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What is the shortest path from
a to n?
To every other node?
How can we find these paths
efficiently?
For navigation, the edge weights
are positive distances (obviously)
For some other graphs the
weights can be a positive or
negative cost
The problem is easier with
positive weights
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Dijkstra’s algorithm

Given a directed graph G (V ,E ), a weight function w : E → R , and a
node s ∈ V , Dijkstra’s algorithm computes the shortest paths from s
to every other node
The sum of all edge weights on a path should be minimized
A weight can e.g. mean metric distance, cost, or travelling time
For this algorithm, we assume the weights are nonnegative numbers
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Dijkstra’s algorithm — overview

input w(e) weight of edge e = (u, v). We also write w(u, v)
output d(v) shortest path distance from s to v for v ∈ V
output pred(v) predecessor of v in shortest path from s to v ∈ V
A set Q of nodes for which we have not yet found the shortest path
A set S of nodes for which we have already found the shortest path

procedure dijkstra (G , s)
d(s)← 0
Q ← V − {s}
S ← {s}
while Q ̸= ∅

select v which minimizes d(u) + w(e) where u ∈ S , v /∈ S , e = (u, v)
d(v)← d(u) + w(e)
pred(v)← u
remove v from Q
add v to S
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Only b has a predecessor in S

d(b)← 4
pred(b)← a

S ← {a, b}
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d(b) + w(b, d) = 4 + 2 = 6
d(b) + w(b, h) = 4 + 21 = 25
d minimizes d(u) + w(u, v)

d(d)← 6
pred(d)← b

S ← {a, b, d}
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d(b) + w(b, h) = 4 + 21 = 25
d(d) + w(d , c) = 6 + 8 = 14
d(d) + w(d , g) = 6 + 13 = 19
c minimizes d(u) + w(u, v)

d(c)← 14
pred(c)← d

S ← {a, b, c, d}
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d(b) + w(b, h) = 4 + 21 = 25
d(d) + w(d , g) = 6 + 13 = 19
d(c) + w(c , e) = 14 + 3 = 17
e minimizes d(u) + w(u, v)

d(e)← 17
pred(e)← c

S ← {a, b, c, d , e}
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d(b) + w(b, h) = 4 + 21 = 25
d(d) + w(d , g) = 6 + 13 = 19
d(e) + w(e, f ) = 17 + 9 = 26
g minimizes d(u) + w(u, v)

d(g)← 19
pred(g)← d

S ← {a, b, c, d , e, g}
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d(b) + w(b, h) = 4 + 21 = 25
d(e) + w(e, f ) = 17 + 9 = 26
d(g) + w(g , h) = 19 + 7 = 26
d(g) + w(g , j) = 19 + 3 = 22
j minimizes d(u) + w(u, v)

d(j)← 22
pred(j)← g

S ← {a, b, c, d , e, g , j}
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d(b) + w(b, h) = 4 + 21 = 25
d(e) + w(e, f ) = 17 + 9 = 26
d(g) + w(g , h) = 19 + 7 = 26
d(j) + w(j ,m) = 22 + 3 = 25
h and m minimize
d(u) + w(u, v)

We can take any of them
d(h)← 25
pred(h)← b

S ← {a, b, c, d , e, g , h, j}
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Shortest paths
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d(e) + w(e, f ) = 17 + 9 = 26
d(j) + w(j ,m) = 22 + 3 = 25
d(h) + w(h, k) = 25 + 6 = 27
m minimizes d(u) + w(u, v)

d(m)← 25
pred(m)← j

S ← {a, b, c, d , e, g , h, j ,m}
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d(e) + w(e, f ) = 17 + 9 = 26
d(h) + w(h, k) = 25 + 6 = 27
d(m) + w(m, n) = 25 + 5 = 30
f minimizes d(u) + w(u, v)

d(f )← 26
pred(f )← e

S ← {a, b, c, d , e, f , g , h, j ,m}
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d(h) + w(h, k) = 25 + 6 = 27
d(m) + w(m, n) = 25 + 5 = 30
d(f ) + w(f , i) = 26 + 6 = 32
k minimizes d(u) + w(u, v)

d(k)← 27
pred(k)← h

S ← {a− h, j , k ,m}
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d(m) + w(m, n) = 25 + 5 = 30
d(f ) + w(f , i) = 26 + 6 = 32
n minimizes d(u) + w(u, v)

d(n)← 30
pred(k)← h

S ← {a− k ,m, n}
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d(f ) + w(f , i) = 26 + 6 = 32
Only i possible
d(i)← 32
pred(i)← f

S ← {a− k ,m, n}

jonasskeppstedt.net Lecture 4 2023 16 / 41



Shortest paths

a b

c d

e f g h

i j k

l m

n

4

3 5

9

8

6

7

3

2

13

7

21

6

6

1

2

7

3

5

d(i) + w(i , l) = 32 + 1 = 33
Only l possible
d(l)← 33
pred(l)← i

S ← {a− n}
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Observations about Dijkstra’s algorithm

We only add an edge when it really is to the node which is closest to
the start vertex.
To print the shortest path from s to any node v , simply print v and
follow the pred(v) attributes.
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Dijkstra’s algorithm

Theorem
For each node v ∈ S , d(v) is the length of the shortest path from s to v .

Proof.
We use induction with base case |S | = 1 which is true since S = {s}
and d(s) = 0.
Inductive hypothesis: Assume theorem is true for |S | ≥ 1.
Let v be the next node added to S , and pred(v) = u.
d(v) = d(u) + w(e) where e = (u, v).
Assume in contradiction there exists a shorter path from s to v
containing the edge (x , y) with x ∈ S and y /∈ S , followed by the
subpath from y to v .
Since the path via y to v is shorter than the path from u to v ,
d(y) < d(v) but it is not since v is chosen and not y . A contradiction
which means no shorter path to v exists.
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Recall

procedure dijkstra (G , s)
d(s)← 0
Q ← V − {s}
S ← {s}
while Q ̸= ∅

select v which minimizes d(u) + w(e) where u ∈ S , v /∈ S , e = (u, v)
d(v)← d(u) + w(e)
pred(v)← u
remove v from Q
add v to S

We use a heap priority queue for Q with d(v) as keys.
For v ̸= s we initially set d(v)←∞ and then decrease it
Quiz: does Dijkstra’s algorithm work also for undirected graphs?
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Undirected graphs

Answer: yes, it does not matter
Quiz: does it work with negative edge weights?
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Negative edge weights

Answer: no
You can find an example with three nodes and three edges
Can it be less expensive to fly from Copenhagen to Paris via London
and Dijkstra fails to find the route?
Why not just find the most negative edge and add it to every edge?
Quiz: find an example where that fails.
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Running time of Dijkstra’s algorithm

Assume n nodes and m edges
Constructing Q: O(n) using heapify (but O(n log n) using n inserts)
Heapify is called init_heap in C and pseudo code in the book
Since all nodes have ∞ distance they can be put anywhere (still O(n))
O(n) iterations of the while loop with O(log n) to take out minimum,
so O(n log n)

Each selected node must check each neighbor not in S and possibly
reduce its key
Time to reduce a key is assumed to be O(log n)

Each edge may reduce a key, so O(m log n) for reducing keys
In total O(n log n +m log n) running time
With all nodes reachable from s, we have m ≥ n − 1
So therefore O(m log n) running time
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The minimum spanning tree problem
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We have an undirected graph.
Assume the nodes are cities and
a country wants to build an
electrical network
The edge weights are the costs
of connecting two cities
We want to find a subset of the
edges so that all cities are
connected, and minimizes the
cost
This problem was suggested to
the Czech mathematician
Otakar Borůvka during World
War I for Mähren.
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The minimum spanning tree problem

In 1926 Borůvka published the first paper on finding the minimum
spanning tree.
Minimum-weight spanning tree is abbreviated MST.
It has been regarded as the cradle of combinatorial optimization.
Borůvka’s algorithm has been rediscovered several times: Choquet
1938, by Florek, Lukasiewicz, Steinhaus, and Zubrzycki 1951 and by
Sollin 1965.
We will study two classic algorithms for this problem:

Jarnik’s algorithm from 1930 (rediscoved by Prim 1957), and
Kruskal’s algorithm from 1956

One of the currently fastest MST algorithms by Chazelle from 2000 is
based on Borůvka’s algorithm.
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MST

Consider a connected undirected graph G (V ,E )

If T ⊆ E and (V ,T ) is a tree, it is called a spanning tree of G (V ,E )

Given edge costs c(e), a (V ,T ) is a minimum spanning tree, or
MST of G such that the sum of the edge costs is minimized.
Jarnik’s algorithm is similar to Dijkstra’s and grows an MST starting
from an arbitrary root node
Jarnik published his the same year Dijkstra was born
Kruskal’s algorithm instead creates a forest which eventually becomes
one MST
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Minimum spanning tree: Jarnik’s algorithm
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First select a root node s.
Any will do.
How can we know which edge to
add next?
Is it possible to do it with a
greedy algorithm?
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Safe edges

We will next learn a rule which Jarnik’s and Kruskal’s algorithm rely on
It determines when it is safe to add a certain edge (u, v)

A partition (S ,V − S) of the nodes V is called a cut
An edge (u, v) crosses the cut if u ∈ S and v ∈ V − S

Let A ⊆ E and A be a subset of the edges in some minimum spanning
tree of G
A does not necessarily create a connected graph — A is applicable to
both Jarnik’s and Kruskal’s algorithms and represents the edges
selected so far
An edge (u, v) is safe if A ∪ {(u, v)} is also a subset of the edges in
some MST.
So how can we know it is?
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Safe edges

Lemma
Assume A is a subset of the edges in some minimum spanning tree of G ,
(S ,V − S) is any cut of V , and no edge in A crosses (S ,V − S). Then
every edge (u, v) with minimum weight, u ∈ S , and v ∈ V − S is safe.

Proof.
Assume T ⊆ E is a minimum spanning tree of G .
We have either (u, v) ∈ T (in which case we are done) or (u, v) /∈ T .
Assume u ∈ S and v ∈ V − S

There is a path p in T which connects u and v

Therefore T ∪ {(u, v)} creates a cycle with p

There is an edge (x , y) ∈ T which also crosses (S ,V − S) and by
assumption (x , y) /∈ A
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Safe edges

Proof.
Since T is a minimum spanning tree, it has only one path from u to v .
Removing (x , y) from T partitions V and adding (u, v) creates a new
spanning tree U

U = (T − {(x , y)}) ∪ {(u, v)}
Since (u, v) has minimum weight, w(U) ≤ w(T ), and since T is a
minimum spanning tree, w(U) = w(T )

Since A ∪ (u, v) ⊆ U, (u, v) is safe for A
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Jarnik’s algorithm — overview

input w(e) weight of edge e = (u, v). We also write w(u, v)

a root node r ∈ V

output minimum spanning tree T

procedure jarnik (G , r)
T ← ∅
Q ← V − {r}
while Q ̸= ∅

select a v which minimizes w(e) where u /∈ Q, v ∈ Q, e = (u, v)
remove v from Q
add (u, v) to T

return T

We use a heap priority queue for Q with d(v), the distance to any
node in V − Q, as keys.
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Running time of Jarnik’s algorithm

Jarnik has the same running time as Dijkstra
Assume n nodes and m edges
O(n) iterations of the while loop
O(log n) to take out min node
Each selected node must check each neighbor not in Q and possibly
reduce its key
O(m log n) operations for reducing keys
With all nodes reachable from s, we have m ≥ n − 1
Therefore (m log n) running time as before
What is the difference between this and Dijkstra’s algorithm?

Jarnik assumes undirected graph
Key is only one edge weight and not a path weight from a root node
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Kruskal’s algorithm — overview

input w(e) weight of edge e = (u, v). We also write w(u, v)

output minimum spanning tree T

procedure kruskal (G )
T ← ∅
B ← E
while B ̸= ∅

select an edge e with minimal weight
if T ∪ {e} does not create a cycle then

add e to T
remove e from B

return T

How can we detect cycles faster than searching for a cycle?
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The union-find data structure

Consider a set, such as with n nodes of a graph
A union-find data structure lets us:

Create an initial partitioning {p0, p1, ..., pn−1} with n sets consisting of
one element each
Merge two sets pi and pj
Check which set an elements belongs to

The merge operation is called union
The check set operation is called find
We can use this as follows:

A set represents a connected subgraph and initially consists of one node
When we check an edge (u, v) we need to:

Find the set pu with u
Find the set pv with v
Ignore (u, v) if find(u) = find(v)
Otherwise add (u, v) and use union to merge pu and pv
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Union-find data structure

Each node v has an extra attribute parent(v) in a tree
How should the sets pi be ”named”?
It is only essential that two different sets have different names
It is suitable to let the node v be the initial name of pv
Then after a union operation with u and v we set one pu and pv as
the name of the merged set
Assume we use u as the name. Then v needs a way to find u
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find

procedure find (v)
begin

if (parent(v) = null) then
return v

else
return find(parent(v))

end
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union

procedure union (u, v)
begin

parent(v)← u
end
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find with path compression

procedure find (v)
begin

p ← v
while (parent(p) ̸= null) do

p ← parent(p)
while (parent(v) ̸= null) do

w ← parent(v)
parent(v)← p
v ← w

return p
end
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union-by-size

procedure union (u, v)
begin

u ← find(u)
v ← find(v)
if size(u) < size(v) then

parent(u)← v
size(v)← size(u) + size(v)

else
parent(v)← u
size(u)← size(u) + size(v)

end
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Efficiency of Union-Find

Using both path compression and union-by-size (or union-by-rank), the
time complexity of m find and n union operations is:

Θ(mα(m, n)) m ≥ n
Θ(n +mα(m, n)) m < n

α(m, n)) ≤ 4 for all practical values of m and n
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Running time of Kruskal’s algorithm

Assume n nodes and m edges and m > n

Sorting the edges: O(m logm)

Adding an edge (v ,w) would create a cycle if find(v) = find(w)
There are m edges so we do at most 2m find operations
A tree has n − 1 edges so we do n − 1 union operations
From previous slide the complexity of these union-find operations is
Θ(mα(m, n))

We can conclude that sorting the edges is more costly than the
union-find operations so the running time of Kruskal’s algorithm is
O(m logm)

We have m ≤ n2

Therefore O(m logm) = O(m log n2) = O(2m log n) = O(m log n)

I.e. the same as for Jarnik’s algorithm.
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