Single linked list

p
0202020
class List {
int data;
List next;
+s
List P;

jonasskeppstedt.net Lecture 2 2023 1/48

A corrupted single linked list

p

|
Oa02020

@ Quiz: how can you check if a list is corrupted without looping forever?

jonasskeppstedt.net Lecture 2

Inserting a new node

RS:
(D) A

@ Lists are more flexible than arrays

jonasskeppstedt.net Lecture 2

Optimizing append

p

|
020202020

@ A header node with pointers both to first and last nodes

jonasskeppstedt.net Lecture 2

Double linked list

@ More efficient in some situations

jonasskeppstedt.net Lecture 2

A circular double linked list

p

-
010108020

@ Beware of infinite loops!

@ Often a do-while loop is convenient

jonasskeppstedt.net Lecture 2

Binary search tree

A tree node t

left(t) = null or key(left(t)) < key(t)

right(t) = null or key(right(t)) > key(t)

to insert a (key,value) pair,

to delete a node with a certain key, and

to search for a node with a certain key.

jonasskeppstedt.net

Lecture 2

Balanced binary search trees

e Without balancing, the running time of insert, search, and delete

would be O(n)

@ Two Russian mathematicians, Georgy Adelson-Velsky and Evgenii
Landis, discovered in 1962 the first self-balancing binary search tree
with O(log n) time for insert, delete, and search: the AVL-tree.

@ In 1972 the German computer scientist Rudolf Bayer invented another
self-balancing search tree: the red-black tree, with the same time
complexity

jonasskeppstedt.net Lecture 2

AVL tree balance attribute

balance

meaning

—1

0

1

left subtree is one higher than right subtree
left and right subtrees have equal heights
right subtree is one higher than left subtree

Lecture 2

jonasskeppstedt.net

Insertion

jonasskeppstedt.net Lecture 2 2023 10 /48

Single rotations

() (2)
(2] AAO

T Ts 2 T3

o o
AR oL AA
ANANRYARA

Lecture 2 2023 11 /48

jonasskeppstedt.net

Double rotations

Hash maps or hash tables

Store (key,value) pairs using an array of size m
Insert, search and delete operations
Compute an index from the key (modulo m) using a hash function

When two keys are mapped to the same index there is a collision

Two main approaches to handle collisions:

o with separate chaining (Oppen hashtabell)
o with open addressing (sluten hashtabell)

e With n pairs, o = - is the load factor
@ Separate chaining uses linked lists for the pairs

@ Open addressing stores the pairs in the array

jonasskeppstedt.net Lecture 2

Separate chaining

The table is an array of linked lists

@ Compared with only one list, this will likely be m times faster
Some alternatives:

o Always insert at the beginning (no search needed if you know it is a
new pair)

o Keep each list sorted

e Move frequently used pairs to the beginning of the list

Advantage: simple to implement

Disadvantage: less simple to allocate memory for the list nodes
efficiently (allocation and freeing/garbage collecting nodes takes time)

Usually a good choice
If o gets too big, the operations will be slower but still work
Resize array if needed

jonasskeppstedt.net Lecture 2 2023 14 / 48

Open addressing

@ Invented by Gene Amdahl

@ a < 1 (but see below — significantly less than one is better)

@ Three ways to handle collisions

e Linear probing
e Quadratic probing
e Double hashing probing

jonasskeppstedt.net Lecture 2

Linear probing

An array element either contains a pair or a value "empty” (e.g. null)

@ Sometimes it is simpler to have one array for keys and another for

values, with the key and value of a pair stored at index / in the two
arrays

First compute an index i < f(key) mod m

If a[i] is not empty, set /i < (i +1) mod m and check again
Otherwise insert new pair at /

Similar for search

Quiz: can we do the same for delete plus storing "empty’ in the array?

jonasskeppstedt.net Lecture 2

Linear probing: delete

Answer: no, since we then might not find some of the keys.
Empty hash table:

empty | empty | empty | empty | empty | empty | empty
Insert two pairs with f(k1) mod m = f(kz) mod m

empty | ki ko empty | empty | empty | empty
Delete the pair kq

empty | empty | ko empty | empty | empty | empty
Search for ko

empty | empty | ko empty | empty | empty | empty

will give up at first probe since it sees "empty”

What can we do? Quiz: why not store a value "deleted” and skip such
when searching?

jonasskeppstedt.net

Lecture 2

2023 17 / 48

Linear probing: delete

Answer: yes, that works but gives other problems
Empty hash table:

empty | empty | empty | empty | empty | empty | empty
Insert two pairs with f(k1) mod m = f(kz) mod m

empty | ki ko empty | empty | empty | empty
Delete the pair kq

empty | deleted| ko empty | empty | empty | empty
Search for ko

empty | deleted| ko empty | empty | empty | empty

will skip "deleted” and find ko
Quiz: when is this bad?

jonasskeppstedt.net

Lecture 2

Storing "'deleted”

@ Answer: we may store many 'deleted”’ that must be skipped
@ But if we insert and come to a "deleted” then we can use that position.

@ | use both position and index for the same place in the array but it is a
slight abuse of English.

@ If we have too many "deleted” we can clean the hash table to remove
them by reinserting everything

@ Quiz: instead of storing "deleted”, can we not move items "to the left'"?

jonasskeppstedt.net Lecture 2

Linear probing: delete with move

Answer: vyes, if we are careful
Empty hash table:

empty | empty | empty | empty | empty | empty | empty
Insert two pairs with f(k;) mod m = f(kx) mod m

empty | ki ko empty | empty | empty | empty
Delete the pair k1 and move k»

empty | ko empty | empty | empty | empty | empty
Search for k>

empty | ko empty | empty | empty | empty | empty
will find k>

Quiz: what could go wrong?

jonasskeppstedt.net

Lecture 2

Linear probing: delete with bad move

@ Answer: moving a key to the left of its originally computed index

@ Insert two pairs with f(k;) mod m = f(k,) mod m
empty | ki ko empty | empty | empty | empty

@ Insert a pair with f(kg) mod m =20
ko ki ko empty | empty | empty | empty

@ Delete k1 and move k>
ko ko empty | empty | empty | empty | empty

@ Delete kg and move k>
ko empty | empty | empty | empty | empty | empty
will never find k>

jonasskeppstedt.net Lecture 2 2023 21 /48

Linear probing: correct delete with move

procedure delete (k, h)
begin
i < h(k) mod m
while true do {
ali] + empty
J 1
while true do {
i+ (i+1) mod m
if a[i] = empty then
return
k < h(a[i]) mod m
ifnot (< k<i ori<j<k ork<i<j)then
alj] < ali]
break
}

end

@ T hree conditions needed due to modulo m.

jonasskeppstedt.net Lecture 2 2023 22 /48

A simple model of unsuccessful search in linear probing

@ We ignore clustering and instead assume all positions are equally likely
to be occupied.

@ If the random variable X is the number of probes in an unsuccessful
search, what is the expected value of X, E[X]?

o IP(X > k) is the probability that the first kK — 1 positions are occupied,
and the last is empty.

o The probability the first probed is occupied is:

o the two first: 2 . 2=L
m m-—1

@ For kK > 1 we can write:

P(X > k) = nl . . n=k42 o (nyk-1 k—1

n
m m—1 " m—k+2 =

@ with the last expression is valid also for k = 1.

jonasskeppstedt.net Lecture 2

A simple formula for E[X]

E[X] — ikJHX:M

= Zk (P(X > k)—IP(X > k+1))
= 1 P(X>1)—1-P(X >2)

+2-P(X>2)—2 P(X > 3)
+3-P(X>3)—3-P(X > 4)

— 1. P(X > 1)
+ 2-IP(X > 2)
+3-P(X > 3)

_ S P(X > k)

00
S Z Oék_l
k

_ k _ .
=) ot = =, since a < 1.

jonasskeppstedt.net Lecture 2

Expected number of probes in an unsuccessful search

a | E[X]
0.2 | 1.25
0.3 | 1.43
0.4 | 1.67
0.5 | 2.00
0.6 | 2.50
0.7 | 3.33
0.8 | 5.00
0.9 | 10.00
0.95 | 20.00
0.98 | 50.00

@ Recall this is an optimistic estimation since clustering is ignored

@ In reality, long sequences of occupied positions tend to grow longer
@ See Knuth TAOCP Volume 3 for a more detailed analysis

@ This analysis is sufficient to convince us to avoid large o

jonasskeppstedt.net Lecture 2 2023 25 /48

Quadratic probing

The purpose of quadratic probing is to reduce the risk of clustering by
adding i° instead of only i to the initial hash value.

The intent is to leave a cluster quickly.

Below A’ is the original hash function

h(k,i) = (K(k)+i?) mod m

Clustering is reduced but if two different keys have the same hash
value, there can be secondary clustering since the positions probed for
these keys will be the same.

Quiz: can we now know we will find an empty position if there is one?

jonasskeppstedt.net Lecture 2 2023 26 / 48

Quadratic probing

@ Answer: no
@ Assume m =3 and h'(k) =0

@ This is a very bad hash function but for illustration only, but during
debugging it can be useful

@ The sequence of visited positions would be: (0,1,1) from
(0,(0+1%) mod 3=1,(0+22) mod 3 =1)

@ We miss postion 2

@ Note it did not help that m is a prime number (which might have
been useful...)

@ Quiz: can we add a constraint to make this work?

jonasskeppstedt.net Lecture 2

Making quadratic probing work better

Answer: yes.
If mis prime and we also require that « = n/m < % it will work.

Let / and j be the probe numbers made for two different searches or
Insertions.

Assume both operations resulted in the same hash value so they start
searching at the same positions.

i and j will start at one, be incremented, and probe until an empty
position is found.

Assume the operation using i inserted something first, somewhere.

The operation using j will initially use the same positions, i.e. same
values as /.

We want to show that when i/ and j have different values they would
not map to the same positions.

@ That means j does not "return to" a position in the sequence used by /.

Lecture 2 2023 28 /48

jonasskeppstedt.net

A lemma

If mis prime and a = - < % and i # j, then quadratic probing will find
an empty position in less than 5 probes

jonasskeppstedt.net Lecture 2

A proof

Let 0 <i,j < [F], and h'(k1) = h'(k2). Assume incorrectly that two
different probe numbers, i and j, are mapped to the same positions.

(W' (k) +i%?) mod m
(i (a) +)

(W' (ko) + j2) mod m
(h' (ko) +j%) mod m

I = j2 mod m
7 — [= 0 mod m
(i —)i +J) = 0 mod m

Since m is prime and i/ £ j, either i — j or i + j is divisible by m, but since
both i —j and / + j are less than m, none of them can be divisible by m. A
contradiction. Therefore the first |5 | probes are to different positions and
since o < % an empty position will be found.]

y

jonasskeppstedt.net Lecture 2 2023 30/48

Double hashing

@ Another alternative is to use an additional hash function:
h(k,i) = (hi(k)+i-ha(k)) mod m

@ Assume two different keys had the same hash value in quadratic
probing, i.e., with hy(k).

@ Then it is hoped that the risk that they have the same value also for
ha(k) is much less.

@ In practice this removes most clustering.

@ By guaranteeing that hy(k) is relatively prime to m, all positions will
be probed. Two simple ways to achieve this are:

o let m = 2" and ensure that hy(k) always is odd, or
o let m be prime and 0 < hy(k) < m.

jonasskeppstedt.net Lecture 2 2023 31/48

Summary of hash tables

@ No obvious "best” choice
@ Luckily both alternatives are easy to implement.

@ Best is to make performance measurements before changing anything,
obviously.

@ Especially the number of cache misses can explain performance
differences.

o See EDAGO1 for profilers for C (and C++).

@ In EDAGO1 you will even use a simulator from IBM which explains
what happens each clock cycle in a modern CPU (POWERS).

jonasskeppstedt.net Lecture 2

@ Notation
@ Graph traversal and connectivity
@ Testing bipartiteness

@ Connectivity in directed graphs

jonasskeppstedt.net Lecture 2

ZON

G=(V,E)

V/ is a set of nodes or vertices
E is a set of edges or arcs

V ={a,b,c,d,e,f,g, hij}
E={a—bb—d,....i —j}, or
E = {(a,b), (b, d), .. (i,))}
n=|V|

m = |E

jonasskeppstedt.net Lecture 2

Example graphs

Cities connected by direct air flights: node = city, edge = flight
Social networks: node = person, edge = friend

An undirected graph describes friends on a social network

When you follow somebody you have an edge from one to another, i.e.
a directed graph

@ Actually, we can view city connectivity through air flights as a directed
graph but normally there is a flight back

@ Chess games: node = position, edge = legal move

jonasskeppstedt.net Lecture 2

Graph representation: adjacency matrix

n=|V|and m=|E|
Number each vertex from 1..n
Often two representations of each edge

If there is an edge i — j then one is stored both in m[i][j] and in
ml[j][i], otherwise a zero

If nis large it can be a good idea to store only half the matrix
©(n?) space

©(1) time to check if there is an edge i — j

©(n) time to find all neighbors of a node

©(n?) time to list all edges

jonasskeppstedt.net Lecture 2

Graph representation: adjacency list

n=|V|and m=|E|

Every vertex has a list of neighbors

Every edge u — v is stored in both v and v
degree(n) is the number of neighbors
©(degree(n)) time to find all neighbors of a node
©(m) time to list all edges

jonasskeppstedt.net Lecture 2

Optimizations

@ Store only half of the adjacency matrix for undirected graphs

@ For a very dense graph the matrix is smaller and just as fast

@ If you need both quick neighbor check and being able to quickly list all
neighbors, then use both!

@ Optimizing compilers use both when deciding which variable should be
allocated a processor register: the variables are nodes and there is an
edge x — y if x and y may be needed at the same time (and therefore

cannot use the same register)

jonasskeppstedt.net Lecture 2

Paths and connectivity

e A path is a sequence of nodes p = (vy, vo, ..., vk) such that v; and
vi11 are neighbors in an undirected graph, or there is an edge from v;
to v;11 in a directed graph.

@ If all nodes in p are distinct then it is a simple path.

@ An undirected graph is connected if there is a path between every
pair of nodes.

@ A cycle is a path which consists of a simple path followed by the first
node such as (u, v, w, u).

jonasskeppstedt.net Lecture 2 2023 39/48

Trees

@ A connected undirected graph is a tree if it has no cycle.
@ A tree has n — 1 edges.

@ In a rooted tree one node, r is called the node.

jonasskeppstedt.net Lecture 2

Depth first search: DFS

int dfnum; /* Depth-first search number. */
procedure dfs(v)
begin

dfn(v) < dfnum

visited (v) < true

dfnum < dfnum +1

for each w € succ(v) do
if (not visited (w))

dfs(w)
end
procedure depth_first search(V)
dfnum < 0
for each v € V do
visited (v) <« false
dfs(s)
end

jonasskeppstedt.net Lecture 2

2023

41 / 48

@ Properties of depth-first search have been studied extensively by
Robert Tarjan

@ DFS is used a lot in compilers

@ His algorithms tend to be faster than others’ and often more beautiful
than art

jonasskeppstedt.net Lecture 2

DES example

jonasskeppstedt.net Lecture 2

The s-t connectivity problem

The problem is to find a path from s to t.
Often we want to find the shortest path from s to t.

The distance between two nodes u and v is the number of edges on a
shortest path from u to v

How to solve the connectivity problem?

Check all nodes v at a distance k from s until either v = t or there
are no more nodes to check, in which case s and t are not connected.

Let k=1,2.3,...,00
This is called breadth first search, or simply BFS

Think of an onion. You start in the center and explore one layer at a
time outwards.

jonasskeppstedt.net Lecture 2 2023 44 / 48

Breadth first search

e Q @ |s there a path from a to j7

A node v is added to a layer
only the first time v is seen

o
e a @ Check one layer at a time.
" o Lo={a}
o L1 ={b}
O oo b,
o L3={c,e g}
Q Q o Ly={f,j}
@ We don't need the layers. A list
is sufficient.

jonasskeppstedt.net Lecture 2

BFS implementation to find path s — t

procedure BFS(G, s, t)
g < new list containing s
for v € V visited(v) < 0
visited(s) + 1
while g # null
v < take out the first element from q

for w € neighbor(v)
if not visited(w) then
visited(w) < 1
add w to end of g
pred(w) < v
if w=1t then
print "found path s — t’
return
print "found no path s — t"

Lecture 2

jonasskeppstedt.net

Finding the actual path s — t

We want to find a path a —
Oneis p=(a,b,d, g,]j)

For each node w except the first, the attribute pred(w) is the previous
node in p.

pred(j) = g, pred(g) = d, etc

What is the running time of BFS?

The while loop has up to n iterations with |V| = n
Each node has at most n neighbors, so O(n?)?

What do you say?

jonasskeppstedt.net Lecture 2

BFS time complexity

e But in total m edges so 2m =) _, degree(v) edges to process.

veV
@ 2m since each edge is in two adjacency lists

@ Thus BFS can be implemented in O(n + m) with adjacency lists

jonasskeppstedt.net Lecture 2

