
Single linked list

p

v1 v2 v3 v4

class List {
int data;
List next;

};

List p;

jonasskeppstedt.net Lecture 2 2023 1 / 48



A corrupted single linked list

p

v1 v2 v3 v4

Quiz: how can you check if a list is corrupted without looping forever?

jonasskeppstedt.net Lecture 2 2023 2 / 48



Inserting a new node

p

v1 v2 v3 v4

v5

Lists are more flexible than arrays

jonasskeppstedt.net Lecture 2 2023 3 / 48



Optimizing append

p

h v1 v2 v3 v4

A header node with pointers both to first and last nodes

jonasskeppstedt.net Lecture 2 2023 4 / 48



Double linked list

p

v1 v2 v3 v4 v5

More efficient in some situations

jonasskeppstedt.net Lecture 2 2023 5 / 48



A circular double linked list

p

v1 v2 v3 v4 v5

Beware of infinite loops!
Often a do-while loop is convenient

jonasskeppstedt.net Lecture 2 2023 6 / 48



Binary search tree

A tree node t

left(t) = null or key(left(t)) < key(t)
right(t) = null or key(right(t)) > key(t)

to insert a (key,value) pair,
to delete a node with a certain key, and
to search for a node with a certain key.

jonasskeppstedt.net Lecture 2 2023 7 / 48



Balanced binary search trees

Without balancing, the running time of insert, search, and delete
would be O(n)

Two Russian mathematicians, Georgy Adelson-Velsky and Evgenii
Landis, discovered in 1962 the first self-balancing binary search tree
with O(log n) time for insert, delete, and search: the AVL-tree.
In 1972 the German computer scientist Rudolf Bayer invented another
self-balancing search tree: the red-black tree, with the same time
complexity

jonasskeppstedt.net Lecture 2 2023 8 / 48



AVL tree balance attribute

balance meaning
−1 left subtree is one higher than right subtree

0 left and right subtrees have equal heights
1 right subtree is one higher than left subtree

jonasskeppstedt.net Lecture 2 2023 9 / 48



Insertion

s

t ⇒

s

t

u

jonasskeppstedt.net Lecture 2 2023 10 / 48



Single rotations

s

T1 T2

t

T3 ⇒

s

T1

t

T2 T3

s

T1

t

T2 T3

⇒
s

T1 T2

t

T3

jonasskeppstedt.net Lecture 2 2023 11 / 48



Double rotations

s

T1

t

u

T2 T3

T4

⇒

t

us

T1 T2 T3 T4

u

T1

t

s

T2 T3

T4

⇒

t

us

T1 T2 T3 T4

jonasskeppstedt.net Lecture 2 2023 12 / 48



Hash maps or hash tables

Store (key,value) pairs using an array of size m

Insert, search and delete operations
Compute an index from the key (modulo m) using a hash function
When two keys are mapped to the same index there is a collision
Two main approaches to handle collisions:

with separate chaining (öppen hashtabell)
with open addressing (sluten hashtabell)

With n pairs, α = n
m is the load factor

Separate chaining uses linked lists for the pairs
Open addressing stores the pairs in the array

jonasskeppstedt.net Lecture 2 2023 13 / 48



Separate chaining

The table is an array of linked lists
Compared with only one list, this will likely be m times faster
Some alternatives:

Always insert at the beginning (no search needed if you know it is a
new pair)
Keep each list sorted
Move frequently used pairs to the beginning of the list

Advantage: simple to implement
Disadvantage: less simple to allocate memory for the list nodes
efficiently (allocation and freeing/garbage collecting nodes takes time)
Usually a good choice
If α gets too big, the operations will be slower but still work
Resize array if needed

jonasskeppstedt.net Lecture 2 2023 14 / 48



Open addressing

Invented by Gene Amdahl
α < 1 (but see below — significantly less than one is better)
Three ways to handle collisions

Linear probing
Quadratic probing
Double hashing probing

jonasskeppstedt.net Lecture 2 2023 15 / 48



Linear probing

An array element either contains a pair or a value ”empty” (e.g. null)
Sometimes it is simpler to have one array for keys and another for
values, with the key and value of a pair stored at index i in the two
arrays
First compute an index i ← f (key) mod m

If a[i ] is not empty, set i ← (i + 1) mod m and check again
Otherwise insert new pair at i
Similar for search
Quiz: can we do the same for delete plus storing ”empty” in the array?

jonasskeppstedt.net Lecture 2 2023 16 / 48



Linear probing: delete

Answer: no, since we then might not find some of the keys.
Empty hash table:
empty empty empty empty empty empty empty

Insert two pairs with f (k1) mod m = f (k2) mod m
empty k1 k2 empty empty empty empty

Delete the pair k1
empty empty k2 empty empty empty empty

Search for k2
empty empty k2 empty empty empty empty

will give up at first probe since it sees ”empty”
What can we do? Quiz: why not store a value ”deleted” and skip such
when searching?

jonasskeppstedt.net Lecture 2 2023 17 / 48



Linear probing: delete

Answer: yes, that works but gives other problems
Empty hash table:
empty empty empty empty empty empty empty

Insert two pairs with f (k1) mod m = f (k2) mod m
empty k1 k2 empty empty empty empty

Delete the pair k1
empty deleted k2 empty empty empty empty

Search for k2
empty deleted k2 empty empty empty empty

will skip ”deleted” and find k2

Quiz: when is this bad?

jonasskeppstedt.net Lecture 2 2023 18 / 48



Storing ”deleted”

Answer: we may store many ”deleted” that must be skipped
But if we insert and come to a ”deleted” then we can use that position.
I use both position and index for the same place in the array but it is a
slight abuse of English.
If we have too many ”deleted” we can clean the hash table to remove
them by reinserting everything
Quiz: instead of storing ”deleted”, can we not move items ”to the left”?

jonasskeppstedt.net Lecture 2 2023 19 / 48



Linear probing: delete with move

Answer: yes, if we are careful
Empty hash table:
empty empty empty empty empty empty empty

Insert two pairs with f (k1) mod m = f (k2) mod m
empty k1 k2 empty empty empty empty

Delete the pair k1 and move k2
empty k2 empty empty empty empty empty

Search for k2
empty k2 empty empty empty empty empty

will find k2

Quiz: what could go wrong?

jonasskeppstedt.net Lecture 2 2023 20 / 48



Linear probing: delete with bad move

Answer: moving a key to the left of its originally computed index
Insert two pairs with f (k1) mod m = f (k2) mod m
empty k1 k2 empty empty empty empty

Insert a pair with f (k0) mod m = 0
k0 k1 k2 empty empty empty empty

Delete k1 and move k2
k0 k2 empty empty empty empty empty

Delete k0 and move k2
k2 empty empty empty empty empty empty

will never find k2

jonasskeppstedt.net Lecture 2 2023 21 / 48



Linear probing: correct delete with move

procedure delete (k , h)
begin

i ← h(k) mod m
while true do {

a[i ]← empty
j ← i
while true do {

i ← (i + 1) mod m
if a[i ] = empty then

return
k ← h(a[i ]) mod m
if not (j ≤ k < i or i ≤ j < k or k < i < j) then

a[j ]← a[i]
break

}
end

Three conditions needed due to modulo m.
jonasskeppstedt.net Lecture 2 2023 22 / 48



A simple model of unsuccessful search in linear probing

We ignore clustering and instead assume all positions are equally likely
to be occupied.
If the random variable X is the number of probes in an unsuccessful
search, what is the expected value of X , E[X ]?
IP(X ≥ k) is the probability that the first k − 1 positions are occupied,
and the last is empty.

The probability the first probed is occupied is: n
m ,

the two first: n
m ·

n−1
m−1 ,

For k > 1 we can write:

IP(X ≥ k) = n
m ·

n−1
m−1 · ... ·

n−k+2
m−k+2 ≤ ( n

m )k−1 = αk−1,

with the last expression is valid also for k = 1.

jonasskeppstedt.net Lecture 2 2023 23 / 48



A simple formula for E[X ]

E[X ] =
∞∑
k=1

k · IP(X = k)

=
∞∑
k=1

k · (IP(X ≥ k)− IP(X ≥ k + 1))

= 1 · IP(X ≥ 1)− 1 · IP(X ≥ 2)
+ 2 · IP(X ≥ 2)− 2 · IP(X ≥ 3)
+ 3 · IP(X ≥ 3)− 3 · IP(X ≥ 4)

...
= 1 · IP(X ≥ 1)

+ 2 · IP(X ≥ 2)
+ 3 · IP(X ≥ 3)

...

=
∞∑
k=1

IP(X ≥ k)

≤
∞∑
k=1

αk−1

=
∞∑
k=0

αk = 1
1−α , since α < 1.

jonasskeppstedt.net Lecture 2 2023 24 / 48



Expected number of probes in an unsuccessful search

α E[X ]

0.2 1.25
0.3 1.43
0.4 1.67
0.5 2.00
0.6 2.50
0.7 3.33
0.8 5.00
0.9 10.00
0.95 20.00
0.98 50.00

Recall this is an optimistic estimation since clustering is ignored
In reality, long sequences of occupied positions tend to grow longer
See Knuth TAOCP Volume 3 for a more detailed analysis
This analysis is sufficient to convince us to avoid large α

jonasskeppstedt.net Lecture 2 2023 25 / 48



Quadratic probing

The purpose of quadratic probing is to reduce the risk of clustering by
adding i2 instead of only i to the initial hash value.
The intent is to leave a cluster quickly.
Below h′ is the original hash function

h(k , i) = (h′(k) + i2) mod m

Clustering is reduced but if two different keys have the same hash
value, there can be secondary clustering since the positions probed for
these keys will be the same.
Quiz: can we now know we will find an empty position if there is one?

jonasskeppstedt.net Lecture 2 2023 26 / 48



Quadratic probing

Answer: no
Assume m = 3 and h′(k) = 0
This is a very bad hash function but for illustration only, but during
debugging it can be useful
The sequence of visited positions would be: (0, 1, 1) from
(0, (0 + 12) mod 3 = 1, (0 + 22) mod 3 = 1)
We miss postion 2
Note it did not help that m is a prime number (which might have
been useful...)
Quiz: can we add a constraint to make this work?

jonasskeppstedt.net Lecture 2 2023 27 / 48



Making quadratic probing work better

Answer: yes.
If m is prime and we also require that α = n/m < 1

2 , it will work.
Let i and j be the probe numbers made for two different searches or
insertions.
Assume both operations resulted in the same hash value so they start
searching at the same positions.
i and j will start at one, be incremented, and probe until an empty
position is found.
Assume the operation using i inserted something first, somewhere.
The operation using j will initially use the same positions, i.e. same
values as i .
We want to show that when i and j have different values they would
not map to the same positions.
That means j does not ”return to” a position in the sequence used by i .

jonasskeppstedt.net Lecture 2 2023 28 / 48



A lemma

Lemma
If m is prime and α = n

m < 1
2 , and i ̸= j , then quadratic probing will find

an empty position in less than m
2 probes

jonasskeppstedt.net Lecture 2 2023 29 / 48



A proof

Proof.
Let 0 ≤ i , j < ⌈m2 ⌉, and h′(k1) = h′(k2). Assume incorrectly that two
different probe numbers, i and j , are mapped to the same positions.

(h′(k1) + i2) mod m = (h′(k2) + j2) mod m
(h′(k1) + i2) ≡ (h′(k2) + j2) mod m

i2 ≡ j2 mod m
i2 − j2 ≡ 0 mod m

(i − j)(i + j) ≡ 0 mod m

Since m is prime and i ̸= j , either i − j or i + j is divisible by m, but since
both i − j and i + j are less than m, none of them can be divisible by m. A
contradiction. Therefore the first ⌈m2 ⌉ probes are to different positions and
since α < 1

2 , an empty position will be found.

jonasskeppstedt.net Lecture 2 2023 30 / 48



Double hashing

Another alternative is to use an additional hash function:

h(k , i) = (h1(k) + i · h2(k)) mod m

Assume two different keys had the same hash value in quadratic
probing, i.e., with h1(k).
Then it is hoped that the risk that they have the same value also for
h2(k) is much less.
In practice this removes most clustering.
By guaranteeing that h2(k) is relatively prime to m, all positions will
be probed. Two simple ways to achieve this are:

let m = 2n and ensure that h2(k) always is odd, or
let m be prime and 0 < h2(k) < m.

jonasskeppstedt.net Lecture 2 2023 31 / 48



Summary of hash tables

No obvious ”best” choice
Luckily both alternatives are easy to implement.
Best is to make performance measurements before changing anything,
obviously.
Especially the number of cache misses can explain performance
differences.
See EDAG01 for profilers for C (and C++).
In EDAG01 you will even use a simulator from IBM which explains
what happens each clock cycle in a modern CPU (POWER8).

jonasskeppstedt.net Lecture 2 2023 32 / 48



Graphs

Notation
Graph traversal and connectivity
Testing bipartiteness
Connectivity in directed graphs

jonasskeppstedt.net Lecture 2 2023 33 / 48



Graphs

a b

c d

e f g h

i j

G = (V ,E )

V is a set of nodes or vertices
E is a set of edges or arcs
V = {a, b, c , d , e, f , g , h, i , j}
E = {a− b, b − d , ..., i − j}, or
E = {(a, b), (b, d), ..., (i , j)}
n = |V |
m = |E |

jonasskeppstedt.net Lecture 2 2023 34 / 48



Example graphs

Cities connected by direct air flights: node = city, edge = flight
Social networks: node = person, edge = friend
An undirected graph describes friends on a social network
When you follow somebody you have an edge from one to another, i.e.
a directed graph
Actually, we can view city connectivity through air flights as a directed
graph but normally there is a flight back
Chess games: node = position, edge = legal move

jonasskeppstedt.net Lecture 2 2023 35 / 48



Graph representation: adjacency matrix

n = |V | and m = |E |
Number each vertex from 1..n
Often two representations of each edge
If there is an edge i − j then one is stored both in m[i ][j ] and in
m[j ][i ], otherwise a zero
If n is large it can be a good idea to store only half the matrix
Θ(n2) space
Θ(1) time to check if there is an edge i − j

Θ(n) time to find all neighbors of a node
Θ(n2) time to list all edges

jonasskeppstedt.net Lecture 2 2023 36 / 48



Graph representation: adjacency list

n = |V | and m = |E |
Every vertex has a list of neighbors
Every edge u − v is stored in both u and v

degree(n) is the number of neighbors
Θ(degree(n)) time to find all neighbors of a node
Θ(m) time to list all edges

jonasskeppstedt.net Lecture 2 2023 37 / 48



Optimizations

Store only half of the adjacency matrix for undirected graphs
For a very dense graph the matrix is smaller and just as fast
If you need both quick neighbor check and being able to quickly list all
neighbors, then use both!
Optimizing compilers use both when deciding which variable should be
allocated a processor register: the variables are nodes and there is an
edge x − y if x and y may be needed at the same time (and therefore
cannot use the same register)

jonasskeppstedt.net Lecture 2 2023 38 / 48



Paths and connectivity

A path is a sequence of nodes p = (v1, v2, ..., vk) such that vi and
vi+1 are neighbors in an undirected graph, or there is an edge from vi
to vi+1 in a directed graph.
If all nodes in p are distinct then it is a simple path.
An undirected graph is connected if there is a path between every
pair of nodes.
A cycle is a path which consists of a simple path followed by the first
node such as (u, v ,w , u).

jonasskeppstedt.net Lecture 2 2023 39 / 48



Trees

A connected undirected graph is a tree if it has no cycle.
A tree has n − 1 edges.
In a rooted tree one node, r is called the node.

jonasskeppstedt.net Lecture 2 2023 40 / 48



Depth first search: DFS

int dfnum ; /* Depth-first search number. */
procedure dfs (v)
begin

dfn (v) ← dfnum
visited (v) ← true
dfnum ← dfnum +1

for each w ∈ succ(v) do
if (not visited (w))

dfs (w)
end
procedure depth_first_search (V )

dfnum ← 0
for each v ∈ V do

visited (v) ← false
dfs (s)

end

jonasskeppstedt.net Lecture 2 2023 41 / 48



DFS

Properties of depth-first search have been studied extensively by
Robert Tarjan
DFS is used a lot in compilers
His algorithms tend to be faster than others’ and often more beautiful
than art

jonasskeppstedt.net Lecture 2 2023 42 / 48



DFS example

0

1

2 5

3

4

6

0

1

tree

2

tree

5

tree

3

tree

forw
ard

cr
os

s

4

6

tree

tree

cross

cycle

jonasskeppstedt.net Lecture 2 2023 43 / 48



The s-t connectivity problem

The problem is to find a path from s to t.
Often we want to find the shortest path from s to t.
The distance between two nodes u and v is the number of edges on a
shortest path from u to v

How to solve the connectivity problem?
Check all nodes v at a distance k from s until either v = t or there
are no more nodes to check, in which case s and t are not connected.
Let k = 1, 2, 3, ...,∞
This is called breadth first search, or simply BFS
Think of an onion. You start in the center and explore one layer at a
time outwards.

jonasskeppstedt.net Lecture 2 2023 44 / 48



Breadth first search

a b

c d

e f g h

i j

Is there a path from a to j?
A node v is added to a layer
only the first time v is seen
Check one layer at a time.
L0 = {a}
L1 = {b}
L2 = {d , h}
L3 = {c, e, g}
L4 = {f , j}
We don’t need the layers. A list
is sufficient.

jonasskeppstedt.net Lecture 2 2023 45 / 48



BFS implementation to find path s − t

procedure BFS (G , s, t)
q ← new list containing s
for v ∈ V visited(v)← 0
visited(s)← 1
while q ̸= null

v ← take out the first element from q
for w ∈ neighbor(v)

if not visited(w) then
visited(w)← 1
add w to end of q
pred(w)← v
if w = t then

print ”found path s − t”
return

print ”found no path s − t”

jonasskeppstedt.net Lecture 2 2023 46 / 48



Finding the actual path s − t

We want to find a path a− j

One is p = (a, b, d , g , j)

For each node w except the first, the attribute pred(w) is the previous
node in p.
pred(j) = g , pred(g) = d , etc
What is the running time of BFS?
The while loop has up to n iterations with |V | = n

Each node has at most n neighbors, so O(n2)?
What do you say?

jonasskeppstedt.net Lecture 2 2023 47 / 48



BFS time complexity

But in total m edges so 2m =
∑

v∈V degree(v) edges to process.
2m since each edge is in two adjacency lists
Thus BFS can be implemented in O(n +m) with adjacency lists

jonasskeppstedt.net Lecture 2 2023 48 / 48


