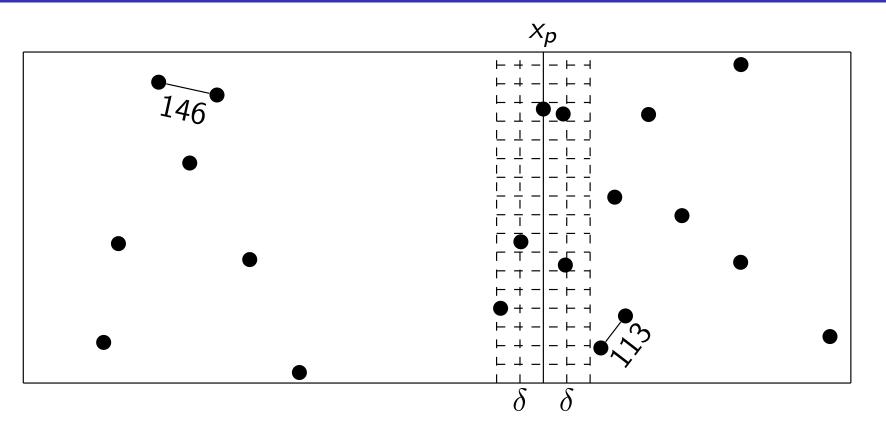
- The point *p* on the vertical line *x_p* belongs to the left half but there could also be points in the right half with the same x-coordinate
- Let the set S consist of all points with a distance within δ from the line x_p , (5 points here)
- Clearly it is sufficient to compare only points q and r from S such that p comes from the left half and q from the right part

Combining



- Each dashed box has a side of $\delta/2$
- How many points can each such box contain at most?
- The diagonal of a dashed box is $\sqrt{2} \times \delta/2 < \delta$
- $\bullet\,$ With two points in a dashed box, their distance would be less than $\delta\,$ so at most one point

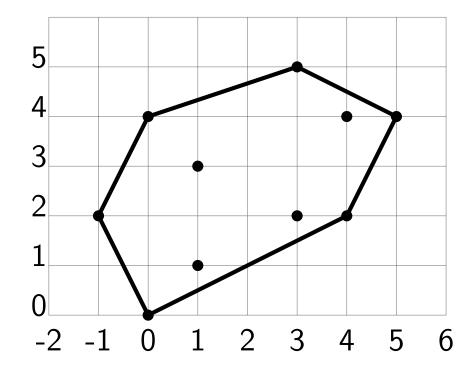
Combining



- With at most one point per dashed box, we can do as follows.
- Let S be sorted on y-coordinates
- Each point $p \in S$ is inspected at a time.
- The distances from *p* to each of the next six points on the other side in *S* (according to y-coordinates) are checked to see if it less than the shortest distance found so far

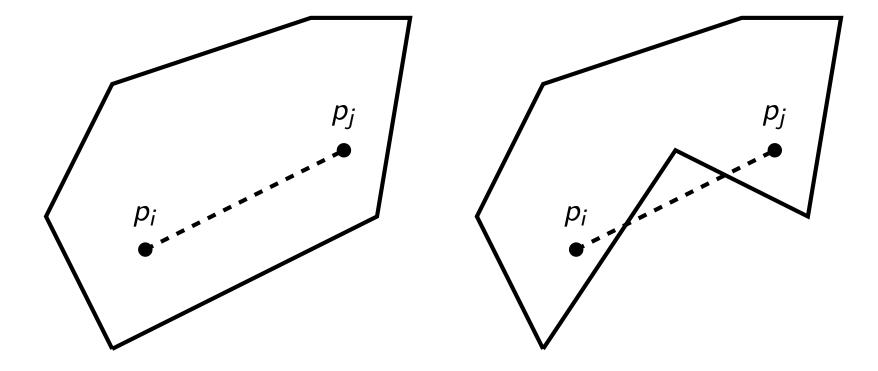
- What do we need for this?
- Input is a set of n points P
- We produce two sorted arrays P_x and P_y before starting our recursion
- We divide P_x into two arrays L_x and R_x (left and right)
- We divide P_y into two arrays L_y and R_y
- We solve the two subproblems $(L_x, L_y, n/2)$ and $(R_x, R_y, n/2)$
- $\bullet\,$ Then we compute $\delta\,$ as the minimum from these subproblems
- Then we create the set S_y from P_y
- All dividing and combining can be done in linear time, so we solve this in Θ(n log n) time

A set of points P and its convex hull CH(P)

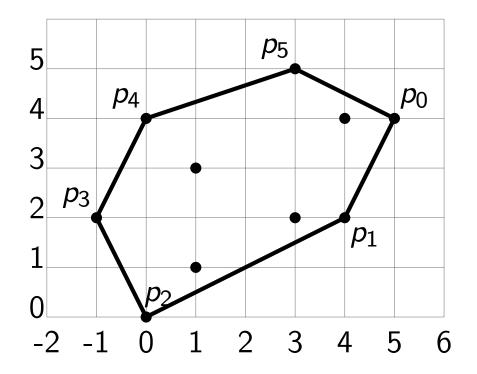


- The convex hull should have a minimal number of points.
- For example a point at (2,1) would not be in the convex hull.

A convex and a non-convex region



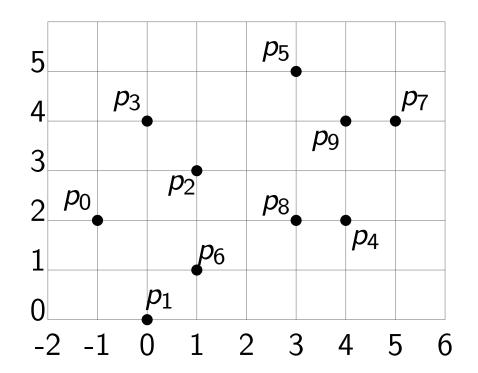
Clockwise order of CH(P)



- Not necessary to select the rightmost point as p_0 in general
- In Lab 4 we will do that however, since that is what the divide-and-conquer algorithm does.

Three algorithms for computing the convex hull

- Jarvis march, or gift wrapping
- Graham scan
- Preparata-Hong
- For Lab 4 you should implement Graham scan and Preparata-Hong
- Start with Graham scan and use it to check PH.
- Always a good approach to implement a non-trivial algorithm: start with something simpler and use the simple (and hopefully correct) as a reference
- Then run billions of tests
- Lab 4: ./check_solution.sh ./a.out for each of GS and PH is sufficient though

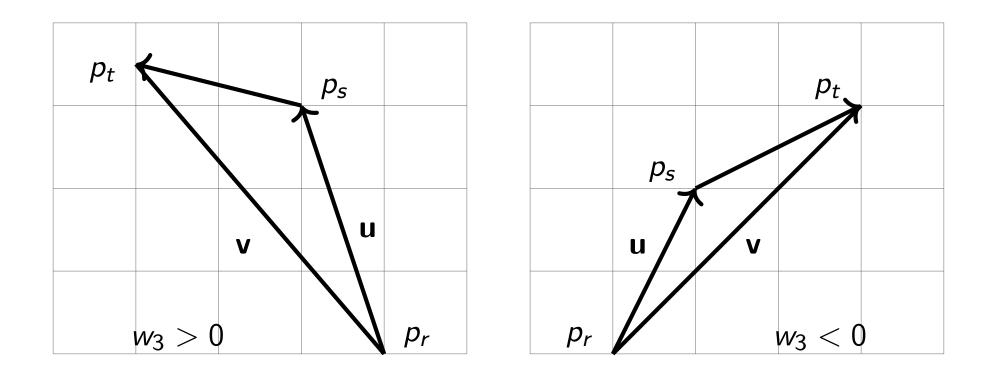


- Start at any point known to be in CH such as the leftmost: p_0 , $i \leftarrow 0$
- Select the next point p_j as the one through which we only make left turns when going from p_i through p_j to p_k for every other point p_k
- Right turn with p_0 , p_2 , p_1 so don't take p_2 next
- Always left turn with p_0 , p_1 , p_k so take p_1 as next
- Continue until back at p_0

- Also called cross product (vektorprodukt or kryssprodukt)
- Given two vectors in R³, u and v, the vector product, w = u × v is a vector with the following properties:
 - w is perpendicular to both u and v, i.e., the dot products w · u and w · v are both zero,
 - 2 $|\mathbf{w}| = |\mathbf{u}||\mathbf{v}| \sin \theta$ where θ is the angle between \mathbf{u} and \mathbf{v} ,
 - **3 u**, **v** and **w** are positively oriented, i.e. according to the right-hand rule.
- $\mathbf{u} = u_1 \mathbf{e_1} + u_2 \mathbf{e_2} + u_3 \mathbf{e_3}$ and $\mathbf{v} = v_1 \mathbf{e_1} + v_2 \mathbf{e_2} + v_3 \mathbf{e_3}$
- $\mathbf{w} = (u_1\mathbf{e_1} + u_2\mathbf{e_2} + u_3\mathbf{e_3}) \times (v_1\mathbf{e_1} + v_2\mathbf{e_2} + v_3\mathbf{e_3}) = (u_2v_3 u_3v_2)\mathbf{e_1} + (u_3v_1 u_1v_3)\mathbf{e_2} + (u_1v_2 u_2v_1)\mathbf{e_3} = w_1\mathbf{e_1} + w_2\mathbf{e_2} + w_3\mathbf{e_3}.$
- Since our points are in \mathbb{R}^2 , their **e**₃ coordinates are zero and so w_1 and w_2 also become zero

•
$$\mathbf{w} = w_3 \mathbf{e_3} = (u_1 v_2 - u_2 v_1) \mathbf{e_3}.$$

Left or right direction at p_s determined with $\mathbf{w} = \mathbf{u} \times \mathbf{v}$



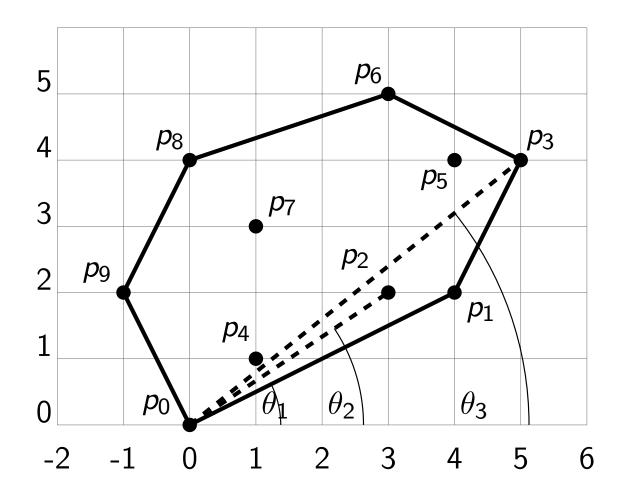
- To find the direction from p_r through p_s to p_t we let
- $\mathbf{u} = \overrightarrow{p_r p_s}$,
- $\mathbf{v} = \overrightarrow{p_r p_t}$, and
- $\mathbf{w} = \mathbf{u} \times \mathbf{v}$. If $w_3 > 0$ it is a left turn, if $w_3 < 0$ it is a right turn, and otherwise the three points are on the same line.

```
function jarvis_march(p)
begin
        n \leftarrow |p|
        i \leftarrow \text{index of point in } p \text{ with minimum } x \text{ coordinate}
        swap p_0 and p_i
        r \leftarrow 0
        while (1) {
                 s \leftarrow (r+1) \mod n
                 for t \leftarrow 0; t < n; t \leftarrow t + 1 {
                          if s = t then
                                   continue
                          \mathbf{u} = \overrightarrow{p_r p_s}
                          \mathbf{v} = \overrightarrow{p_r p_t}
                          \mathbf{w} = \mathbf{u} \times \mathbf{v}
                          (w_1, w_2, w_3) \leftarrow \mathbf{w}
                          // right turn or p_s between p_r and p_t on a line?
                          if w_3 < 0 or w_3 = 0 and |v|^2 > |u|^2 then
                                   s \leftarrow t
                  }
                 r \leftarrow r+1
                 if s = 0 then
                          break
                 swap p_s and p_r
         }
        return r / / number of points in CH(P)
end
```

- Time complexity is $O(n \cdot h)$ with h points in the convex hull.
- We increment *r* once for every point in the convex hull.
- Since some convex regions consist of all their points, the worst case is $O(n^2)$
- For example a regular polygon ("circle" but not exactly round...)
- Regelbunden polygon
- We will next look at Graham scan which is O(n log n) due to all points must be sorted first

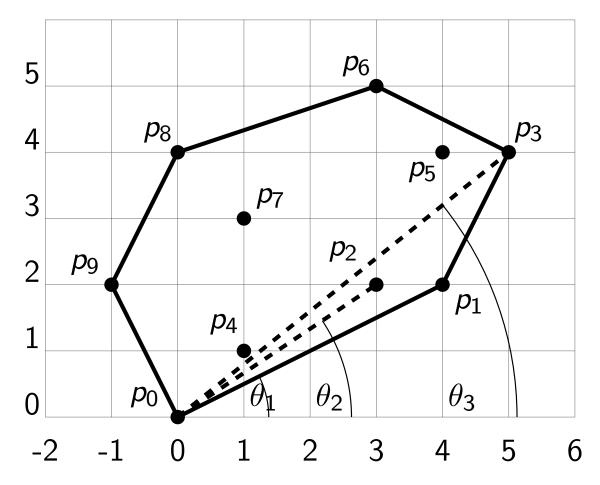
Graham scan

- First a point p_0 with minimal y-coordinate is made a new origo.
- One can make an angle between the x-axis, p_0 , and every other point
- The points are sorted by these angles θ_i , $1 \le i \le p_{n-1}$



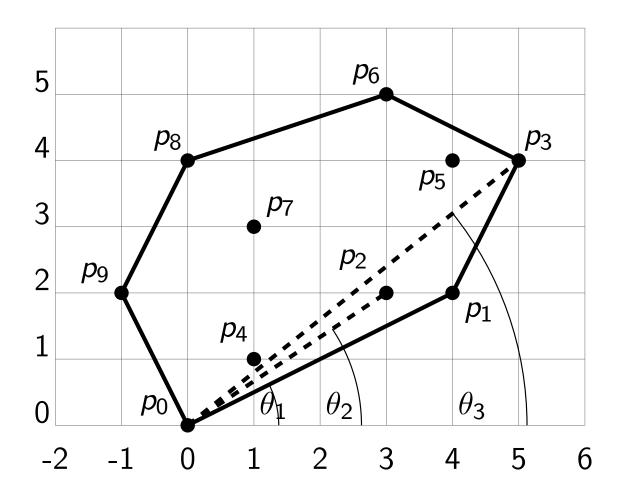
Including points in the convex hull

- The points p_0, p_1, p_2 are pushed to a stack with p_2 at the top
- Call the point at the top of the stack p_s (initially p_2)
- Call the point just below the top of the stack p_r (initially p_1)
- Call the "next point" p_t (initially p_3)



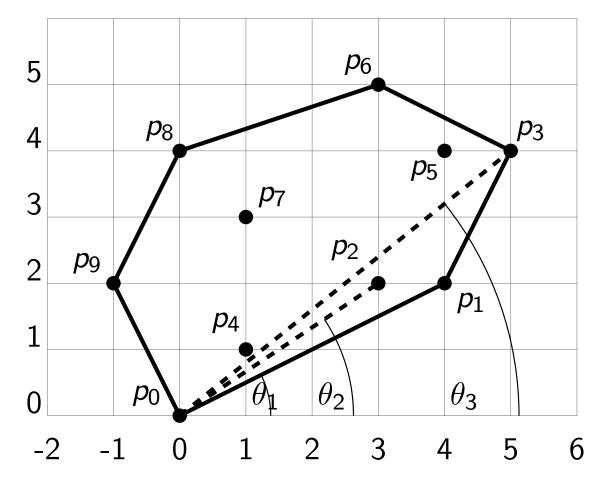
Excluding points from the convex hull

- Consider going from p_r , through p_s and to p_t initially p_1, p_2, p_3
- If the direction through p_s is straight or right, then p_s is not in CH
- In that case it is popped from the stack



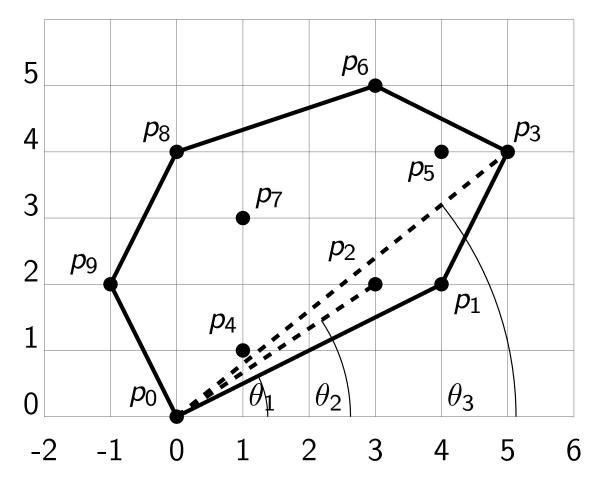
Excluding points from the convex hull

- Consider going from p_r , through p_s and to p_t
- After p_2 was popped, p_1 becomes new p_s and p_0 new p_r
- Any more non-left turns results in a pop
- Then p_t is pushed so $p_r = p_1$ and $p_s = p_3$



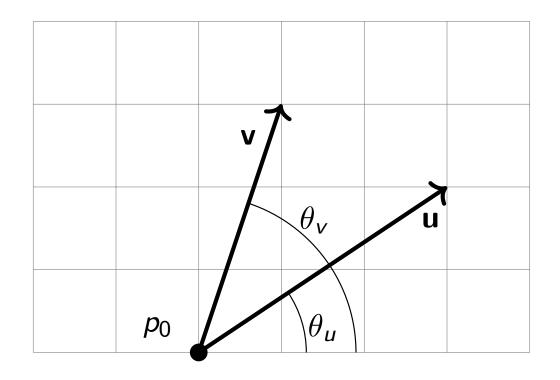
Excluding points from the convex hull

- $p_r = p_1$ and $p_s = p_3$
- $p_t = p_4$ with a left turn from p_r and p_s so p_4 is pushed
- After that p_5 will cause p_4 being popped
- In the end, all points remaining on the stack are the convex hull

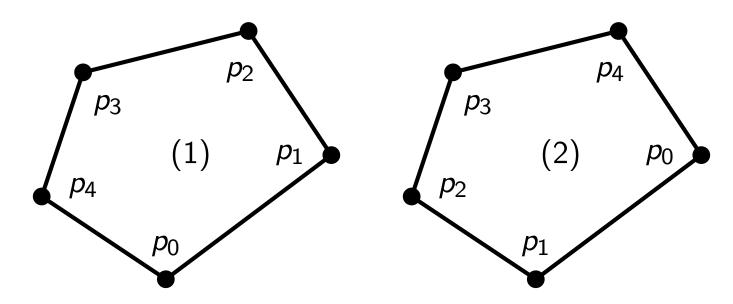


Relative sizes of θ is sufficient

- \bullet Compare angles with $\mathbf{u}\times\mathbf{v}$
- If $\theta_u = \theta_v$ then how should they be ordered?
- We want the point nearest origo on the stack first so the other can pop it



- The check_solution.sh script expect output as in (2)
- The reason is that Preparata-Hong produces that output.

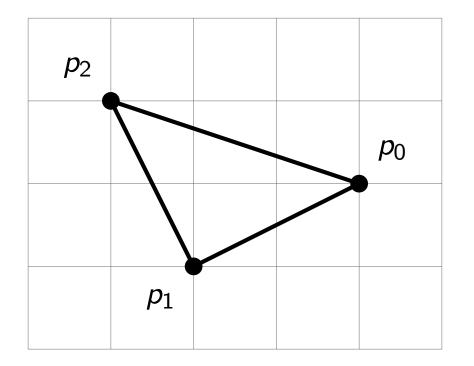


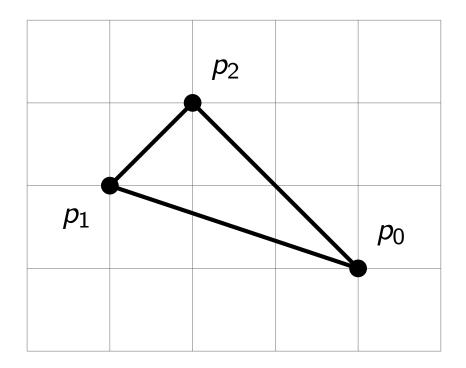
```
function graham_scan(p)
begin
       // p is an array with n points.
       n \leftarrow |p|
       i \leftarrow index of point in p with minimum y coordinate
       swap p_0 and p_i
       t = p_0
       subtract the coordinates of t from every point
       sort elements 1..n - 1 of p by \theta_i
       h \leftarrow \text{new stack}
       push(h, p_0)
       push(h, p_1)
       push(h, p_2)
       for (k \leftarrow 3; k < n; k = k + 1) {
              // p_s is the top of h
              //p_r is below p_s on h
              p_t \leftarrow p_k
              while direction (next_top(h), top(h), p_t) is not left
                     pop(h)
              push(h, p_t)
       }
       add the coordinates of t to every point
       n \leftarrow number of points on the stack
       copy the points in h to p, and deallocate h
       return n
```

end

Preparata-Hong output

- The sequence that is the convex hull
- The number of points in the convex hull
- The index of the leftmost point



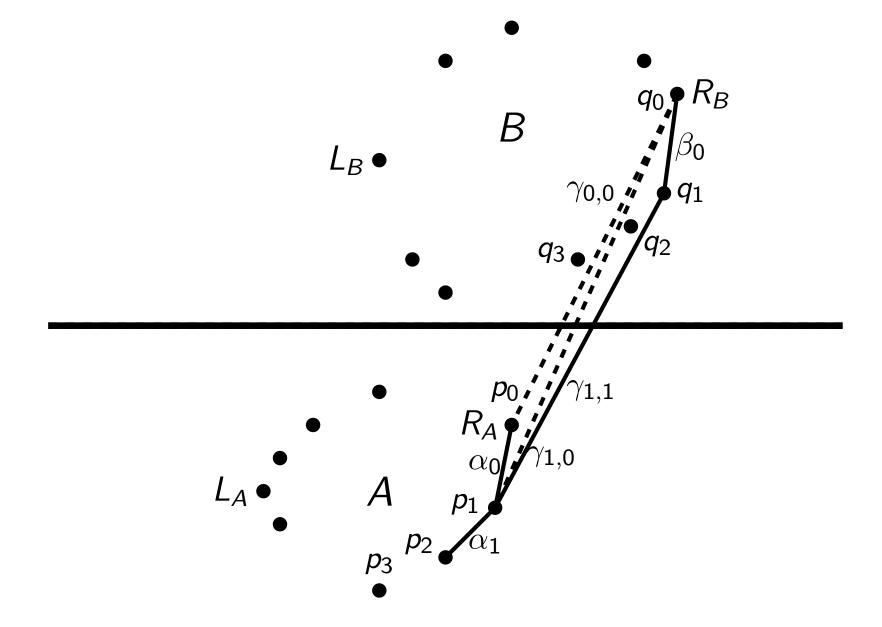


- It relies on lines expressed as $y = k \cdot x + m$
- Sort all points *n* in order of increasing *y*-coordinates
- With $n \leq 3$ solve directly and return
- Divide in two approximately equal parts A and B
- All points in A must have a y-coordinate lower than any in B
- Find CH(A) and CH(B)
- Merge CH(A) and CH(B) which is simplified by knowing that they are in clockwise order

- n_a points in lower convex hull
- *n_b* points in upper convex hull
- The lower points are called $p_0...p_{n_a-1}$
- The upper points are called $q_0...q_{n_b-1}$
- The inner points from A and B are not needed for anything
- $y = k \cdot x + m$
- We need to compute the k-values from p_0 to p_1 , from p_1 to p_2 etc
- The k value of the line segment from p_i to $p_{i+1 \mod n_a}$ is called α_i
- The k value of the line segment from q_i to $q_{i+1 \mod n_b}$ is called β_i
- For merging CH(A) and CH(B) we start with computing α and β

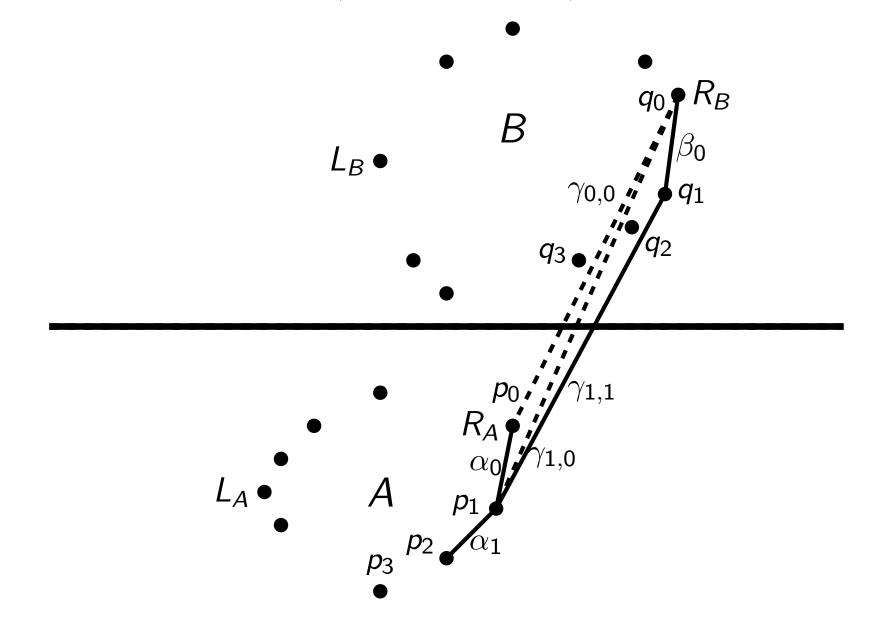
Selecting points on right side: q_0, q_1 and p_1, p_2, p_3, p_4

• We want to find first $i_R^* = p_1$ and last $j_R^* = q_1$ and skip $q_2, ...$ and p_0



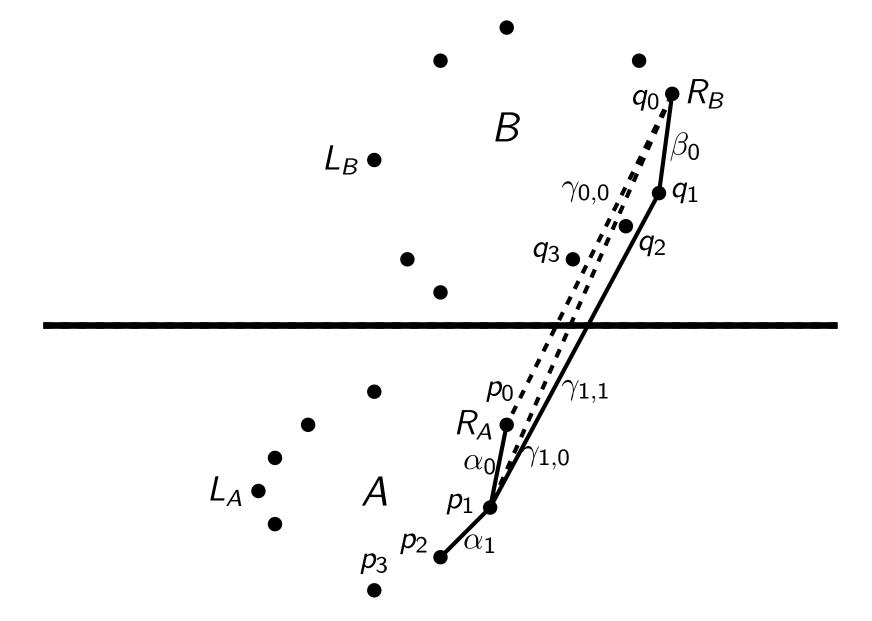
Exclude p_0

• First compare α_0 and $\gamma_{0,0}$. Since $\alpha_0 > \gamma_{0,0}$ we exclude p_0



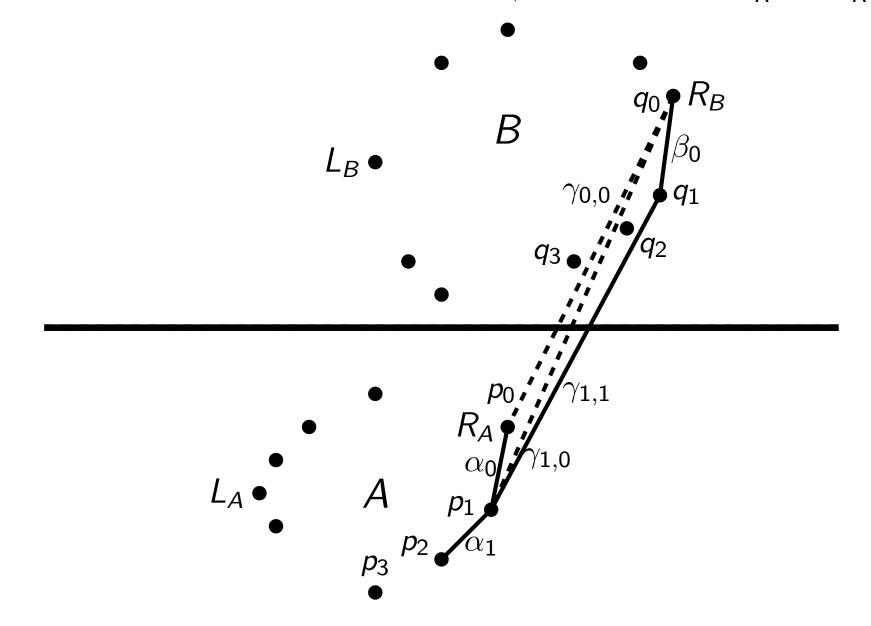
Include q_1

• Compare α_1 and $\gamma_{1,0}$. Since $\alpha_1 \leq \gamma_{1,0}$ we check β_0 and include q_1 .



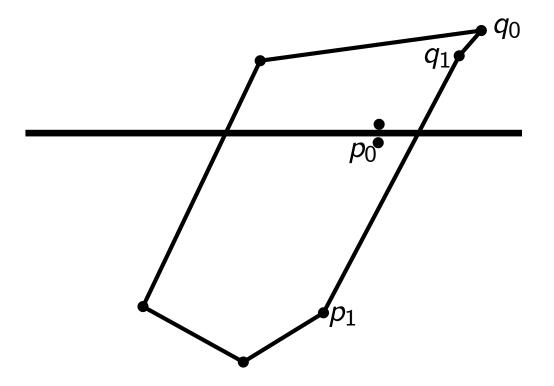
We are done at right side

• Since both α_1 and β_1 are less than $\gamma_{1,1}$ we have found i_R^* and j_R^*

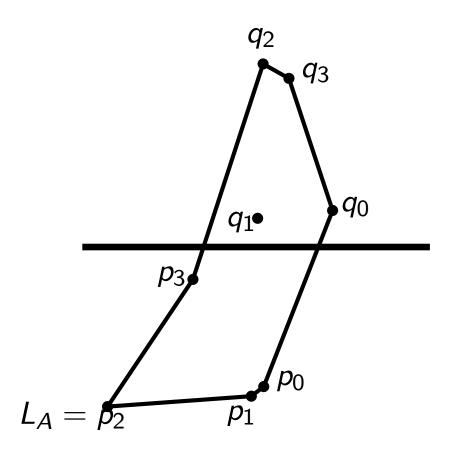


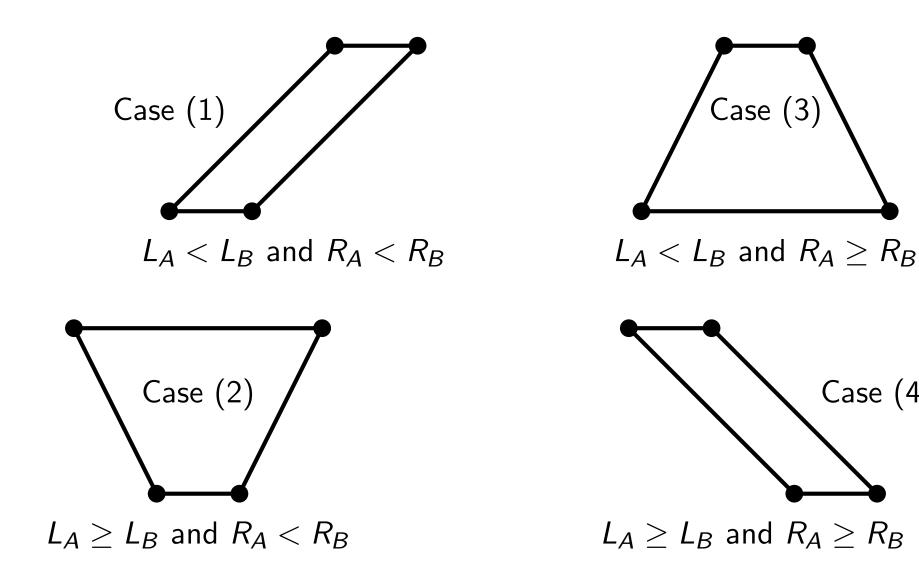
- On the left side we want to find i_L^* and j_L^*
- Then we add lower points from i_R^* up to and including i_L^* to the output
- And add upper points from j_L^* up to and including j_R^* to the output
- Does it matter which of α_i and β_j we first compare with $\gamma_{i,j}$?

Wrong order on right side: comparing β_j before α_i



Wrong order on left side: comparing α_i before β_i





Case (4)

```
function k(p, q)
begin
return (q.y - p.y)/(q.x - p.x)
end
```

```
function compute_k(p)

begin

n \leftarrow |p|

\alpha \leftarrow new double [n]

for i = 0; i < n; i \leftarrow i + 1

\alpha[i] \leftarrow k(p[i], p[i + 1 \mod n])

return \alpha
```

end

```
function add (k, from, to, q, p, n)
begin
j \leftarrow from
do {
q[k] \leftarrow p[j]
k \leftarrow k + 1
i \leftarrow j
j \leftarrow (j + 1) \mod n
} while i \neq to
return k
end
```

```
function include_points (j, q, p, n)

begin

for k \leftarrow 0; k < n; k \leftarrow k + 1 {

u \leftarrow (n + k + j - 1) \mod n // point before v

v \leftarrow (n + k + j - 0) \mod n // point that may be excluded

w \leftarrow (n + k + j + 1) \mod n // point after v

if not line_segment (q[v], q[u], q[w]) {

p[i] \leftarrow q[v]

i \leftarrow i + 1

}

return i

end
```

```
function case_1 (a, n_a, b, n_b, \alpha, \beta, i_l, j_l)
           i \leftarrow 0
          j \leftarrow 0
           while (1) {
                      \gamma_{i,j} \leftarrow k(a_i, b_j)
                      if (\alpha_i > \gamma_{i,j}) or \alpha_i = -\infty) and i < i_L then
                                 i \leftarrow i + 1
                      else if (\beta_j > \gamma_{i,j} \text{ or } \beta_j == -\infty) and j < j_L then
                                 j \leftarrow j + 1
                      else
                                 break
           \begin{cases} \\ i_R^* \leftarrow i \\ j_R^* \leftarrow j \end{cases} 
           i \leftarrow i_l
          j \leftarrow j_L
           while (1) {
                      \gamma_{i,j} \leftarrow k(a_i, b_j)
                      if \beta_j > \gamma_{i,j} and j \neq 0 then
                                j \leftarrow (j+1) \mod n_b
                      else if \alpha_i > \gamma_{i,j} and i \neq 0 then
                                 i \leftarrow (i+1) \mod n_a
                      else
                                 break
           \begin{array}{l} \\ i_L^* \ \leftarrow i \\ j_L^* \ \leftarrow j \end{array} 
           return (i_R^*, i_L^*, j_L^*, j_R^*)
```

```
function case_2(a, n_a, b, n_b, \alpha, \beta, i_l, j_l)
          i \leftarrow 0
         i \leftarrow 0
          while (1) {
                     \gamma_{i,j} \leftarrow k(a_i, b_j)
                     if (\alpha_i > \gamma_{i,j} \text{ or } \alpha_i = -\infty) and i < i_L then
                              i \leftarrow \tilde{i} + 1
                     else if (\beta_j > \gamma_{i,j} \text{ or } \beta_j == -\infty) and j < j_L then
                               i \leftarrow i + 1
                     else
                               break
          \begin{cases} \\ i_R^* \leftarrow i \\ j_R^* \leftarrow j \end{cases} 
          i \leftarrow i_1
          j \leftarrow j_L
          while (1) {
                     \gamma_{i,i} \leftarrow k(a_i, b_i)
                     a_k \leftarrow (n_a + i - 1) \mod n_a
                    b_k \leftarrow (n_b + j - 1) \mod n_b
                     if isfinite(\alpha_{a_k}) and \alpha_{a_k} < \gamma_{i,j} and i \neq 0 then
                               i \leftarrow a_k
                    else if \beta_{b_k} < \gamma_{i,j} and j \neq 0 then
                               i \leftarrow b_k
                     else
                               break
          l
```

$$\begin{array}{l}
\stackrel{s}{i_{L}^{*}} \leftarrow i \\
\stackrel{j_{L}^{*}}{j_{L}^{*}} \leftarrow j \\
\text{return } (i_{R}^{*}, i_{L}^{*}, j_{L}^{*}, j_{R}^{*})
\end{array}$$

function case_3(a, n_a , b, n_b , α , β , i_L , j_L) *i* ← 0 $j \leftarrow 0$ while (1) { $\gamma_{i,j} \leftarrow k(a_i, b_j)$ $a_k \leftarrow (n_a + i - 1) \mod n_a$ $b_k \leftarrow (n_b + j - 1) \mod n_b$ if $\beta_{b_k} < \gamma_{i,j}$ and $j < j_L$ then $j \leftarrow b_k$ else if $\alpha_{a_k} \stackrel{\sim}{<} \gamma_{i,j}$ and $i \neq i_L$ then $i \leftarrow a_k$ else break $\begin{cases} \\ i_R^* \leftarrow i \\ j_R^* \leftarrow j \\ i \leftarrow i_L \end{cases}$ $j \leftarrow j_L$ while (1) { $\gamma_{i,i} \leftarrow k(a_i, b_i)$

if
$$\beta_j > \gamma_{i,j}$$
 and $j \neq 0$ then
 $j \leftarrow (j+1) \mod n_b$
else if $\alpha_i > \gamma_{i,j}$ and $i \neq 0$ then
 $i \leftarrow (i+1) \mod n_a$

else

break

 $\begin{cases} \\ i_{L}^{*} \leftarrow i \\ j_{L}^{*} \leftarrow j \\ \textbf{return} (i_{R}^{*}, i_{L}^{*}, j_{L}^{*}, j_{R}^{*}) \end{cases}$

function case_4(a, n_a , b, n_b , α , β , i_l , j_l) $i \leftarrow 0$ $i \leftarrow 0$ while (1) { $\gamma_{i,i} \leftarrow k(a_i, b_i)$ $a_k \leftarrow (n_a + i - 1) \mod n_a$ $b_k \leftarrow (n_b + j - 1) \mod n_b$ if $\beta_{b_k} < \gamma_{i,j}$ and $j \neq j_L$ then $i \leftarrow b_k$ else if $\alpha_{a_k} < \gamma_{i,j}$ and $i \neq i_L$ then $i \leftarrow a_k$ else break $\begin{cases} \\ i_R^* \leftarrow i \\ j_R^* \leftarrow j \end{cases}$ $i \leftarrow i_{l}$ $j \leftarrow j_L$ while (1) { $\gamma_{i,i} \leftarrow k(a_i, b_i)$ $a_k \leftarrow (n_a + i - 1) \mod n_a$ $b_k \leftarrow (n_b + j - 1) \mod n_b$ if $\operatorname{isfinite}(\alpha_{a_k})$ and $\alpha_{a_k} < \gamma_{i,j}$ and $i \neq 0$ then $i \leftarrow a_k$ else if $isfinite(\beta_{b_k})$ and $\beta_{b_k} < \gamma_{i,j}$ and $j \neq 0$ then $j \leftarrow b_k$ else break

- You don't need to split the code into four cases if you don't want to (simpler though, in my opinion, and likely faster)
- If you fail a test case it is a good idea to print the points in Matlab or to a pdf-file
- Implementing the Preparata-Hong algorithm is harder than Graham scan so why would you want to do it?
- An advantage of divide-and-conquer algorithms is that they are easier to parallelize
- Compute CH(A) and CH(B) by different threads at the same time
- If you have e.g. 80 hardware threads, you can easily let 64 work in parallel
- The machine power.cs.lth.se has just 80 hardware threads

Is p on a line segment between q and r in a plane?

- We want to know if *p* is between two points on a line in which case *p* should not be in the convex hull
- $\mathbf{u} = \overline{qp}$
- $\mathbf{v} = \overline{qr}$
- $\mathbf{w} = \mathbf{u} \times \mathbf{v}$.
- $\mathbf{w} = w_3 \mathbf{e_3} = (u_1 v_2 u_2 v_1) \mathbf{e_3}$ due to a plane.
- If $w_3 \neq 0$ then p is not on the line through q and r.
- Assume instead $w_3 = 0$ so the points are colinear.
- Is *p* between *q* and *r*?
- Compute the dot products $\bm{v}\cdot\bm{v}$ and $\bm{u}\cdot\bm{v}$
- If $\mathbf{u} \cdot \mathbf{v} < 0$ then \mathbf{u} and \mathbf{v} have opposite directions so p is not between
- Otherwise if $\mathbf{u} \cdot \mathbf{v} > \mathbf{v} \cdot \mathbf{v}$ then p is also not between them