
Strong connectivity in directed graphs

Nodes u and v are mutually reachable if there is a path from u to v
and a path from v to u

A directed graph is strongly connected if every pair of nodes are
mutually reachable

Lemma
Let s be any node in G . G is strongly connected ⇐⇒ every node is
reachable from s and s is reachable from any node.

Proof.
⇒ follows directly from the definition of strongly connected G . ⇐ follows
by constructing two paths:

a path from u to v as p = (u, ..., s, ..., v), and
a path from v to u as q = (v , ..., s, ..., u).

jonasskeppstedt.net Lecture 3 2023 1 / 48

Determining strong connectivity

Select any node s ∈ V

Use BFS on G from s and check if all of V is reached
Construct G r from G by reversing all edges
Use BFS on G r from s and check if all of V is reached
If s can reach a node u in G r , then u can reach s in G .
If all of V is reached in both searches, G is strongly connected
O(n +m)

We will next see Tarjan’s algorithm which instead uses depth first
search and also lists all the strongly connected components

jonasskeppstedt.net Lecture 3 2023 2 / 48

Tarjan’s Algorithm: Initial Processing of 0

int dfnum

procedure strong_connect (v)
dfn (v) ← dfnum
lowlink (v) ← dfnum
visited (v) ← true
push (v)
dfnum ← dfnum +1

for each w ∈ succ(v) do
if (not visited (w)) {

strong_connect (w)
lowlink (v) ← min (lowlink (v), lowlink (w))

} else if (dfn (w) < dfn (v) and w is on stack)
lowlink (v) ← min (lowlink (v), dfn (w))

if (lowlink (v) = dfn (v))
scc ← ∅
do

w ← pop ()
add w to scc

while (w ̸= v)
process_scc (scc)

end

0, 0

0
stack

jonasskeppstedt.net Lecture 3 2023 3 / 48

Tarjan’s Algorithm: Initial Processing of 1

int dfnum

procedure strong_connect (v)
dfn (v) ← dfnum
lowlink (v) ← dfnum
visited (v) ← true
push (v)
dfnum ← dfnum +1

for each w ∈ succ(v) do
if (not visited (w)) {

strong_connect (w)
lowlink (v) ← min (lowlink (v), lowlink (w))

} else if (dfn (w) < dfn (v) and w is on stack)
lowlink (v) ← min (lowlink (v), dfn (w))

if (lowlink (v) = dfn (v))
scc ← ∅
do

w ← pop ()
add w to scc

while (w ̸= v)
process_scc (scc)

end

0, 0

1, 1

1
0

stack

jonasskeppstedt.net Lecture 3 2023 4 / 48

Tarjan’s Algorithm: Initial Processing of 2

int dfnum

procedure strong_connect (v)
dfn (v) ← dfnum
lowlink (v) ← dfnum
visited (v) ← true
push (v)
dfnum ← dfnum +1

for each w ∈ succ(v) do
if (not visited (w)) {

strong_connect (w)
lowlink (v) ← min (lowlink (v), lowlink (w))

} else if (dfn (w) < dfn (v) and w is on stack)
lowlink (v) ← min (lowlink (v), dfn (w))

if (lowlink (v) = dfn (v))
scc ← ∅
do

w ← pop ()
add w to scc

while (w ̸= v)
process_scc (scc)

end

0, 0

1, 1

2, 2

2
1
0

stack

jonasskeppstedt.net Lecture 3 2023 5 / 48

Tarjan’s Algorithm: Initial Processing of 3

int dfnum

procedure strong_connect (v)
dfn (v) ← dfnum
lowlink (v) ← dfnum
visited (v) ← true
push (v)
dfnum ← dfnum +1

for each w ∈ succ(v) do
if (not visited (w)) {

strong_connect (w)
lowlink (v) ← min (lowlink (v), lowlink (w))

} else if (dfn (w) < dfn (v) and w is on stack)
lowlink (v) ← min (lowlink (v), dfn (w))

if (lowlink (v) = dfn (v))
scc ← ∅
do

w ← pop ()
add w to scc

while (w ̸= v)
process_scc (scc)

end

0, 0

1, 1

2, 2

3, 3

3
2
1
0

stack

jonasskeppstedt.net Lecture 3 2023 6 / 48

Tarjan’s Algorithm: Initial Processing of 4

int dfnum

procedure strong_connect (v)
dfn (v) ← dfnum
lowlink (v) ← dfnum
visited (v) ← true
push (v)
dfnum ← dfnum +1

for each w ∈ succ(v) do
if (not visited (w)) {

strong_connect (w)
lowlink (v) ← min (lowlink (v), lowlink (w))

} else if (dfn (w) < dfn (v) and w is on stack)
lowlink (v) ← min (lowlink (v), dfn (w))

if (lowlink (v) = dfn (v))
scc ← ∅
do

w ← pop ()
add w to scc

while (w ̸= v)
process_scc (scc)

end

0, 0

1, 1

2, 2

3, 3

4, 4

4
3
2
1
0

stack

jonasskeppstedt.net Lecture 3 2023 7 / 48

Tarjan’s Algorithm: Initial Processing of 5

int dfnum

procedure strong_connect (v)
dfn (v) ← dfnum
lowlink (v) ← dfnum
visited (v) ← true
push (v)
dfnum ← dfnum +1

for each w ∈ succ(v) do
if (not visited (w)) {

strong_connect (w)
lowlink (v) ← min (lowlink (v), lowlink (w))

} else if (dfn (w) < dfn (v) and w is on stack)
lowlink (v) ← min (lowlink (v), dfn (w))

if (lowlink (v) = dfn (v))
scc ← ∅
do

w ← pop ()
add w to scc

while (w ̸= v)
process_scc (scc)

end

0, 0

1, 1

2, 2

3, 3

4, 4 5, 5

5
4
3
2
1
0

stack

jonasskeppstedt.net Lecture 3 2023 8 / 48

Tarjan’s Algorithm: Initial Processing of 6

int dfnum

procedure strong_connect (v)
dfn (v) ← dfnum
lowlink (v) ← dfnum
visited (v) ← true
push (v)
dfnum ← dfnum +1

for each w ∈ succ(v) do
if (not visited (w)) {

strong_connect (w)
lowlink (v) ← min (lowlink (v), lowlink (w))

} else if (dfn (w) < dfn (v) and w is on stack)
lowlink (v) ← min (lowlink (v), dfn (w))

if (lowlink (v) = dfn (v))
scc ← ∅
do

w ← pop ()
add w to scc

while (w ̸= v)
process_scc (scc)

end

0, 0

1, 1

2, 2

3, 3

4, 4 5, 5

6, 6

6
5
4
3
2
1
0

stack

jonasskeppstedt.net Lecture 3 2023 9 / 48

Tarjan’s Algorithm: More Processing of 6

(6, 2)⇒ 6 in same scc as 2.

int dfnum

procedure strong_connect (v)
dfn (v) ← dfnum
lowlink (v) ← dfnum
visited (v) ← true
push (v)
dfnum ← dfnum +1

for each w ∈ succ(v) do
if (not visited (w)) {

strong_connect (w)
lowlink (v) ← min (lowlink (v), lowlink (w))

} else if (dfn (w) < dfn (v) and w is on stack)
lowlink (v) ← min (lowlink (v), dfn (w))

if (lowlink (v) = dfn (v))
scc ← ∅
do

w ← pop ()
add w to scc

while (w ̸= v)
process_scc (scc)

end

0, 0

1, 1

2, 2

3, 3

4, 4 5, 5

6, 2

6
5
4
3
2
1
0

stack

jonasskeppstedt.net Lecture 3 2023 10 / 48

Tarjan’s Algorithm: More Processing of 6

(6, 3). no action.

int dfnum

procedure strong_connect (v)
dfn (v) ← dfnum
lowlink (v) ← dfnum
visited (v) ← true
push (v)
dfnum ← dfnum +1

for each w ∈ succ(v) do
if (not visited (w)) {

strong_connect (w)
lowlink (v) ← min (lowlink (v), lowlink (w))

} else if (dfn (w) < dfn (v) and w is on stack)
lowlink (v) ← min (lowlink (v), dfn (w))

if (lowlink (v) = dfn (v))
scc ← ∅
do

w ← pop ()
add w to scc

while (w ̸= v)
process_scc (scc)

end

0, 0

1, 1

2, 2

3, 3

4, 4 5, 5

6, 2

6
5
4
3
2
1
0

stack

jonasskeppstedt.net Lecture 3 2023 11 / 48

Tarjan’s Algorithm: More Processing of 6

6 remains on the stack.

int dfnum

procedure strong_connect (v)
dfn (v) ← dfnum
lowlink (v) ← dfnum
visited (v) ← true
push (v)
dfnum ← dfnum +1

for each w ∈ succ(v) do
if (not visited (w)) {

strong_connect (w)
lowlink (v) ← min (lowlink (v), lowlink (w))

} else if (dfn (w) < dfn (v) and w is on stack)
lowlink (v) ← min (lowlink (v), dfn (w))

if (lowlink (v) = dfn (v))
scc ← ∅
do

w ← pop ()
add w to scc

while (w ̸= v)
process_scc (scc)

end

0, 0

1, 1

2, 2

3, 3

4, 4 5, 5

6, 2

6
5
4
3
2
1
0

stack

jonasskeppstedt.net Lecture 3 2023 12 / 48

Tarjan’s Algorithm: More Processing of 5

New lowlink and remains.

int dfnum

procedure strong_connect (v)
dfn (v) ← dfnum
lowlink (v) ← dfnum
visited (v) ← true
push (v)
dfnum ← dfnum +1

for each w ∈ succ(v) do
if (not visited (w)) {

strong_connect (w)
lowlink (v) ← min (lowlink (v), lowlink (w))

} else if (dfn (w) < dfn (v) and w is on stack)
lowlink (v) ← min (lowlink (v), dfn (w))

if (lowlink (v) = dfn (v))
scc ← ∅
do

w ← pop ()
add w to scc

while (w ̸= v)
process_scc (scc)

end

0, 0

1, 1

2, 2

3, 3

4, 4 5, 2

6, 2

6
5
4
3
2
1
0

stack

jonasskeppstedt.net Lecture 3 2023 13 / 48

Tarjan’s Algorithm: More Processing of 4

New lowlink and remains.

int dfnum

procedure strong_connect (v)
dfn (v) ← dfnum
lowlink (v) ← dfnum
visited (v) ← true
push (v)
dfnum ← dfnum +1

for each w ∈ succ(v) do
if (not visited (w)) {

strong_connect (w)
lowlink (v) ← min (lowlink (v), lowlink (w))

} else if (dfn (w) < dfn (v) and w is on stack)
lowlink (v) ← min (lowlink (v), dfn (w))

if (lowlink (v) = dfn (v))
scc ← ∅
do

w ← pop ()
add w to scc

while (w ̸= v)
process_scc (scc)

end

0, 0

1, 1

2, 2

3, 3

4, 2 5, 2

6, 2

6
5
4
3
2
1
0

stack

jonasskeppstedt.net Lecture 3 2023 14 / 48

Tarjan’s Algorithm: More Processing of 3

New lowlink. Next 7.

int dfnum

procedure strong_connect (v)
dfn (v) ← dfnum
lowlink (v) ← dfnum
visited (v) ← true
push (v)
dfnum ← dfnum +1

for each w ∈ succ(v) do
if (not visited (w)) {

strong_connect (w)
lowlink (v) ← min (lowlink (v), lowlink (w))

} else if (dfn (w) < dfn (v) and w is on stack)
lowlink (v) ← min (lowlink (v), dfn (w))

if (lowlink (v) = dfn (v))
scc ← ∅
do

w ← pop ()
add w to scc

while (w ̸= v)
process_scc (scc)

end

0, 0

1, 1

2, 2

3, 2

4, 2 5, 2

6, 2

6
5
4
3
2
1
0

stack

jonasskeppstedt.net Lecture 3 2023 15 / 48

Tarjan’s Algorithm: Processing of 7

Lowlink is set.

int dfnum

procedure strong_connect (v)
dfn (v) ← dfnum
lowlink (v) ← dfnum
visited (v) ← true
push (v)
dfnum ← dfnum +1

for each w ∈ succ(v) do
if (not visited (w)) {

strong_connect (w)
lowlink (v) ← min (lowlink (v), lowlink (w))

} else if (dfn (w) < dfn (v) and w is on stack)
lowlink (v) ← min (lowlink (v), dfn (w))

if (lowlink (v) = dfn (v))
scc ← ∅
do

w ← pop ()
add w to scc

while (w ̸= v)
process_scc (scc)

end

0, 0

1, 1

2, 2

3, 2

4, 2 5, 2

6, 2

7, 6

7
6
5
4
3
2
1
0

stack

jonasskeppstedt.net Lecture 3 2023 16 / 48

Tarjan’s Algorithm: More Processing of 2

Remove SCC from stack

int dfnum

procedure strong_connect (v)
dfn (v) ← dfnum
lowlink (v) ← dfnum
visited (v) ← true
push (v)
dfnum ← dfnum +1

for each w ∈ succ(v) do
if (not visited (w)) {

strong_connect (w)
lowlink (v) ← min (lowlink (v), lowlink (w))

} else if (dfn (w) < dfn (v) and w is on stack)
lowlink (v) ← min (lowlink (v), dfn (w))

if (lowlink (v) = dfn (v))
scc ← ∅
do

w ← pop ()
add w to scc

while (w ̸= v)
process_scc (scc)

end

0, 0

1, 1

2, 2

3, 2

4, 2 5, 2

6, 2

7, 6

1
0

stack

jonasskeppstedt.net Lecture 3 2023 17 / 48

Tarjan’s Algorithm: Initial Processing of 8

No path from 2 to 8.

int dfnum

procedure strong_connect (v)
dfn (v) ← dfnum
lowlink (v) ← dfnum
visited (v) ← true
push (v)
dfnum ← dfnum +1

for each w ∈ succ(v) do
if (not visited (w)) {

strong_connect (w)
lowlink (v) ← min (lowlink (v), lowlink (w))

} else if (dfn (w) < dfn (v) and w is on stack)
lowlink (v) ← min (lowlink (v), dfn (w))

if (lowlink (v) = dfn (v))
scc ← ∅
do

w ← pop ()
add w to scc

while (w ̸= v)
process_scc (scc)

end

0, 0

1, 1

2, 2

3, 2

4, 2 5, 2

6, 2

7, 6

8, 8

8
1
0

stack

jonasskeppstedt.net Lecture 3 2023 18 / 48

Tarjan’s Algorithm: More Processing of 8

8 is its own SCC.

int dfnum

procedure strong_connect (v)
dfn (v) ← dfnum
lowlink (v) ← dfnum
visited (v) ← true
push (v)
dfnum ← dfnum +1

for each w ∈ succ(v) do
if (not visited (w)) {

strong_connect (w)
lowlink (v) ← min (lowlink (v), lowlink (w))

} else if (dfn (w) < dfn (v) and w is on stack)
lowlink (v) ← min (lowlink (v), dfn (w))

if (lowlink (v) = dfn (v))
scc ← ∅
do

w ← pop ()
add w to scc

while (w ̸= v)
process_scc (scc)

end

0, 0

1, 1

2, 2

3, 2

4, 2 5, 2

6, 2

7, 6

8, 8

1
0

stack

jonasskeppstedt.net Lecture 3 2023 19 / 48

Tarjan’s Algorithm: More Processing of 1

1 is its own SCC.

int dfnum

procedure strong_connect (v)
dfn (v) ← dfnum
lowlink (v) ← dfnum
visited (v) ← true
push (v)
dfnum ← dfnum +1

for each w ∈ succ(v) do
if (not visited (w)) {

strong_connect (w)
lowlink (v) ← min (lowlink (v), lowlink (w))

} else if (dfn (w) < dfn (v) and w is on stack)
lowlink (v) ← min (lowlink (v), dfn (w))

if (lowlink (v) = dfn (v))
scc ← ∅
do

w ← pop ()
add w to scc

while (w ̸= v)
process_scc (scc)

end

0, 0

1, 1

2, 2

3, 2

4, 2 5, 2

6, 2

7, 6

8, 8

0
stack

jonasskeppstedt.net Lecture 3 2023 20 / 48

Tarjan’s Algorithm: More Processing of 0

0 is its own SCC.

int dfnum

procedure strong_connect (v)
dfn (v) ← dfnum
lowlink (v) ← dfnum
visited (v) ← true
push (v)
dfnum ← dfnum +1

for each w ∈ succ(v) do
if (not visited (w)) {

strong_connect (w)
lowlink (v) ← min (lowlink (v), lowlink (w))

} else if (dfn (w) < dfn (v) and w is on stack)
lowlink (v) ← min (lowlink (v), dfn (w))

if (lowlink (v) = dfn (v))
scc ← ∅
do

w ← pop ()
add w to scc

while (w ̸= v)
process_scc (scc)

end

0, 0

1, 1

2, 2

3, 2

4, 2 5, 2

6, 2

7, 6

8, 8

stack

jonasskeppstedt.net Lecture 3 2023 21 / 48

Tarjan’s Algorithm: Remarks

Consider the edge (v ,w).
When w is not yet visited we must visit it by calling
strong_connect(w).
If w has been visited, we have two main cases:

1 w is not on the stack, because it has already found its SCC.
2 w is on the stack, because it’s waiting for being popped.

If dfn(w) < dfn(v) then v must set its lowlink so it does not think it is
its own SCC.
If dfn(w) ≥ dfn(v) then no more information for v is available. There
is another path from v to w due to which they will belong to the same
SCC.

jonasskeppstedt.net Lecture 3 2023 22 / 48

Greedy algorithms / Giriga algoritmer

It is not trivial to define precisely what makes an algorithm greedy.
The main idea is to use a simple rule to make decisions without taking
”all” information into account.
The challenge is to find a simple rule which solves a problem optimally
Two approaches to prove that a greedy algorithm is optimal:

1 The greedy algorithm ”stays ahead” — by proving it is always at least
as good as an optimal algorithm

2 Exchange argument (utbytesargument) — transform the output of an
optimal algorithm (without changing its quality) to the output of the
greedy algorithm

jonasskeppstedt.net Lecture 3 2023 23 / 48

Interval scheduling / Intervallschemaläggning

One resource
A set R of requests, ri , with a start time s(i) and a finish time f (i)

A set of requests is compatible if they do not overlap in time
The interval scheduling problem is to find the largest subset S ⊆ R
such that S is compatible
All requests have equal value and it is the size of S we want to
maximize
A compatible set of maximum size is called an optimal schedule

jonasskeppstedt.net Lecture 3 2023 24 / 48

An example set R

jonasskeppstedt.net Lecture 3 2023 25 / 48

A greedy algorithm for interval scheduling

procedure schedule (R)
S ← ∅ /* S is a sequence */
while R ̸= null

r ← select a request from R
remove r from R
add r to the end of S
remove all request in R which overlap with r

return S

Our problem is to figure out a clever select function
Any suggestions?

jonasskeppstedt.net Lecture 3 2023 26 / 48

Ideas for the select function

Take the request with shortest interval
Take the request which starts first
Take the request with fewest conflicts

None of these lead to an optimal solution

jonasskeppstedt.net Lecture 3 2023 27 / 48

A better select function

Take the request which finishes earliest
Is this optimal?
Select first request:

jonasskeppstedt.net Lecture 3 2023 28 / 48

Select request which finishes first

Remove incompatible requests:

jonasskeppstedt.net Lecture 3 2023 29 / 48

Select request which finishes first

Select next request:

jonasskeppstedt.net Lecture 3 2023 30 / 48

Select request which finishes first

Remove incompatible request:

jonasskeppstedt.net Lecture 3 2023 31 / 48

Select request which finishes first

Select next request:

jonasskeppstedt.net Lecture 3 2023 32 / 48

Select request which finishes first

Remove incompatible requests:

jonasskeppstedt.net Lecture 3 2023 33 / 48

Select request which finishes first

End result:

jonasskeppstedt.net Lecture 3 2023 34 / 48

Proving optimality of a greedy algorithm

What should we prove?
Can there exist several optimal schedules?
Either show our algorithm is as good as an optimal (stays ahead), or
output from an optimal algorithm can be transformed to the output of
our algorithm.
For our problem, assume there is an optimal schedule represented as a
sequence T sorted in order of increasing finish time
We should not try to prove S = T

Instead we should prove |S | = |T |
We will use the first proof technique:
”our algorithm stays ahead of an optimal solution”
That is, |S | ≥ |T |

jonasskeppstedt.net Lecture 3 2023 35 / 48

Two solutions

Our: S = (r1, r2, ..., rn)

Optimal: T = (t1, t2, ..., tm)

We want to show n = m

S and T are both sorted by increasing finish time
It is clear that f (r1) ≤ f (t1) since we select the request with earliest
finish time
There are at least n requests in T so we can aim at proving:
f (rk) ≤ f (tk) 1 ≤ k ≤ n

jonasskeppstedt.net Lecture 3 2023 36 / 48

Comparing the solutions

Lemma
f (rk) ≤ f (tk) 1 ≤ k ≤ n

Proof.
Proof by induction. f (r1) ≤ f (t1) is clear.
For k > 1, assume (1): f (rk−1) ≤ f (tk−1).
Since T is compatible (2): f (tk−1) ≤ s(tk)

From (1) and (2) follows (3): f (rk−1) ≤ s(tk)

Our algorithm can select tk as its rk

Our algorithm selects as rk the request with earliest finish time, i.e.
f (rk) ≤ f (tk)

jonasskeppstedt.net Lecture 3 2023 37 / 48

|S | = |T |

It remains to prove that |S | = |T |.
Recall n = |S | and m = |T |.

Theorem
|S | = |T |.

Proof.
Assume in contradiction that m > n.
We know f (rn) ≤ f (tn)

Since m > n, T contains a request tn+1

We must have s(tn+1) ≥ f (tn) ≥ f (rn)

But this request should have been scheduled by our algorithm which
contradicts the assumption that |S | = n so m = n and optimality has
been proved

jonasskeppstedt.net Lecture 3 2023 38 / 48

Time complexity

Our greedy algorithm can be implemented in time O(n log n)

First all requests are sorted in order of increasing finish time
Then a linear pass finds the schedule

jonasskeppstedt.net Lecture 3 2023 39 / 48

Scheduling to minimize delays

Again one resource
Consider now requests with a soft deadline d(r) and a time length t(r)

It is not a disaster to fail a soft deadline compared with a hard deadline
s(r) and f (r) are start and finish times and in this problem they are
output and not input
The delay of one request is max(0, f (r)− d(r))

Our problem is to schedule requests so that the maximum delay of any
request is minimized
What is a simple rule to do that optimally?

jonasskeppstedt.net Lecture 3 2023 40 / 48

Algorithm: select next with earliest deadline

Request are renamed so that d(r1) ≤ d(r2)... ≤ d(rn)

Our algorithm simply is to schedule the requests in this order, or in
other words, the earliest deadline first
In addition, we schedule requests so that s(ri+1) = f (ri), i.e. without
a gap between ri and ri+1

Thus there is no idle time between any two requests
Consider any optimal schedule T . Can it have idle time?
Yes, e.g. if t(r1) = 1, d(r1) = 2, t(r2) = 3, d(r2) = 10
With s(r1) = 1, f (r1) = 2, s(r2) = 7, d(r2) = 10, the maximum delay
is zero
But there obviously exists a different optimal schedule without any gap
— just start the requests in the same order but as early as possible

jonasskeppstedt.net Lecture 3 2023 41 / 48

Inversions

Let d(ri) < d(rj)

If rj is scheduled before ri , it is called an inversion
Our algorithm creates no inversions
But if d(ri) = d(ri+1) then it can schedule ri+1 before ri

jonasskeppstedt.net Lecture 3 2023 42 / 48

First part of our optimality proof

Lemma
All schedules with no idle time and no inversions have the same maximum
delay

Proof.
Consider two different schedules S and T without idle time and no
inversions
Then the only difference between S and T is the order in which
requests with identical deadlines are scheduled
In a sequence with such requests, the last has the maximal delay or no
delay.
The maximal delay is the same in both schedules.

jonasskeppstedt.net Lecture 3 2023 43 / 48

An example

Let all requests take one time unit
Let all requests have deadline d(ri) = 3
S = (r1, r2, r3, r4, r5)

T = (r4, r5, r1, r2, r3)

In S r1, r2, r3 have no delay, r4 is delayed 1 and r5 is delayed 2
In T r4, r5, r1 have no delay, r2 is delayed 1 and r3 is delayed 2
Same maximum delay but for different requests

jonasskeppstedt.net Lecture 3 2023 44 / 48

Second part

We will prove that an optimal schedule T can be transformed to S

Lemma
Assume an optimal schedule Q has an inversion of ri and rj i.e. di < dj
and rj is scheduled before ri . Then Q has a pair ra and rb of inverted
requests scheduled immediately after each other.

In (7, 8, 9, 1, 2, 3, 4, 5, 6) with i = 1, j = 7 we have a = 1, b = 9.

Proof.
We have (rj , ..., ri) with k requests scheduled between rj and ri , k ≥ 0
In this sequence of k + 2 requests, since di < dj , there must be a first
pair ra and rb of inverted requests with rb scheduled immediately
before ra such that da < db.

jonasskeppstedt.net Lecture 3 2023 45 / 48

Third part

Lemma
Let ra and rb be a pair of inverted requests scheduled consecutively in Q
Swapping ra and rb into R , the maximum delay does not increase.

Proof.
We have Q = (..., rb, ra, ...) and R = (..., ra, rb, ...).
The delay of ra cannot have increased in R

Let f X (r) be the finish time in schedule X for request r
Let t = f Q(ra) = f R(rb) (i.e. finish time of last of them)
The delay of ra in Q is f Q(ra)− d(ra) = t − d(ra)

The delay of rb in R is f R(rb)− d(rb) = t − d(rb)

Can rb now be more late than ra was? I.e. can t − d(rb) > t − d(ra)?
t − d(rb) > t − d(ra) ⇐⇒ t + d(ra) > t + d(rb)

No, since by assumption d(ra) < d(rb)

jonasskeppstedt.net Lecture 3 2023 46 / 48

Last part

Theorem
Our algorithm produces a schedule with minimum maximum delay.

Proof.
We have just shown that there exists an optimal schedule T with no
idle time and no inversions.
Since all schedules with no idle time and no inversions have the same
maximum delay, our algorithm is optimal.

jonasskeppstedt.net Lecture 3 2023 47 / 48

An exchange argument

What did we do?
We find an algorithm which seems to be optimal.
We characterize optimal solutions.
We exchange optimal solutions to produce an output which is identical
to ours.
Therefore our algorithm is optimal.
Note that the schedules may be different but the minimum maximum
delay is the same.

jonasskeppstedt.net Lecture 3 2023 48 / 48

